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Abstract. Shortest link scheduling (SLS) is one of the most funda-
mental problems in wireless networks. Almost all of the state-of-the-art
approximation algorithms for SLS in wireless networks are resorted to
the ellipsoid method for linear programming exclusively. However, the
ellipsoid method can require an inordinate amount of running time and
memory even for a moderate sized input, and consequently is often un-
usable in practice. This paper presents a completely new paradigm for
SLS in general wireless networks which is radically different from the pre-
vailing ellipsoid method, and is much faster and simpler. The broarder
applicability of this new paradigm is demonstrated by its applications to
SLS in wireless single-channel single-radio networks under the physical
interference model, wireless multi-channel multi-radio networks under
the protocol interference model, and wireless multi-input multi-output
networks with receiver-side interference suppression under the protocol
interference model.
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1 Introduction

Shortest link scheduling (SLS) is one of the most fundamental problems in wire-
less networks. Motivated by a unified treatment on SLS in single-channel single-
radio (SCSR) wireless networks, multi-channel multi-radio (MCMR) wireless
networks, and multi-input multi-output (MIMO) wireless networks, we consider
the following general formulation of SLS. Consider a set of m node-level commu-
nication links in a wireless network. Each link l for 1 ≤ l ≤ m is associated with a
finite set El of communication primitives. Let E be the union of E1, E2, ⋅ ⋅ ⋅ , Em.
A subset I of E is said to be independent if all the communication primitives in
I can occur successfully at the same time; and let ℐ denote the collection of all
independent subsets of E. In general, ℐ is specified implicitly by an interference
model possibly together with the communication technologies employed at the
physical layer. For each e ∈ E, let b (e) be the data rate of e. Suppose that d is
a positive traffic demand function on the m links. A link schedule of d is a set

S =
{

(Ij , xj) ∈ ℐ × ℝ
+ : 1 ≤ j ≤ k

}



satisfying that for each 1 ≤ l ≤ m,

d (l) ≤

k
∑

j=1

xj

∑

e∈El∩Ij

b (e) ;

the value
∑k

j=1 xj are referred to as the length (or latency) of S, and is denoted
by ∥S∥. The minimum length of all fractional schedules of d is denoted by �∗ (d).
Then, the problem SLS and a closely related problem Maximum Weighted
Independent Set (MWIS) are stated as follows:

– SLS: Given a positive demand function d on the m links, find a link schedule
S of d with minimum length.

– MWIS: Given a non-negative weight function w on E, find an I ∈ ℐ with
maximum total weight w (I) :=

∑

e∈Iw (e).

The above formulation is general enough to capture the modeling of various
wireless networks:

– Wireless SCSR network: Consider a set of m node-level communication
links. For the l-th link which is from a node u to a node v, El is simply
the singleton {(u, v)}. The independence family ℐ consists of all subsets I
of E =

∪m
l=1El which can transmit successfully at the same time under a

specific interference model.
– Wireless MCMR network: Suppose that and each node v has � (v) radios

and there are m node-level communication links and � channels. For the l-th
node-level link which is from a node u to a node v, El consists of �� (u) � (v)
radio-level links from u to v. The independence family ℐ consists of all subsets
I of E =

∪m
l=1El which can transmit successfully at the same time under a

specific interference model.
– Wireless MIMO network: Suppose that and each node v has � (v) radios

and there are m communication links. For the l-th node-level link which is
from a node u to a node v, El consists of min {� (u) , � (v)} streams from
u to v. The independence family ℐ consists of all subsets I of E =

∪m
l=1El

which can transmit successfully at the same time under a specific interference
model and a specific interference suppression scheme.

