
Multiows under Physical Interference Model

(draft)

Consider a multihop wireless network (V;A; I), where V is the set of networking nodes, A is

the set of communication links, and I is the collection of independent set of links speci�ed by an
interference model. Each link has a unit communication data rate. For any positive integer k, let

[k] denote the set f1; 2; � � � ; kg. Suppose that we are given k end-to-end unicast communication
requests. For each j 2 [k], Pj denotes the set of simple paths of the request j, Fj denotes the set
of ows of the request j, and the value of a ow fj 2 Fj is denoted by val (fj). A multiow is a
sequence f = hf1; f2; � � � ; fki with fj 2 Fj for each j 2 [k]. Let f = hf1; f2; � � � ; fki be a multiow.
The transmission time of each link a 2 A required by f isP

j2[k]fj (a) :

The total value of f is P
j2[k]val (fj) :

Given that each request j has a positive tra�c demand dj , the concurrency of f is

min
j2[k]

val (fj)

dj
:

This chapter studies the following two variants of the multiow problems:

� Maximum Multiow (MMF): The problem MMF seeks a multiow f and a MAC-layer

link schedule S of
P
j2[k]fj such that the length of S is at most one and the total value of f

is maximized.

� Maximum Concurrent Multiow (MCMF): Given that each request has a tra�c de-

mand, the problemMCMF seeks a multiow f and a MAC-layer link schedule S of
P
j2[k]fj

such that the length of S is at most one and the concurrency of f is maximized.

While both MMF and MCMF admit polynomial-time approximation-preserving reduction to

MWIS based on ellipsoid method, such reduction is quite ine�cient in practice. This chapter

presents faster and simpler combinatorial approximation algorithms forMMF andMCMF which

involve a sequence of computations of shortest paths and independent sets. These algorithms o�er
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nice trade-o� between accuracy in terms the approximation bound and e�ciency in terms of the

running time. Speci�cally, let A be a �-approximation algorithm forMWIS, and " 2 (0; 1=2] be an
accuracy-e�ciency trade-o� parameter. The approximation algorithms presented in this chapter

achieve an approximation bound (1 + 2")� in a running time growing with 1=" in the at most

square order.

When applied to MMF and MCMF under the physical interference model, the above algo-

rithms together the approximation algorithms for MWISL developed in Chapter 7 immediately

lead to the following algorithmic results:

� With linear power assignment, there are constant-approximation algorithms for MMF and
MCMF respectively under the physical interference model.

� With any other monotone and sublinear power assignment, there are O (ln�)-approximation
algorithm for MMF and MCMF respectively under the physical interference model.

� With power control, there are O (ln�)-approximation algorithm for MMF and MCMF

respectively under the physical interference model.

The remainder of this chapter is organized as follows. Section 1 establishes weak dualities

of MMF and MCMF, which reveal the intrinsic relations among them, shortest paths, and

maximum-weighted independent sets. Section 2 introduces a generic adaptive coupled game. Sec-

tion 3 and Section 4 describe the design and analyses of the approximation algorithms forMCMF

and MMF respectively, which o�er nice trade-o� between accuracy in terms the approximation

bound and e�ciency in terms of the running time.

1 Weak Dualities

Suppose that y is positive function on A. For each j 2 [k], let distj(y) be the length of a shortest
of the j-th request with respect to y. The problem MCMF has the following weak duality.

Theorem 1.1 The concurrency of the maximum concurrent multiow is at most

max
I2I

y (I)P
j2[k] djdistj (y)

The problem MMF has the following weak duality.
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Theorem 1.2 The total value of the maximum multiow is at most

max
I2I

y (I)

minj2[k] distj (y)

Consider a multiow f = hf1; � � � ; fki. A non-negative function x on
S
j2[k]Pj is said to be a

path-ow decomposition of f if for each a 2 A and each j 2 [k],

fj (a) =
X
P2Pj

jfag \ P jx (P ) :

A non-negative function z on I is said to be a (fractional) link schedule of f = hf1; � � � ; fki if for
each a 2 A,

kX
j=1

fj (a) =
X
I2I
jfag \ Ij z (I) :

The following invariant property holds.

