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Abstract—Consider a set of communication requests in a multi- best of our knowledge, the probleMWFS under physical
channel wireless network, each of which is associated with a jnterference model (aka, SINR model) has not been studied
traffic demand of at most one unit of fransmission time, and a pefore. Wireless communication scheduling under physical
weight representing the utl[lty |f.|ts demand is fully met. A sul?set interference model is notoriouslv hard due to the non-ibcal
of them is said to befeasible if they can be scheduled within o y A bc
one unit of time. The problem Maximum-Weighted Feasible Set and the additive nature of the wireless interference unioer t
(MWFS) seeks a feasible subset with maximum total weight physical interference model. As such, both the design and
together with a transmission schedule of them whose length analysis of the algorithms developed in [13], [16] MWFS
is at most one unit of time. This paper develops an efficient \,,qarprotocolinterference model cannot be extended directly

O (log” «)-approximation algorithms for the problem MWFS ) o
under the physical interference model (aka, SINR model) with a to the setting of physical interference model. Indeed, thekes

fixed monotone and sub-linear power assignment, where is the in [13], [16] heavily rely on two key properties gfrotocol
maximum number of requests which can transmit successfully interference model:
at the same time over the same channel. « the equivalence of the independence and the inductive
|. INTRODUCTION independence (to be defined precisely in 111-B),
« the availability of the explicit bound of transmission

Consider a set of point-to-point communication requests in  Schedule length in terms of the transmission demands.
a multi-channel wireless network. Each request is assmtiaHowever, under the physical interference model, there is a
with a traffic demand of at most one unit of transmission timsjgnificant gap between independence and inductive inde-
and a weight representing the utility if its demandfidly pendence, and no known transmission scheduling algorithm
met. A subset of them is said to bBeasibleif they can be is able to provide an explicit bound on the length of the
scheduled within one unit of time. The probldWeximum- produced transmission schedule in terms of the transmissio
Weighted Feasible Se{MWFS) seeks a feasible subset withdemands. The main objective of this paper is to develop new
maximum total weight together with a transmission scheduddgorithmic techniques for achieving efficient and proyabl
of them whose length is at most one unit of time. Thgood approximations for the probleMWFS under the phys-
problem MWFS arises from many fundamental applicationgcal interference model with a fixed monotone and sub-linear
in spectrum allocation and wireless scheduling [13], [16power assignment [2], [8], [9], [10]. This specific problem i
Technically, it is a non-trivial generalization of the wé&lown described as follows.
Maximum-Weighted Independent Set(MWIS) [14], which Suppose thatd is a set of communication requests akhd
is a special case dIWFS in which all requests have unitis the number of available channels. Each requesias a
traffic demands and transmit over the same channel. On themandd (a) € (0, 1] of transmission time, a positive weight
other hand, the strict harder-ness MIWWFS than MWIS is w (a) of utility, and a transmission power(a). The weight
witnessed by the restriction to simple instances of muualbf any subset” of A is
disjoint but conflicting communication requests in which no
pair can transmit at the same time. For any such restricted w(F) = Z w(a).
instance, a maximum weighted independent set is triviall ok .
the singleton communication request with the largest V\teigljmg/or each request, ((a) denotes the distance between the

the MWFS is essentially equivalent to the clasioapsack Sender and receiver aof. For any two requests andb in A,
problem [7], and hence is NP-complete. ¢(a,b) denotes the distance between the sender ahd the

receiver ofb. The signal strength attenuates with a path loss
Variants of the problemMWFS under protocol interfer- factornr—", wherer is the distance from the transmitter,is
ence model has been recently studied in [13], [16]. To thmth-loss exponer{g constant betweehand5 depending on



the wireless environment), angis thereference loss factor introduce a notion of constrained inductive feasibilityda
The signal quality perceived by a receiver is measured by tevelop an approximation algorithm for seeking a maximum-
signal to interference and noise rati(SINR, which is the weighted inductively feasible subset of requests. Thi®-alg
guotient between the power of the wanted signal and the totdhm is applicable to selection of low-demanded requdsts.
power of unwanted signals and the ambient ndisen order Section V, we present our main result on joint selection and
to correctly interpret the wanted signal under the physicatheduling algorithm for the probleMWFS. It is a special
interference model, the SINR must be greater than certalivide-and-conquet (log2 a)-approximation algorithm, and
thresholde > 1. Thus, for each request to communicate is built upon all the algorithms developed in the preceding
even without any interference,(a) should exceed sections. We conclude this paper in Section VI.