SLS in wireless SCSR networks under protocol interference model has been
studied in [10, 12, 18]. A polynomial-time greedy constant-approximation algo-
rithm was given in [18]. This algorithm takes advantage of the unique binary na-
ture of the protocol interference model: a subset I of E is independent if and only
if any pair of elements in I are independent. SLS in wireless MCMR networks
under protocol interference model in which the radio-level links of each node-
level link have uniform data rates has been studied in [7, 11, 22]. A polynomial-
time greedy constant-approximation algorithm was given in [22]. However, this
algorithm can not be simply extended to SLS in wireless MCMR networks un-
der protocol interference model in which the radio-level links of each node-level



link have disparate data rates. SLS in wireless SCSR networks under physi-
cal interference model [4, 21, 24] is notoriously hard due to the non-locality and
the additive nature of the wireless interference under the physical interference
model. In [21], a polynomial-time approximation-preserving reduction from SLS
to MWIS was developed, and can be extended to arbitrary wireless networks.
However, such reduction utilizes the ellipsoid method for linear programming,
which is quite inefficient in practice [16]. SLS in wireless MIMO networks un-
der protocol interference model [13, 25] is also known for its significant technical
challenge due to that the complicated constraints on independence. Except for
[25], all existing studies are purely heuristic without any provable performance
guarantees. In [25], constant-approximation algorithms based on the ellipsoid
method for linear programming were proposed for SLS in wireless MIMO net-
works with receiver-side interference suppression. Again, these algorithms are
quite inefficient in practice [16].

This paper develops a completely new paradigm for SLS problems in general
wireless networks which is radically different from the prevailing linear program-
ming based paradigm. The paradigm is effective in terms the approximation
bound and efficient in terms of the running time. In addition, it is transparent
to the interference model and the communication technologies at the physical
layer. We first establish the weak duality between SLS and MWIS and a sim-
ple yet powerful game-theoretic framework. Upon them we design a practical
approximation algorithms for SLS which offers nice trade-off between accuracy
and efficiency. Specifically, let A be a �-approximation algorithm for MWIS,
and " ∈ (0, 1/2] be an accuracy-efficiency trade-off parameter. The approxima-
tion algorithm for SLS developed in this paper produces a (1 + ")�-approximate
solution by making only O

(

"−2m lnm
)

calls to A. Finally, we apply this general
algorithm to derive effective and efficient approximation algorithms for SLS
in wireless SCSR networks under the physical interference model, in wireless
MCMR networks under the protocol interference model, and in wireless MIMO
networks with receiver-side interference suppression under the protocol inter-
ference model. We remark that the new paradigm developed in this paper also
has wide applications to general minimum fractional covering problems, which
is both faster and conceptually simpler than the known algorithms such as that
given in [8].

The remainder of this paper is organized as follows. Section 2 presents a weak
duality of SLS, which reveals an intrinsic relation between SLS and MWIS.
Section 3 introduces a generic adaptive zero-sum game with retirement. Section
4 describes the general design and analyses of the approximation algorithm for
SLS. Section 5 presents the applications of this general algorithm to SLS in
specific wireless networks. Finally, we conclude this paper in Section 6. The
following standard notations will be adopted in this paper. For any positive
integer k, we use [k] to denote the the set of first k positive integers {1, 2, ⋅ ⋅ ⋅ , k}.
For a real-valued function f on a finite set A and any B ⊆ A, f (B) represents
∑

a∈B f (a).



2 Weak Duality

In this section, we present a weak duality of SLS revealing the intrinsic relation
between SLS and MWIS.

Consider an instance of SLS specified by m non-empty disjoint subsets
E1, E2, ⋅ ⋅ ⋅ , Em, an independence family ℐ of E =

∪m
l=1El, a positive rate func-

tion b on E, and a positive demand function d on [m]. Suppose that w is positive
weight function on [m]. Let w be the function on E defined by

w (e) =
w (l)

d (l)
b (e)

for each e ∈ El and each l ∈ [m]. For any non-empty subset S of [m], denote

ES =
∪

l∈SEl,

ℐS = {I ⊆ ES : I ∈ ℐ} .

Then, the problem SLS has the following weak duality.

Theorem 1. For any non-empty subset S of [m],

�∗ (d) ≥
w (S)

maxI∈ℐS
w (I)

.