Lemma 1.3 For any path-ow decomposition x of f and any link schedule z of f ,

kX
j=1

X
P2Pj

x (P ) y (P ) =
X
I2I

y (I) z (I)

Proof. Since

kX
j=1

X
P2Pj

x (P ) y (P )

=
kX
j=1

X
P2Pj

x (P )
X
a2A

y (a) jfag \ P j

=
X
a2A

y (a)

kX
j=1

X
P2Pj

x (P ) jfag \ P j

=
X
a2A

y (a)

kX
j=1

fj (a)

=
X
a2A

y (a)
X
I2I
jfag \ Ij z (I)

=
X
I2I

z (I)
X
a2A

y (a) jfag \ Ij

=
X
I2I

y (I) z (I) ;

the lemma holds.
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Lemma 1.4 If f is feasible, then

kX
j=1

distj (y) val (fj) � max
I2I

y (I)

Proof. Consider any path-ow decomposition x of f and any shortest link schedule z of f . On

one hand,

kX
j=1

X
P2Pj

x (P ) y (P )

�
kX
j=1

X
P2Pj

x (P ) distj (y)

=

kX
j=1

distj (y)
X
P2Pj

x (P )

=

kX
j=1

distj (y) val (fj)

On the other hand, X
I2I

y (I) z (I) �
�
max
I2I

y (I)

�X
I2I

z (I) � max
I2I

y (I) :

By Lemma 1.3,
kX
j=1

distj (y) val (fj) � max
I2I

y (I) :

So, the lemma holds.

Next, we prove Theorem 1.1. Let f = hf1; � � � ; fki be a maximum concurrent multiow. By

Lemma 1.4,

max
I2I

y (I) �
kX
j=1

distj (y) val (fj)

=

kX
j=1

djdistj (y)
val (fj)

dj

�
�
min
j2[k]

val (fj)

dj

� kX
j=1

djdistj (y) :

Thus,
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min
j2[k]

val (fj)

dj
� maxI2I y (I)Pk

j=1 djdistj (y)
:

So, Theorem 1.1 holds.

Finally, we prove Theorem 1.2. Let f = hf1; � � � ; fki be a maximum multiow. By Lemma 1.4,

max
I2I

y (I) �
X
j2[k]

distj (y) val (fj)

�
�
min
j2[k]

distj (y)

�X
j2[k]

val (fj) :

Thus,

X
j2[k]

val (fj) �
maxI2I y (I)

minj2[k] distj (y)
:

So, Theorem 1.2 holds.

2 An Adaptive Coupled Game

In this section, we introduce a sequential game played between an adversary and an agent who is

advised by a set E of experts. Prior to the �rst round of the game, the agent chooses a positive

weight w (e) for each expert e 2 E. In each round, the adversary determines a non-negative pro�t
p (e) and a non-negative loss l (e) for each e 2 E subjected to two rules:

� Normalization Rule:
max
e2E
jp (e)� l (e)j = 1:

� Generalized Zero-Sum Rule:X
e2E

y (e) (p (e)� l (e)) � 0

The agent may then update the weight y (e) of each expert e 2 E after observing the pro�ts and

loss of the experts. Given a parameter � 2 (0; 1), the objective of the agent is to maintain that at
the end of each round for each expert e, the cumulative pro�t of e minus � times the cumulative loss

of e is lower-bounded by some value invariant to the round number; the objective of the adversaries

is exactly the opposite.

Now, we describe theMultiplicative Weights Update (MWU) strategy for the agent, while

leaving the strategy for the adversary to speci�c applications. Fix an " 2 (0; 1). For each expert
e 2 E,
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� y (e) = 1 initially;

� in each game round, if e earns a pro�t p (e) and incurs a loss l (e), y (e) is updated by a
multiplicative factor

1� " (p (e)� l (e)) :

An implementation of the game playing with this strategy is described as follows. Let P (e), L (e),

and y (e) be cumulative pro�t, cumulative loss, and weight respectively of each e 2 E, which are
initially 0, 0, and 1 respectively. Repeat following rounds:

1. Generation of Pro�ts/Losses: The adversary determines a non-negative pro�t p (e) and

loss l (e) for each e 2 E subjected to theNormalization Rule andGeneralized Zero-Sum
Rule. As the result,

L (e) L (e) + l (e) ;

P (e) P (e) + p (e) :

2. Multiplicative Weights Update: The agent updates y (e) for each e 2 E by setting

y (e) y (e) (1� " (p (e)� l (e))) :

The e�ectiveness of above implementation of the game is asserted in the theorem below.