a K
Po (@) := 766 (a)" We conclude this section with the a few notations adopted
The interference of a requestc A toward another requestthroughout this paper. Lek be an request ordering in the
be Aisp(a)-nl(a,b)”" when they transmit at the same timedecreasing order of (a). For any pair of requests andb,
over the same channel. A sebf requests in4 is independent botha < b andb > a represent that appears beforé in
if when all requests i/ transmit at the same time over thghe ordering<. For anya € A and anyB C A, we use
same channel, the SINR of each requesf iis greater than B, (respectively,B, ;) to denote the set df € B satisfying
. thatb < a (respectively,b > a); in addition, B<, denotes
{a} U B%,, and B-, denotes{a} U B, ,. For any positive

A set C of requests is said to beompatibleif no pair of integerk, [k] denotes the set of positive integers at mbst
requests irC have a primary conflict, an@ can be partitioned for any two positive integers and! with k <, [k,[] denotes
into A independent subsets. Physically, compatible requeths set of integers between (including)and . Consider a
correspond to those which can transmit successfully dvernon-empty sett.

channels at the same time. A (transmissisnheduleof a « For any real-valued functiorf on E and anyS C E,

subsetF’ C A is a sequencé of pairs(C;,z;) for1 <j <k £ (S) representS”, s f (S) with f (0) = 0.

where eaclt’; is a compatible subset @f andz; is a positive o For any real-valued functiorf on E x E, anya € E,

number satisfying that for eache F, and anyS C E, f(S,a) representsy", ¢ f (b,a) with
f(0,a)=0.

k
d(a) =) x;{a} NCyl;

j=1
. Il. MAXIMUM -WEIGHTED COMPATIBLE SUBSET
the valued_;_, z; are referred to as thiengthof S, and is

denoted by|S||. A set of request$’ is said to bdeasibleif F

admits a schedule of length at most one. Throughout of tf}isln this section, we develop an approxmr_mon algorithm
. . or the problemMaximum-Weighted Compatible Subset
paper, the power assignmentis assumed to benonotone

50 13 o deresng i) an o besneac (CS), Cvn st o s g conpatle sbsetr
i.e., p(a)£(a)™ s non-increasing witht (a). The problem the problemMWEFS in Wﬁicﬁ all rep uests have uFr)1it demands
MWES seeks a feasible subsEtof A with maximum weight P q '

) . but a multi-channel generalization of the probldviVIS.
w (F') together with a schedule df with length at most one. : L )
This paper develops an efficiert (logg a)-approximation Suppose that there is @approximation algorithmA for the

algorithm for the problenMWFS, wherea is the maximum problemMWIS . We shall develop 4 + 2)-approximation

size of the independent subsetsAfinnovative variants of the algorithm.A™ for the problemMWCS.
local-ratio scheme [1], [3], [4], [6], [17], which is equilent

to the primal-dual scheme [5], are utilized in our algorithm Eor eachq € B let I (a) c_ienot_e the set of requests &
design and analyses. which have a primary conflict witlu; and letI'[a¢] denote

I'(a) N{a}. The algorithm A* is based on the local-ratio

The remainder of this paper is organized as follows. frategy an.d proceeds in.two phases: )
Section Il we give an approximation algorithm for seeking 1) Growing Phase This phase produces independent

a maximum-weighted compatible subset of requests. Such al-  S€ts 51,52,---, Sy sequentially in\ iterations. For
gorithm also provides a® (log” o)-approximation algorithm eachl < j < A, the j-th iteration first computes a
for the problemMWFS when all requests have demands  ‘discounted” weight functions;; and then produces an
at leastQ (1/loga). In Section lll, we present a greedy independent sef; by applying the algorithmA to the
(’)(log2 «)-approximation algorithm for seeking a shortest instance consisting of

schedule of a subset of requests. An advantage of this sehedu A;={ae A:w;(a) >0}

ing algorithm is that the produced schedule admits an dkplic
upper bound on its length in terms of the demands, which  andw;. The “discounted” weight functiom; is com-
provides an approximate feasibility test. In Section IV, we puted as follows:



¢ Wi = W. ThUS,
e For each2 < j < ),
== w (C) = 3 e nws (Cy)
wj (a) = w(a) — Z w; (S;NT'a]),Va € A. = Dicr—1] 2 jeli+1.0] 2obes; 2oacc,nrp) Wi (0)

i€[j—1]
) ) ’ ] = Zie[)\fl]ZbGSiZje[iJrl,)\]Zaecjﬂl“[b]wi (b)
2) Pruning Phase This phase producesindependent sets

