Fractional Wireless Link Scheduling and Polynomial Approximate Capacity Regions of Wireless Networks

P.-J. Wan, F. Al-dhelaan, H.Q. Yuan, and S. Ji

wan@cs.iit.edu

P.-J. Wan, F. Al-dhelaan, H.Q. Yuan, and S. Fractional Wireless Link Scheduling and Polyr

- Introduction
- A New Paradigm
- Profitable Feasible Set
- Applications
- Summary

æ

.∋...>

< 一型

• Wireless network (V, A; \mathcal{I})

P.-J. Wan, F. Al-dhelaan, H.Q. Yuan, and S. Fractional Wireless Link Scheduling and Polyr

æ

∃ ► < ∃ ►</p>

< 67 ▶

- Wireless network (V, A; \mathcal{I})
- Link demand $d \in \mathbb{R}^A_+$

- Wireless network (V, A; \mathcal{I})
- Link demand $d \in \mathbb{R}^A_+$
 - $\chi^{*}\left(d
 ight)$: its minimum schedule length

- Wireless network (V, A; \mathcal{I})
- Link demand $d \in \mathbb{R}^A_+$
 - $\chi^{*}\left(d
 ight)$: its minimum schedule length
- Capacity region $\Omega:=\left\{ d\in\mathbb{R}_{+}^{A}:\chi^{*}\left(d
 ight)\leq1
 ight\}$

- Wireless network (*V*, *A*; \mathcal{I})
- Link demand $d \in \mathbb{R}^A_+$
 - $\chi^{*}\left(d
 ight)$: its minimum schedule length
- Capacity region $\Omega:=\left\{ d\in\mathbb{R}_{+}^{A}:\chi^{*}\left(d
 ight) \leq1
 ight\}$
- Polynomial (α, β) -approximate capacity region Φ :

$$\frac{1}{\alpha}\Omega\subseteq\Phi\subseteq\beta\Omega.$$

• Protocol interference model (IM)

æ

イロト イヨト イヨト イヨト

- Protocol interference model (IM)
 - Greedy scheduling with explicit bound on the output schedule length

.∋...>

- Protocol interference model (IM)
 - Greedy scheduling with explicit bound on the output schedule length
 - Explicit polynomial constant-approximate capacity region

- Protocol interference model (IM)
 - Greedy scheduling with explicit bound on the output schedule length
 - Explicit polynomial constant-approximate capacity region
- Physical IM and other advanced networks

- Protocol interference model (IM)
 - Greedy scheduling with explicit bound on the output schedule length
 - Explicit polynomial constant-approximate capacity region
- Physical IM and other advanced networks
 - Reduction to Profitable Independent Set (MWIS): expensive

- Protocol interference model (IM)
 - Greedy scheduling with explicit bound on the output schedule length
 - Explicit polynomial constant-approximate capacity region
- Physical IM and other advanced networks
 - Reduction to Profitable Independent Set (MWIS): expensive
 - No explicit bound on the output schedule length

- Protocol interference model (IM)
 - Greedy scheduling with explicit bound on the output schedule length
 - Explicit polynomial constant-approximate capacity region
- Physical IM and other advanced networks
 - Reduction to Profitable Independent Set (MWIS): expensive
 - No explicit bound on the output schedule length
 - No explicit polynomial approximate capacity region

• A general paradigm for link scheduling

æ

3 K K 3 K

< 67 ▶

- A general paradigm for link scheduling
 - Reduction to **Profitable Independent Set**: efficient and purely combinatorial

- A general paradigm for link scheduling
 - Reduction to **Profitable Independent Set**: efficient and purely combinatorial
 - Explicit bound on the output schedule length

- A general paradigm for link scheduling
 - Reduction to **Profitable Independent Set**: efficient and purely combinatorial
 - Explicit bound on the output schedule length
- Explicit polynomial constant-approximate capacity region