Theorem 2.1 At the end of each round, for any e 2 E,

ln (1 + ")

ln (1� ")�1
L (e) � P (e) + lnm

ln (1� ")�1

Proof. For each round r and each e 2 E, let pr (e) (respectively, lr (e), yr (e)) denote the pro�t
(respectively, loss, weight) of e received in round r; let Pr (e) (respectively, Lr (e), yr (e)) denote the

cumulative pro�t (respectively, cumulative loss, weight) of e at the end of the round r. In addition,

for each e 2 E, let

P0 (e) = L0 (e) = 0;

y0 (e) = 1:

We �rst claim that for any round t,

yt (E) � yt�1 (E) :
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Indeed, by the Generalized Zero-Sum Rule we have

yt (E) =
X
e2E

yt (e)

=
X
e2E

yt�1 (e) (1� " ((pt (e)� lt (e))))

=
X
e2E

yt�1 (e)� "
X
e2E

yt�1 (e) ((pt (e)� lt (e)))

�
X
e2E

yt�1 (e)

� yt�1 (E) :

So, the claim holds.

Next, we claim that for any round t and any expert e,

yt (e) � (1� ")Pt(e) (1 + ")Lt(e) :

Indeed, let

[t]+ = fi 2 [t] : pi (e) � li (e)g ;
[t]� = fi 2 [t] : pi (e) < li (e)g :

By the Normalization Rule and the inequality

(1� ")x � 1� "x

for any x 2 [0; 1], we have

yt (e)

=
Y
i2[t]

(1� " (pi (e)� li (e)))

=
Y
i2[t]+

(1� " (pi (e)� li (e))) �
Y
i2[t]�

(1 + " (li (e)� pi (e)))

�
Y
i2[t]+

(1� ")pi(e)�li(e) �
Y
i2[t]�

(1 + ")li(e)�pi(e)

= (1� ")
P
i2[t]+ (pi(e)�li(e)) (1 + ")

P
i2[t]� (li(e)�pi(e))

= (1� ")
P
i2[t]+ pi(e)

�
1

1� "

�P
i2[t]+ `i(e)

�
1

1 + "

�P
i2[t]� pi(e)

(1 + ")
P
i2[t]� li(e)

� (1� ")
P
i2[t]+ pi(e) (1 + ")

P
i2[t]+ `i(e) (1� ")

P
i2[t]� pi(e) (1 + ")

P
i2[t]� li(e)

= (1� ")
P
i2[t] pi(e) (1 + ")

P
i2[t] li(e)

= (1� ")Pt(e) (1 + ")Lt(e) :
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Thus, the claim holds.

The previous two claims yield that for any round t and any expert e,

(1� ")Pt(e) (1 + ")Lt(e) � yt (e) � yt (E) � y0 (E) = m:

Taking the logarithm of both sides, we have

Pt (e) ln (1� ") + Lt (e) ln (1 + ") � lnm;

Hence,
ln (1 + ")

ln (1� ")�1
Lt (e) � Pt (e) +

lnm

ln (1� ")�1
:

So, the theorem holds.

3 Maximum Concurrent Mulitow

This section presents a (1 + 2")-approximation algorithm CMF-LS(") for MCMF where " 2
(0; 1=2] is a �xed parameter. We �rst give an overview on the design of the algorithm CMF-LS(").