Proof. Let {(Ij , xj) : j ∈ [q]} be a shortest fractional coloring of d. Then,

w (S) =
∑

l∈S

w (l) =
∑

l∈S

w (l)

d (l)
d (l)

≤
∑

l∈S

w (l)

d (l)

∑

j∈[q]

xj

∑

e∈El∩Ij

b (e)

=
∑

j∈[q]

xj

∑

l∈S

∑

e∈El∩Ij

w (e)

=
∑

j∈[q]

xjw (ES ∩ Ij)

≤

(

max
I∈ℐS

w (I)

)

∑

j∈[q]

xj

=

(

max
I∈ℐS

w (I)

)

�∗ (d) .

Thus,

�∗ (d) ≥
w (S)

maxI∈ℐS
w (I)

.

So, the lemma holds.



We remark that by using the strong duality theory of linear programming we
can prove the following strong duality of SLS: There exist a non-empty subset
S of [m] and a positive weight function w on E such that

�∗ (d) =
w (S)

maxI∈ℐS
w (I)

.

However, such strong duality of SLS is not needed in this paper.

3 An Adaptive Zero-Sum Game with Retirement

In this section, we introduce an adaptive zero-sum game with retirement, which
generalizes the problem considered by Auer et al. [2], Vovk [17], Cesa-Bianchi
et al. [3], Freund and Schapire [5, 6], Khandekar [9], and Arora et al. [1] in the
context of learning or game theory. The game playing strategy to be described in
this subsection makes both the algorithm designs and analyses proposed later in
this paper fairly modular and clarifies the high-level structure of the argument.
We believe that our general treatment on the game playing strategy will help to
facilitate its application to other settings easily.

In the adaptive zero-sum game with retirement, a sequential game is played in
rounds between a set A of m profit-making (female) agents and a loss-incurring
(male) adversary. At the end of the round, some agents may retire themselves
permanently, and the set of agents not yet ret retired are said to be active agents.
Initially, all agents are active. At the beginning of each round, the agents declare
an adaptive binding strategy in terms of probabilistic distributions on active
agents. Then, the adversary generates the profits of active agents in this round
subject to the Normalization Rule: The maximum value of the individual
profits is exactly one. The loss incurred by the adversary is determined by the
Zero-Sum Rule: The loss of the adversary is equal to the expected profit of
active agents with respect to the binding strategy on active agents. At the end of
the round, some agents may decide to retire themselves to prevent the adversary
from keeping a single agent overly wealthy while keeping other agents in poverty.
The objective of the agents is to make it happen as early as possible that the
cumulative profit of every agent is at least 1

1+"
times the cumulative loss of the

adversary for some pre-specified " ∈ (0, 1/2]; the objective of the adversary is
exactly the opposite. The game has to be terminated whenever all agents are
retired.

Now, we introduce the strategies for the agents, while leaving the strategy
for the adversary to specific applications. It would be natural for the agents
to facilitate a threshold-based retirement policy: An agent will be retired
permanently after making a cumulative profit at least some threshold � > 0.
The choice of � is essential for the agents to accomplish the objective, and we
choose

� =
lnm+ "

" (1 + ") + ln (1− ")
.



Since for " ∈ (0, 1/2],

1

5
<

" (1 + ") + ln (1− ")

"2
<

1

2
.

we have � = �
(

"−2 lnm
)

. In order to expedite the pace, the binding strategy on
the active agents would give a greater probability to an active agent with smaller
profit. To facilitate such binding strategy, each agent a maintains a positive
weight w (a), which is initially one. In each round, the binding strategy on active
agents sets the probability of each active agent a proportional to its weight w (a);
after observing the profits generated by the the adversary, the agents adopt the
Multiplicative Weights Update (MWU) strategy to update the weights: if
an agent a earns a profit p (a), then w (a) is updated by a multiplicative factor
1− "p (a).