- A general paradigm for link scheduling
 - Reduction to **Profitable Independent Set**: efficient and purely combinatorial
 - Explicit bound on the output schedule length
- Explicit polynomial constant-approximate capacity region
- Applications

- Introduction
- A New Paradigm
- Profitable Feasible Set
- Applications
- Summary

• Link weight $w \in \mathbb{R}^{A}_{++}$

æ

イロト イヨト イヨト イヨト

- Link weight $w \in \mathbb{R}^{A}_{++}$
- Return rate of $a \in A$: $\overline{w}(a) := \frac{w(a)}{d(a)}$

- Link weight $w \in \mathbb{R}^{A}_{++}$
- Return rate of $a \in A$: $\overline{w}(a) := \frac{w(a)}{d(a)}$
- Return rate of $I \subseteq A$: $\overline{w}(I)$

- Link weight $w \in \mathbb{R}^{A}_{++}$
- Return rate of $a \in A$: $\overline{w}(a) := \frac{w(a)}{d(a)}$
- Return rate of $I \subseteq A$: $\overline{w}(I)$
- β -profitable subset of $S \subseteq A$: $I \subseteq S$ s.t. $\overline{w}(I) \ge w(S) / \beta$

- Link weight $w \in \mathbb{R}^{A}_{++}$
- Return rate of $a \in A$: $\overline{w}(a) := \frac{w(a)}{d(a)}$
- Return rate of $I \subseteq A$: $\overline{w}(I)$
- β -profitable subset of $S \subseteq A$: $I \subseteq S$ s.t. $\overline{w}(I) \ge w(S) / \beta$
 - β depends only on d

• β -Profitable oracle \mathcal{A} : for any $S \subseteq A$, compute a β -profitable **IS** I of S

- β -Profitable oracle \mathcal{A} : for any $S \subseteq A$, compute a β -profitable **IS** I of S
- $\varepsilon \in (0, 1/2]$: accuracy-efficiency trade-off parameter

- β -Profitable oracle \mathcal{A} : for any $S \subseteq A$, compute a β -profitable **IS** I of S
- $\varepsilon \in (0, 1/2]$: accuracy-efficiency trade-off parameter
- $LS(\varepsilon)$: computes a link schedule of d

- β -Profitable oracle \mathcal{A} : for any $S \subseteq A$, compute a β -profitable **IS** I of S
- $\varepsilon \in (0, 1/2]$: accuracy-efficiency trade-off parameter
- $LS(\varepsilon)$: computes a link schedule of d
 - length $\leq (1 + \varepsilon) \, \beta$

- β -Profitable oracle \mathcal{A} : for any $S \subseteq A$, compute a β -profitable **IS** I of S
- $\varepsilon \in (0, 1/2]$: accuracy-efficiency trade-off parameter
- $LS(\varepsilon)$: computes a link schedule of d
 - length $\leq (1 + \varepsilon) \beta$ • $O(\varepsilon^{-2} |A| \ln |A|)$ calls of \mathcal{A}

while $S \neq \emptyset$ do // augmentation $I \leftarrow \mathsf{IS}$ of S output by \mathcal{A} w.r.t. exponential weight $w(a) = (1-\varepsilon)^{P(a)}, \forall a \in S$ $t \leftarrow \min_{a \in I} d(a);$ $\Gamma \leftarrow \Gamma \cup \{(I, t)\};$ // updates for each $a \in I$ do $P(a) \leftarrow P(a) + \frac{t}{d(a)}; //$ update the profit if $P(a) \ge \phi$ then $S \leftarrow S \setminus \{a\}$; // inactive

- Introduction
- A New Paradigm
- Profitable Feasible Set
- Applications
- Summary

æ

.∋...>

- 一司

• Conflict factor $\rho: A \times A \rightarrow [0, 1]$

P.-J. Wan, F. Al-dhelaan, H.Q. Yuan, and S. Fractional Wireless Link Scheduling and Polyr