Let opt be the concurrency of a maximum concurrent multiow. The algorithm is iterative. Each

iteration �rst computes a multiow f of concurrency `, a scaling factor � � opt
� , and a \primary"

link schedule � of length ` and its corresponding link transmission-time function g. With respect

to the triple (f; �; g), the de�cit of a link a is de�ned to be

d0 (a) = max

8<:0; ln (1 + ")ln (1� ")�1
�
X
j2[k]

fj (a)� g (a)

9=; :
For such de�cit demand d0, a \complementary" link schedule �0 is then computed. Clearly, � [ �0

is a link schedule of the multiow
ln (1 + ")

ln (1� ")�1
�f:

Let `0 be the length of �0. If

`0

`
� "0 := (1 + 2") ln (1 + ") + ln (1� ")

ln (1� ")�1
;

then the scaled multiow
1

`+ `0
ln (1 + ")

ln (1� ")�1
�f

and the scaled schedule
1

`+ `0
�
� [ �0

�
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are returned as the output. The concurrency of the returned multiow is

`

`+ `0
ln (1 + ")

ln (1� ")�1
�

=
1

1 + `0=`

ln (1 + ")

ln (1� ")�1
�

� �

1 + 2"

� opt

(1 + 2")�
:

In order to compute the complementary link schedule quickly, a preprocessing is performed to

partition all links into independent sets. On such partition J can be obtained by applying the

algorithm GreedyFC with A, and let l = jJ j. Then, a complementary link schedule �0 of a de�cit
demand d0 is computed as follows. Initially, �0 is empty. For each J 2 J , let

�0 = max
a2J

d0 (a) ;

and if �0 > 0 then add the pair (J; �0) to �0. The length of �0 is

`0 =
X
J2J

max
a2J

d0 (a) � jJ jmax
a2A

d0 (a) = lmax
a2A

d0 (a) :

The algorithm CMF-LS(") is outlined in Table 1. The computation of the primary schedule �

(together with its length ` and its link transmission time function g), the multiow f , and the scaling

factor � in each round follows the general framework of the coupled game introduced in Section

2. Each link is regarded as an an expert, and each iteration corresponds to a game round. The

agent plays exactly with the strategy on maintaining the expert/link weight function y described

in Section 2. The pro�t (respectively, loss) generation strategy of the adversary is coupled with

the primary schedule (respectively, multiow) augmentation with the following invariant property

maintained throughout the game: At the end of each round, the cumulative pro�t of each link a

is exactly g (a), and the cumulative loss of each link is at least �
P
j2[k] fj (a). Initially, both the

multiow f and the primary schedule � are empty, and the scaling factor � is in�nity. In each

round, the adversary generates the pro�ts/losses as follows. Let I be the independent set w.r.t. y

output by the algorithm A, and Pj be a shortest path of the j-th request w.r.t. y for each j 2 [k].
If � is greater than

y (I)P
j2[k] djy (Pj)

=
y (I)P

j2[k] djdistj (y)
;
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Algorithm CMF-LS("):

8j 2 [k], fj  0; � ;, ` 0, g  0;� 1;
y  1, "0  (1+2") ln(1+")+ln(1�")

ln(1�")�1 ;

J  a link partition output by GreedyFC with A;
repeat forever

I  a y-weighted IS in I output by A;
8j 2 [k], Pj  a shortest j-path w.r.t. y;

� min
n
�; y(I)P

j2[k] djy(Pj)

o
; //truncation

�  1
maxa2Ajjfag\Ij��Pk

j=1 dj jfag\Pj jj
;

� � [ f(I; �)g, ` `+ �;

for each a 2 I do g (a) g (a) + �;

for each j 2 [k] do
for each a 2 Pj do fj (a) fj (a) + �dj ;

�0  ;; `0  0;

for each J 2 J do

�0  maxa2J max
n
0; g (a)� ln(1+")

ln(1�")�1�
P
j2[k] fj (a)

o
;

if �0 > 0 then �0  �0 [ f(J; �0)g ; `0  `0 + �0;

if `0 � "0` then return 1
`+`0

ln(1+")

ln(1�")�1 f and
1

`+`0 (� [ �
0).

for each a 2 A do
y (a) y (a)

�
1� "�

�
jfag \ Ij � �

P
j2[k] dj jfag \ Pj j

��
;

Table 1: Outline of the algorithm CMF-LS(").
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then � is reset to
y (I)P

j2[k] djdistj (y)
:

Thus, � is non-increasing with the round number. For some positive length � to be determined

shortly, � is augmented by the pair (I; �), and both ` and g are updated accordingly. The pro�t

of each link a 2 I is exactly its transmission time received from the augmenting pair (I; �), which

is equal to jfag \ Ij. Thus, the cumulative pro�t of each link a is exactly g (a). For each j 2 [k],
fj is augmented by a ow of value �dj along the path Pj . The loss of each link a is exactly the �

times the total amount of the augmenting ow through a, which is equal to

��
kX
j=1

dj jfag \ Pj j :

Since � is non-increasing with the round number, the cumulative loss of each link a is at least

�
X
j2[k]

fj (a) :

The Normalization Rule dictates that

� =
1

maxa2A

���jfag \ Ij � �Pk
j=1 dj jfag \ Pj j

��� :
Since

X
a2A

y (a)

0@� jfag \ Ij � ��X
j2[k]

dj jfag \ Pj j

1A
= �

0@X
a2A

y (a) jfag \ Ij � �
X
a2A

y (a)
kX
j=1

dj jfag \ Pj j

1A
= �

0@y (I)� � kX
j=1

dj
X
a2A

y (a) jfag \ Pj j

1A
= �

0@y (I)� � kX
j=1

djyt�1 (Pj)

1A
� 0;

the Generalized Zero-Sum Rule is also satis�ed by the pro�t/loss assignment in this round.

Subsequently, the complementary link schedule �0 of the de�cit demand is computed. By

Theorem 2.1, for each link a,

ln (1 + ")

ln (1� ")�1
�
X
j2[k]

fj (a) � g (a) +
lnm

ln (1� ")�1
:
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This means that the de�cit of each link is at most

lnm

ln (1� ")�1
:

Hence,

`0 � l lnm

ln (1� ")�1
:

If `0 � "0`, both
1

`+ `0
ln (1 + ")

ln (1� ")�1
f

and
1

`+ `0
�
� [ �0

�
are returned as the output. Otherwise, the agent updates the weight function y using the multi-

plicative weight update method, and the algorithm moves on to the next round.

We proceed to derive the upper bounds on both the number of iterations and the approximation

ratio of the algorithm CMF-LS("). Let hj be the hop number of a minimum-hop path of the j-th

request for each j 2 [k], and � be the size of a maximum-sized independent set.

Theorem 3.1 The algorithm CMF-LS(") runs in

O

�
"�2max

�
1;

�

minj2[k] hj

�
l lnm

�
:

iterations and has an approximation bound (1 + 2")�.

The following essential properties of � and � are the cornerstone to the above theorem

Lemma 3.2 The scaling factor � and the length � computed in each iteration satisfy that

opt

�
� � � �P

j2[k] djhj
;

� � 1

max
n
1; �
minj2[k] hj

o :
Proof. Let �0 and y0 be the initial values of � and y. For each round t � 1, let �t, �t and yt

be the value of �, � and y respectively computed in the round t; let It be the independent set I,

computed in the iteration t. Then,

�1 =
y0 (I1)P

j2[k] djdistj (y0)
=

jI1jP
j2[k] djhj

� �P
j2[k] djhj

:

12



Since �t is non-increasing with t, for each iteration t we have

�t �
�P

j2[k] djhj
:

Next, we prove by induction on t that

�t �
opt

�
:

Consider the (�rst) iteration t = 1. By the weak duality given in Theorem 1.1,

�1 =
y0 (I1)P

j2[k] djdistj (y0)
� 1

�

maxI2I y0 (I)P
j2[k] djdistj (y0)

� opt
�
:

Now consider any iteration t > 1 and assume that

�t�1 �
opt

�
:

and show that

�t �
opt

�
:

If �t = �t�1, then it is trivial that

�t �
opt

�
:

If �t < �t�1, then by the weak duality given in Theorem 1.1,

�t =
yt�1 (It)P

j2[k] djdistj (yt�1)
� 1

�

maxI2I yt�1 (I)P
j2[k] djdistj (yt�1)

� opt
�
:

So, in either case,

�t �
opt

�
:

Finally, we show that for each iteration t � 1,

�t �
1

max
n
1; �
minj2[k] hj

o :
For each round t � 1, let P (t)j be the shortest path of the j-th request computed in the round t for
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each j 2 [k]. Then, for each link a,������jfag \ Itj � �t
kX
j=1

dj

���fag \ P (t)j ���
������

� max

8<:jfag \ Itj ; �t
kX
j=1

dj jfag \ Pj j

9=;
� max

8<:1; �t
kX
j=1

dj

9=;
� max

8<:1; �P
j2[k] djhj

kX
j=1

dj

9=;
� max

�
1;

�

minj2[k] hj

�
Thus,

�t =
1

maxa2A

���jfag \ Itj � �tPk
j=1 dj

���fag \ P (t)j ������
� 1

max
n
1; �
minj2[k] hj

o :
This completes the proof of the lemma.