An implementation of the game playing with these strategies is described as
follows. Let S be the set of active agents, which is initially A; let P (a) and w (a)
be cumulative profit, and weight of each agent a, which are initially 0, and 1
respectively. Repeat following rounds while S is non-empty:

1. Generation of profits: The adversary determines a non-negative profit
p (a) for each a ∈ S subject to the Normalization Rule. As the result, for
each a ∈ S,

P (a)← P (a) + p (a) ;

and by the Zero-Sum Rule the loss incurred by the adversary is

∑

a∈S w (a) p (a)

w (S)
.

2. Multiplicative Weights Update: The agent updates w (a) for each a ∈ S
by setting

w (a)← w (a) (1− "p (a)) .

3. Retirement of agents: For each agent a ∈ S, if P (a) ≥ � then the agent
a is retired (i.e., removed) from S.

The effectiveness of above implementation of the game is asserted in the theorem
below.

Theorem 2. The total number of rounds is at most m ⌈�⌉; and at the end of

the last round the cumulative profit of each agent is at least � and the cumulative

loss of the adversary is at most (1 + ")�.

Due to the space limitation, the proof of the above theorem is omitted here.
We remark that the MWU strategy may have the following alternative imple-
mentation in each round: for each a ∈ S,

w (a)← w (a) (1− ")
p(a)

.



With this alternative implementation, each agent a maintains its weight w (a) =

(1− ")
P (a)

; in other words, the weight w (a) of each agent a is an exponential
function of its cumulative profit P (a), which is conceptually simpler. Theorem
2 still holds with this alternative implementation. However a disadvantage of
this implementation is that it requires the computation of an exponential func-
tion. In contrast, the MWU strategy described in this section only requires
multiplication.

4 Approximation Algorithm for SLS

Let A be a �-approximation algorithm for MWIS, and " ∈ (0, 1/2] be an
accuracy-efficiency trade-off parameter. This section presents a purely combi-
natorial (1 + ")�-approximation algorithm LS(") for SLS.

Let

� =
lnm+ "

" (1 + ") + ln (1− ")
.

The algorithm LS(") outlined in Table 1 first builds up a link schedule S of �d
from scratch with successive augmentations by a pair (I, x) in each iteration and
then returns 1

�
S as the output link schedule of d. The design of LS(") is based on

the general framework of an adaptive zero-sum game with retirement introduced
in the previous section. Each link l ∈ [m] corresponds to an agent, and and each
augmenting iteration of the LS(") corresponds to a game round. The agents
plays exactly with the strategies described in Section 3. For each agent l ∈ [m],
P (l) is its cumulative profit, which is initially 0; � is the retirement threshold of
the agents; and S is the set of active agents, which is initially [m]. In addition,
each agent l ∈ [m] implicitly maintains a weight w (l) which is is initially 1, and

explicitly maintains a weight w (e) = w(l)
d(l) b (e) for each e ∈ El as suggested by

Theorem 1. The profit generation strategy of the adversary is coupled with the
link schedule augmentation: In each round of the game, the profit of each agent
is the proportion of its demand served by the augmentation pair. Consequently,
at the end of each round the cumulative profit of each agent is the proportion of
its demand that has been served by the present S. Specifically, at the beginning
of each round the adversary computes an IS I of ES by the algorithm A with
respect to the weight w. The length x of I is determined by the Normalization

Rule as follows. Due to the augmentation (I, x), each l ∈ S earns a profit x �(l)
d(l) ,

where � (l) =
∑

e∈El∩I b (e). The Normalization Rule dictates that

x = min

{

d (l)

� (l)
: l ∈ S, � (l) > 0

}

.

This completes the specification of the adversary’s strategy on generating losses
in each round. After augmenting S with the pair (I, x), P (l) for all l ∈ S and
w (e) for all e ∈ ES are explicitly updated accordingly (and w (l) for all l ∈ I
are implicitly updated accordingly); and if P (l) ≥ � then l is retired from S.
By Theorem 2, the number of rounds is at most m ⌈�⌉ =

(

"−2m lnm
)

. After the



last round, the proportion of the demand by each l ∈ [m] served by S is at least
�. Thus, 1

�
S is a link schedule of d and is returned as the output.