æ

- ∢ ∃ ▶

- Conflict factor $\rho: A \times A \rightarrow [0, 1]$
- ho-feasible set I: $ho\left(I\setminus\{a\},a
 ight)<1, orall a\in I$

- Conflict factor $\rho: A \times A \rightarrow [0, 1]$
- ho-feasible set I: $ho\left(I\setminus\{a\},a
 ight)<1, orall a\in I$
- Maximum local load

$$\Delta\left(d\right) = \max_{\mathbf{a} \in A} \left[d\left(\mathbf{a}\right) + \sum_{\mathbf{b} \in A \setminus \{\mathbf{a}\}} \rho\left(\mathbf{b}, \mathbf{a}\right) d\left(\mathbf{b}\right) \right]$$

- Conflict factor $\rho: A \times A \rightarrow [0, 1]$
- ho-feasible set I: $ho\left(I\setminus \left\{ a
 ight\} ext{, }a
 ight) <1,orall a\in I$
- Maximum local load

$$\Delta\left(d
ight)=\max_{a\in A}\left[d\left(a
ight)+\sum_{b\in Aackslash\left\{a
ight\}}\!\!\!
ho\left(b,a
ight)d\left(b
ight)
ight]$$

• Algorithm **PFS**: For any $w \in \mathbb{R}^{A}_{++}$ and $S \subseteq A$, output a $4\Delta(d)$ -profitable ρ -feasible set $I \subseteq S$

$$\overline{
ho}\left(b, \mathsf{a}
ight) := rac{\overline{w}\left(b
ight)}{\overline{w}\left(\mathsf{a}
ight)}
ho\left(\mathsf{a}, b
ight) +
ho\left(b, \mathsf{a}
ight)$$
 , $orall \mathsf{a}, b \in S$

2

イロト イヨト イヨト イヨト

$$\overline{
ho}\left(b, \mathsf{a}
ight) := rac{\overline{w}\left(b
ight)}{\overline{w}\left(\mathsf{a}
ight)}
ho\left(\mathsf{a}, b
ight) +
ho\left(b, \mathsf{a}
ight)$$
 , $orall \mathsf{a}, b \in S$

• Initialization: $I \leftarrow \emptyset$

æ

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\overline{
ho}\left(\mathbf{b},\mathbf{a}
ight):=rac{\overline{w}\left(\mathbf{b}
ight)}{\overline{w}\left(\mathbf{a}
ight)}
ho\left(\mathbf{a},\mathbf{b}
ight)+
ho\left(\mathbf{b},\mathbf{a}
ight)$$
 , $orall\mathbf{a},\mathbf{b}\in S$

- Initialization: I ← Ø
- Growing Phase: While S ≠ Ø, remove any a from S, and add it to I if

$$\overline{
ho}\left(I,a
ight)+rac{1}{2\Delta\left(d
ight)}\sum\limits_{b\in S}\overline{
ho}\left(b,a
ight)d\left(b
ight)<1.$$

$$\overline{
ho}\left(\mathbf{b},\mathbf{a}
ight):=rac{\overline{w}\left(\mathbf{b}
ight)}{\overline{w}\left(\mathbf{a}
ight)}
ho\left(\mathbf{a},\mathbf{b}
ight)+
ho\left(\mathbf{b},\mathbf{a}
ight)$$
 , $orall\mathbf{a},\mathbf{b}\in S$

- Initialization: $I \leftarrow \emptyset$
- Growing Phase: While S ≠ Ø, remove any a from S, and add it to I if

$$\overline{
ho}\left(I, \mathsf{a}
ight) + rac{1}{2\Delta\left(d
ight)} \sum\limits_{b \in S} \overline{
ho}\left(b, \mathsf{a}
ight) d\left(b
ight) < 1.$$

• Pruning Phase: While I is not ρ -feasible, remove from I any a with $\rho(I \setminus \{a\}, a) \ge 1$