I, I,_1,---,I; sequentially satisfying that no pair of = Diep—12pes, [T[0]N (Uje[iJrL)\]cj) wi (b)
requests from thesg sets have a primary conflict; and 5 Tialn (i1 C ‘
the union of them, denoted by, is returned as the ZJG[A*”Z“GSJ“ o] (UZG[J“”\] ) w; (a).
output. They are produced as follows: So, the claim holds.
o I is simply S,. Next, we prove that
« For each intege from A1 down to1, ; consists w(l) 23 jepws (5) -
of all requests in5; which have no primary conflict _
with any request inJ,. ;. ;- got\ejthatIA = Sy, and for eachj € [\ — 1] and anya €
¥ Kl
Now, we provide a lower bounds an (I) in terms of the ‘F [a] 0 (Uie[jJrL)\]Ii) = L
maximum weight of compatible subsets Bf Thus,
Theorem 2.1:Let O be a maximum-weighted compatible w (1) = jenws (1)
subset ofBB. Then, = Zje[/\—l]zaeSj ‘F [a] N (Uie[j+1,>\]1i> w; (a)
w (0)
w(l) = B+2 = Zje[x—l]zaesj\zj I'laln (Uie[j+17/\]li> wj (a)

2 Zje[/\fl]ZaeSj\ijj (a)

Proof. We shall prove the theorem by establishing the = >_;cp—1w; (55 \ 1)),
relations

w(0) which implies that
w(l) =3 enws () = T2 W (D) > Xy (1) ey (5,\ 1)
We first claim that for any subsef’ of B and for any =wx () + 2 ep-nw; (S5)
partition Cy,Cs, - -- ,C,, of C, = wy (Sy) + Zje[xq]wj (S))
w (C) - Zje[)\]wj (C5) = Zje[)\]wj (55) -
=D jel—1]2=acs, ‘F [a] N (Uie[j—i—l,)\]Ci) wj (a). Finally, we prove that
Sincew = wy, we have w(0) < (B+2) 3 jepwi (55) -
w(C) — Zjemwj () Is_gttS:{QrKeOn?,f-o-r- a,mOy% l{:))\e],a partition ofO into independent
= 25 (C1) = Ljepwi (C5) w; (05) < w; (0; 01 A;) < fw; (S5)

= Zje[27,\]w (C)) — Zje[/\—2]wj (C5)

and for anya € S;,
= e W (C)) —w; (Cy)]

= et Sacc, [w (@) —w; (a)]. ‘F [a] N (Uie[j+1,>\]0i) <|T'[aJnOf<2.

Using the relations between the original weights and tr;r us,
discounted weights, we have w(0) = 3 epws (05)

w(C) = X ey (C5) = e 1 aes, [P0 (Uicyein )] w5 (@)

=2 jelz2aec; 2iel-1 @i (U'la] NS:) < 2% e 1) s, W5 (@)

=D iep—1) 2 jefi+1.0 2oaecc; Wi (Fla] N.S;) =23 iep—nw; (55),

= Zje[Q,)\]Zie[j—l]EaGCjZCGF[a]ﬂSiwi (0). which implies that
Note that for any pair of requestsandb, w(0) <3 enwi (05) + 237 s pnw; (S7)

acC;,beT[alNS; = BZje[)\]wj (S7) + QZje[Aq]wj (55)

sbeS,aeC;NT[h. S (B+2) 2 epywi (55)-



This completes the proof the theorem. [1l. TRANSMISSION SCHEDULING

Next, we provide a lower bounds an (/) in terms of the

: . . In this section, we present a transmission scheduling algo-
maximum weight of feasible subsets Bf P g ag

rithm which produces a schedule with an explicit bound on the

Theorem 2.2Let F be a maximum-weighted feasible subse?Chedme length. Such explicit upper bound is very esdentia
to the joint optimization of selection and scheduling prob-

of B. Then, . . o 2
. lem. This algorithm has an approximation boufidlog® o).
w(I) > ww(p). We remark that anO (log o)-approximation bound can be
B+2 achieved by a general approximation-preserving reduction

[14] to the problemMWCS via a very impractical ellipsoid
Proof. Consider a shortest schedufeof F'. Let C be the method. However, the transmission schedule produced by suc
collection of compatible sets of requests i transmitting reduction does not admit any explicit upper bound on the
concurrently inS, and for eachC € C let z (C) be the total schedule length, and hence cannot be utilized by the joint
transmission time by in S. Then, selection and scheduling algorithm to be presented later in
Yot (C) <1, this paper. In contrast, our algorithm is greedy in naturel a