Algorithm LS("):

// initialization

S ← ∅, P ← 0, S ← [m]; �← lnm+"
"(1+")+ln(1−")

;

for each l ∈ S do

for each e ∈ El do w (e)← b(e)
d(l)

;

// link schedule augmentations

while S ∕= ∅ do
// augmentation

I ← the IS of ES output by A w.r.t. w;
for each l ∈ S do � (l)←

∑

e∈El∩I b (e);

x← min
{

d(l)
�(l)

: l ∈ S, � (l) > 0
}

;

S ← S ∪ {(I, x)};
// updates

for each l ∈ S do

P (l)← P (l) + x
�(l)
d(l)

; // update the profit

for each e ∈ El do w (e)← w (e)
(

1− "x
�(l)
d(l)

)

; // MWU

if P (l) ≥ � then S ← S ∖ {l}; // retirement

// scaling

return 1
�
S.

Table 1. Outline of the algorithm LS(").

The theorem below analyzes the performance of the algorithm LS(").

Theorem 3. The algorithm LS(") has an approximation bound (1 + ")�.

Proof. Consider a specific round in which S is augmented by a pair (I, x). Let
I∗ be a maximum w-weighted independent set of ES . Then, w (I) ≥ 1

�
w (I∗).

By the Zero-Sum Rule, the loss of the adversary in this round is

1

w (S)

∑

l∈Sw (l)x
� (l)

d (l)
= x

∑

l∈S

∑

e∈El∩I
w(l)b(e)

d(l)

w (S)

= x

∑

l∈S

∑

e∈El∩I w (e)

w (S)
= x

w (I)

w (S)
≥

x

�

w (I∗)

w (S)
≥

x

��∗ (d)
,

where the last inequality follows from Theorem 1. So, the cumulative loss of the

adversary at the end of last round is at least ∥S∥
��∗(d) . On the other hand, by

Theorem 2 the cumulative loss of the adversary at the end of last round is at
most (1 + ")�. Thus,

∥S∥

��∗ (d)
≤ (1 + ")�.



Hence, the output link schedule has length

∥S∥

�
≤ (1 + ")��∗ (d) .

So, the theorem holds.

5 Applications

In this section, we apply the general algorithm LS(") to derive effective and
efficient approximation algorithms for SLS in wireless SCSR networks under
the physical interference model, wireless MCMR networks under the protocol
interference model, and wireless MIMO networks with receiver-side interference
suppression under the protocol interference model.

5.1 Wireless SCSR Networks under Physical Interference Model

Consider an instance of wireless SCSR network under the physical interference
model. In the setting of no power control, an assignment of transmission power
to links is pre-specified, and a set I of links is independent if and only if all
links in I can communicate successfully at the same time under the physical
interference model. A power assignment is said to be monotone if the trans-
mission power of a link is non-decreasing with the link length, to be sub-linear

if the received power by a link is non-increasing with the link length, and to
be a linear if all links have the same received power. In the setting of power
control, a set I of links is independent if and only if there exists a transmission
power assignment to I at which all links in can communicate successfully at the
same time under the physical interference model. With linear power assignment,
constant-approximation algorithms forMWIS have been developed in [24]; with
any other fixed monotone and sublinear power assignment or with power con-
trol, logarithmic approximations algorithms for MWIS have been developed in
[14, 15, 19, 21, 24]. By utilizing these approximation algorithms for MWIS, the
algorithm LS(") produces constant approximate solutions for SLS respectively
with linear power assignment, and logarithmic approximate solutions for SLS
with any other fixed monotone and sublinear power assignment or with power
control.

5.2 Wireless MCMR Networks under Protocol Interference Model

Consider an instance of wireless MCMR network on a set V of networking nodes
with � channels. Each node v has � (v) antennas. Along each node-level com-
munication link l = (u, v), a set El of �� (u) � (v) different radio-level links can
be supported. Let E denote the set of radio-level links of all directed node-level
communication links. Under an interference model, a set I of radio-level links in
E is independent if the following two properties are satisfied:



1. Radio-Disjointness: All radio-level links in I are radio-disjoint.
2. Co-Channel Independence: All radio-level links in I with the same chan-

nel are independent.