- Introduction
- A New Paradigm
- Profitable Feasible Set
- Applications
- Summary

æ

∃ >

æ

• \exists conflict factor ρ s.t.,

- \exists conflict factor ρ s.t.,
 - ρ -feasibility \Leftrightarrow independence

- \exists conflict factor ρ s.t.,
 - ρ -feasibility \Leftrightarrow independence
 - $\Delta\left(d
 ight)\leq\mu\chi^{*}\left(d
 ight)$ for constant μ (under linear transmission power)

- \exists conflict factor ρ s.t.,
 - ρ -feasibility \Leftrightarrow independence
 - $\Delta\left(d
 ight)\leq\mu\chi^{*}\left(d
 ight)$ for constant μ (under linear transmission power)
- $4\Delta(d)$ -Profitable oracle \mathcal{A} : PFS

- \exists conflict factor ρ s.t.,
 - ρ -feasibility \Leftrightarrow independence
 - $\Delta\left(d
 ight)\leq\mu\chi^{*}\left(d
 ight)$ for constant μ (under linear transmission power)
- $4\Delta(d)$ -Profitable oracle \mathcal{A} : PFS
- Schedule length: $\leq 4(1 + \varepsilon) \Delta(d) \leq 4(1 + \varepsilon) \mu \chi^{*}(d)$

- \exists conflict factor ρ s.t.,
 - ρ -feasibility \Leftrightarrow independence
 - $\Delta\left(d
 ight)\leq\mu\chi^{*}\left(d
 ight)$ for constant μ (under linear transmission power)
- $4\Delta(d)$ -Profitable oracle \mathcal{A} : PFS
- Schedule length: \leq 4 $(1 + \varepsilon) \Delta (d) \leq$ 4 $(1 + \varepsilon) \mu \chi^* (d)$
- Polynomial (µ, 4)-approximate capacity region:

$$\Phi = \left\{ d \in \mathbb{R}_{+}^{A} : \Delta(d) \leq 1 \right\}.$$

MIMO Wireless Networks under Protocol IM

• DoF τ

P.-J. Wan, F. Al-dhelaan, H.Q. Yuan, and S. Fractional Wireless Link Scheduling and Polyr

æ

< 一型

∃ ► < ∃ ►</p>

MIMO Wireless Networks under Protocol IM

- DoF au
- Links \longleftrightarrow streams

æ

イロト イポト イヨト イヨト

- DoF au
- Links \longleftrightarrow streams
- Independence under receiver-side interference suppression

- DoF au
- Links \longleftrightarrow streams
- Independence under receiver-side interference suppression
 - Half-Duplex Constraint

- DoF τ
- Links \longleftrightarrow streams
- Independence under receiver-side interference suppression
 - Half-Duplex Constraint
 - Receiver Constraint: Each receiving node ν is interfered by < τ streams

- DoF τ
- Links \longleftrightarrow streams
- Independence under receiver-side interference suppression
 - Half-Duplex Constraint
 - Receiver Constraint: Each receiving node ν is interfered by < τ streams
 - (Sender Constraint)

 Conflict factor: ρ (a, b) = 1/τ if the receiver of b is interfered by a; and 0 otherwise.

- Conflict factor: $\rho(a, b) = 1/\tau$ if the receiver of *b* is interfered by *a*; and 0 otherwise.
- ρ -feasibility \iff meeting **Receiver Constraint**

- Conflict factor: $\rho(a, b) = 1/\tau$ if the receiver of *b* is interfered by *a*; and 0 otherwise.
- ρ -feasibility \iff meeting **Receiver Constraint**
- $\Delta\left(d
 ight)\leq\mu\chi^{*}\left(d
 ight)$ for constant μ

 Phase 1: PFS to produce a 4∆ (d)-profitable J ⊆ S meeting the Receiver Constraint

- Phase 1: PFS to produce a 4∆ (d)-profitable J ⊆ S meeting the Receiver Constraint
- Phase 1: extracting a 16∆ (d)-profitable I ⊆ J meeting the Half-duplex Constraint