Next, we prove by contradiction that the number of iterations is at most

t =

�
l lnm

(1 + 2") ln (1 + ") + ln (1� ") max
�
1;

�

minj2[k] hj

��
:

Assume to the contrary the number of iterations is more than t. Consider the iteration t. By

Lemma 3.2, the primary schedule � in the iteration t has length

` � t

max
n
1; �
minj2[k] hj

o
� l lnm

(1 + 2") ln (1 + ") + ln (1� ")

=
l lnm

"0 ln (1� ")�1
:

On the other hand, the the complementary schedule �0 in the iteration t has length

`0 � l lnm

ln (1� ")�1
:
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Thus, `0 � "0`. This implies that the algorithm would terminate at the end the iteration t, which

is a contradiction. So, the number of iterations is at most t, which is

O

�
"�2max

�
1;

�

minj2[k] hj

�
l lnm

�
:

Finally, the approximation bound (1 + 2")� follows from the property

� � opt
�

in each iteration which is asserted in Lemma 3.2 and the argument given in the overview of the

algorithm at the beginning of this section. This completes the proof of Theorem 3.1.

4 Maximum Mulitow

The algorithm MF-LS(") for MMF is outlined in Table 2. It is very similar to the algorithm

CMF-LS(") for MCMF, and consequently we only highlight the di�erence in this section. In

each iteration, let Pj be the shortest one among the k shortest paths with respect to y. Then, only

fj is augmented in this iteration. Accordingly, � is computed by

� min

�
�;
y (I)

y (Pj)

�
;

and � is chosen to be
1

maxa2A jjfag \ Ij � � jfag \ Pj jj
:

So, fj is augmented by a ow of value � along Pj , the weight y (a) of each link a is updated by the

multiplicative factor

1� "� (jfag \ Ij � � jfag \ Pj j) :

For the performance analysis, we can show that in each iteration,

opt

�
� � � �

minj2[k] hj
;

� � min
�
1;
minj2[k] hj

�

�
;

`0 � l lnm

ln (1� ")�1
:

Using these properties, we can prove the following performance of The algorithm MF-LS(").
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Algorithm MF-LS("):

8j 2 [k], fj  0; � ;, ` 0, g  0;� 1;
y  1, "0  (1+2") ln(1+")+ln(1�")

ln(1�")�1 ;

J  a link partition output by GreedyFC with A;
repeat forever

I  a y-weighted IS in I output by A;
8j 2 [k], Pj  a shortest j-path w.r.t. y;

j  argminj2[k] y (Pj);

� min
n
�; y(I)y(Pj)

o
;

�  1
maxa2Ajjfag\Ij��jfag\Pj jj ;

� � [ f(I; �)g, ` `+ �;

for each a 2 I do g (a) g (a) + �;

for each a 2 Pj do fj (a) fj (a) + �;

�0  ;; `0  0;

for each J 2 J do

�0  maxa2J max
n
0; g (a)� ln(1+")

ln(1�")�1�
P
j2[k] fj (a)

o
;

if �0 > 0 then �0  �0 [ f(J; �0)g ; `0  `0 + �0;

if `0 � "0` then return 1
`+`0

ln(1+")

ln(1�")�1 f and
1

`+`0 (� [ �
0).

for each a 2 A do
y (a) y (a) (1� "� (jfag \ Ij � � jfag \ Pj j)) ;

Table 2: Outline of the algorithm MF-LS(").
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Theorem 4.1 The algorithm MF-LS(") runs in

O

�
"�2max

�
1;

�

minj2[k] hj

�
l lnm

�
:

iterations and has an approximation bound (1 + 2")�.
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