Suppose that a protocol interference model is adopted. If all the radio-link in
each El have the same transmission rate, then a greedy constant-approximation
algorithm for SLS was developed in [22]. However, the algorithmic approach in
[22] cannot be extended to the general setting in which the radio-link in each El

have disparate. But the constant-approximation algorithms for MWIS devel-
oped in [23] can be extended to this general setting. Indeed, let G be the conflict
graph on E. It was shown in [20] that G has an orientation D whose inward
local independence number defined by maxe∈E maxI∈ℐ

∣

∣I ∩N in
D [e]

∣

∣ is bounded
by a constant. Thus, for any nonnegative weight function w on E, the approx-
imation algorithms in [23] can be applied to compute a constant-approximate
solution for maximum w-weighted independent subset of E. By utilizing these
approximation algorithms for MWIS, the algorithm LS(") produces constant
approximate solutions for SLS efficiently.

5.3 Wireless MIMO Networks under Protocol Interference Model

Consider an instance of wireless MIMO network on a set V of networking nodes.
Each node v has � (v) antennas and operates in the half-duplex mode, i.e. it
cannot transmit and receive at the same time. Along each node-level directed
communication link l = (u, v), a set El of min {� (u) , � (v)} streams can be multi-
plexed. Let E denote the set of streams of all directed node-level communication
links. Under a protocol interference model, each node-level communication link
is associated with an interference range and all its streams inherit the same in-
terference range from it. When a set I of streams in E transmit at the same time,
the transmission by a stream e ∈ I from a sender u to a receiver v succeeds with
the receiver-side interference suppression if all the following three constraints are
satisfied:

1. Half-Duplex Constraint: u is not the receiver of any other stream in I,
and v is not the sender of any other stream in I.

2. Sender Constraint: u is the sender is at most � (u) streams in I.
3. Receiver Constraint: v lies in the interference range of at most � (v)

streams in I.

A set I of streams is said to be independent if all streams in I succeed when
they transmit at the same time. Let ℐ denote the collection of all independent
subsets of E. Constant-approximation algorithms for the problem MWIS have
been developed in [25] in the following three settings:

– Constant bounded number of antennas at all nodes.
– Uniform interference radii but arbitrary number of antennas.
– Uniform number of antennas but arbitrary interference radii.

By utilizing these algorithms, the algorithm LS(") produces constant approxi-
mation solutions for SLS in the above three settings as well.



6 Conclusion

This paper presents a purely combinatorial paradigm for SLS in general wireless
networks computes a link schedule by a sequence of calls to be a �-approximation
algorithm A for MWIS. This paradigm is radically different from the prevailing
approximation-preserving reduction from SLS to MWIS based on the ellipsoid
method for linear programming. On one hand, it shares with the greedy method
the simplicity that in each iteration the link schedule is augmented by a pair
of independent and duration. On the other hand, in contrast to the greedy
method which computes a link schedule of the give traffic demand function
d directly, it employs a scaling strategy to first compute a link schedule of up-
scaled traffic demand �d and then scale down of the link schedule by the factor �.
The computation of the link schedule follows a simple yet powerful framework
of the adaptive zero-sum game with retirement introduced in Section 3. This
framework together with the weak duality established in Section 2 leads to the
proper adaptive maintenance of the weight function on E, which serves as the
input to the approximation algorithm A for MWIS. The retirement strategy
excludes fully-served links from further scheduling. With these techniques, our
paradigm produces a (1 + ")�-approximate solution for for SLS by making only
O
(

"−2m lnm
)

calls to A. Thus, it offers nice trade-off between accuracy in
terms the approximation bound and efficiency in terms of the running time,
and is much simpler and faster. The boarder applicability of this new paradigm
is demonstrated by its applications to SLS in wireless SCSR networks under
the physical interference model, wireless MCMR networks under the protocol
interference model, and wireless MIMO networks with receiver-side interference
suppression under the protocol interference model.
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