- Phase 1: PFS to produce a 4∆ (d)-profitable J ⊆ S meeting the Receiver Constraint
- Phase 1: extracting a 16∆ (d)-profitable I ⊆ J meeting the Half-duplex Constraint
 - Bipartition of Nodes: $U = U' \cup U''$ s.t. J[U', U''] has $1/2^+$ return rate of J

- Phase 1: PFS to produce a 4∆ (d)-profitable J ⊆ S meeting the Receiver Constraint
- Phase 1: extracting a 16∆ (d)-profitable I ⊆ J meeting the Half-duplex Constraint
 - Bipartition of Nodes: $U = U' \cup U''$ s.t. J[U', U''] has $1/2^+$ return rate of J
 - $\bullet\,$ greedy partition $\sim\,$ Maximum Cut

- Phase 1: PFS to produce a 4∆ (d)-profitable J ⊆ S meeting the Receiver Constraint
- Phase 1: extracting a 16∆ (d)-profitable I ⊆ J meeting the Half-duplex Constraint
 - Bipartition of Nodes: $U = U' \cup U''$ s.t. J[U', U''] has $1/2^+$ return rate of J
 - $\bullet\,$ greedy partition $\sim\,$ Maximum Cut
 - Bipartition of Streams: $(U' \rightarrow U'') \cup (U' \leftarrow U'')$; return the one with largest return rate

• Schedule length: $\leq 16 (1 + \varepsilon) \Delta(d) \leq 16 (1 + \varepsilon) \mu \chi^*(d)$

- Schedule length: \leq 16 $(1 + \varepsilon) \Delta(d) \leq$ 16 $(1 + \varepsilon) \mu \chi^*(d)$
- Polynomial (µ, 16)-approximate capacity region:

$$\Phi = \left\{ d \in \mathbb{R}^{\mathcal{A}}_+ : \Delta\left(d
ight) \leq 1
ight\}.$$

- Introduction
- A New Paradigm
- Profitable Feasible Set
- Applications
- Summary

æ

∃ >

æ

$\mathsf{Profitable} \ \mathsf{IS} \mapsto \mathsf{Link} \ \mathsf{Schedule} \mapsto \mathsf{Poly.} \ \mathsf{Approx}. \ \mathsf{Capacity} \ \mathsf{Region}$

æ

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$\mathsf{Profitable} \ \mathsf{IS} \ \mapsto \ \mathsf{Link} \ \mathsf{Schedule} \ \mapsto \ \mathsf{Poly}. \ \mathsf{Approx}. \ \mathsf{Capacity} \ \mathsf{Region}$

• Purely combinatorial, fast, simple

-∢∃>

 $\mathsf{Profitable} \ \mathsf{IS} \mapsto \mathsf{Link} \ \mathsf{Schedule} \mapsto \mathsf{Poly.} \ \mathsf{Approx}. \ \mathsf{Capacity} \ \mathsf{Region}$

- Purely combinatorial, fast, simple
- ullet ~ Best-known approximation bound

 ${\sf Profitable} \; {\sf IS} \, \mapsto \, {\sf Link} \; {\sf Schedule} \, \mapsto \, {\sf Poly.} \; \; {\sf Approx}. \; \; {\sf Capacity} \; {\sf Region}$

- Purely combinatorial, fast, simple
- ullet ~ Best-known approximation bound
- Explicit upper bound on schedule length

 ${\sf Profitable} \; {\sf IS} \, \mapsto \, {\sf Link} \; {\sf Schedule} \, \mapsto \, {\sf Poly.} \; \; {\sf Approx}. \; \; {\sf Capacity} \; {\sf Region}$

- Purely combinatorial, fast, simple
- ullet ~ Best-known approximation bound
- Explicit upper bound on schedule length
- Explicit polynomial approximate capacity region