is much more efficient in implementation.
and for eachh € F,

d(b) =X cecr (C)|CN{bY]. A. Conflict Factors
Thus, The independence under the SINR model has the following
w (a) convenient characterization. For two requestand b in A,
w(F) =) wla)=)_ d(a) d(a) the relative interferenceof a toward b, denoted byRI (a,b),
“(GF) ack is defined as follows: Ifa and b share a common endpoint
w(a 7 ¢ H _ .
- Z MzCer (©)|Cn{a}| (Le., a andb have aprimary conflict), thenR1, (a,b) = oo;
o otherwise,
w(a -k
~Foeer () S o (ol RI(ah) = o P@L@D"
aEF (p(b) —po (b)) £(b)
w (a) Theconflict factorof are b t d anoth Btc A
_ (O quest toward another requeste A,
Zoee )[; d(a) denoted byp (a,b), is defined as follows:
1 .
- - a,b) =min{l, RI (a,b)}.
< ey d (@) Yeeer (€)Y w(a) p(a,b) { (a,b)}
1 acd Then, a sefl of requests is independent if and only if
< - -
~ minger d(a) Lcect (€)w(0) max Z p(I\{a},a) <1
maxcee w (C) = ben{a)
E—(Zchx (@)

~ mingepd(a)

max w (C
< L() B. Inductively Independent Set
minger d (a)

Hence, . )
For any pair of requests andb, define

p(a,b) =p(a,b) +p(b,a),
p(a,b) =min{1,2p(a,b)}.

r(r}gécw(C) > w(F)glellrmld(a).

By Theorem 2.1
maxcec w (C) _ mingep d(a)
w(l) = B+2 =" g+2 ¢ (£). A subsetJ of A is said to beinductively independenin <
if

So, the theorem holdsm N
mgjcp(J<a,a) <1.

Finally, we remark that the smallest-knowvihis O (log a) ) ‘ o . . )
[14] when the power assignment is monotone and sub-linegAuivalently, a subsef of A is inductively independent in

Thus, in the remaining of this papes, is assumed to be = If and only if

O (log a). Correspondingly,A* is an O (log «)-approximate max p (Jq,a) < 1/2.

algorithm for the problemMWCS. If all requests inB have a€J

demands at lea$? (1/log ), then A* is also anO (log2 a)- In general, inductive independence does not imply indepen-
approximate algorithm for the probleMWFS. dence. However, the following facts on an inductively inde-

pendent subsef of A can be easily verified:



o If |J| <3, thenJ is independent. o Compute a greedy lIS-partition of' into inductively
o Let independent sets
I={aeJ:p(J\{a},a) <1}.

Then, I is independent and| > |J| /2.

(e ke N}

» For eachk € [\], compute a greedy IS-partition of;

The above two facts have two implications. First, each into independent sets

inductively independent subset has size less thanSecond, {Ip ;5 € [lel}
a partition IT of an inductively independent subsét into .
independent sets can be produced as follows. o Let!* = maxyey Ik, andIy; = () for eachk € [A] and

eachl, < j < I*. For eachj € [I*], let C; be the

» ILs initially empty compatible set formed by the independent sets,; for

o While J is not independent, let

ke [Al.
I'={a€eJ:p(J\{a},a) <1}, The final partition
add to II, and removel from J. {Ciiell}
« Finally, if J is non-empty, add/ to II. is called agreedy CS-partitiorof C.
Such partition is referred to thgreedy IS-partitionof J. We
claim that Inductive compatibility can be conveniently charactedize
I <1+ [loga]. by a channel-awareconflict factor functiond defined as

follows: For any pair of requests andb, if a andb are

Indeed, if J is independent thefiI| = 1 and the inequality . ) X _
P M d y identical or have primary conflict, then

holds. So we assume thdtis not independent. Thep/| > 4.
It is easy to show that 0(a,b) = 1;

TI| < [log|J[] < [log (2a)] =1+ [loga]. otherwise .
0 (a,b) = Xﬁ(a, b).
C. Inductively Compatible Set Then, a seC is inductively compatible in< if and only if
I(?eaé(a (Cxqya) < 1.

A set C of requests is said to bieductively compatiblén
=< if no pair of requests irC' have a primary conflict and

max p (Cza,a) < A. Given a subses of A, an inductively compatible subsét
a€l of S in < can be greedily constructed as follows. Initially
Suppose thaC' is an inductively compatible subset df in is empty. For eacla € S in <, if 8(C,a) < 1 then adda to
<. Then C can be greedily partitioned inta inductively C. The final setC is referred to as thenaximal inductively
independent subsets compatible subsedf S in <. It is maximal in the sense that
for eacha € S,
{Jx : k€ [A\]}. 0(Cara) > 1.
in < as follows:
« Initially, J; is empty for eachk € [)\].
» For eacha € C in <, there must exists € [A] such that D. Inductive Schedule
p (Ji,a) < 1 since

Z P (Jk,a) =p(Cza,a) < A. An inductive schedulef a subsef' C A in < is a sequence
kel S of pairs (Cj,z;) for 1 < j < k where eachC; is an
inductively compatible subset ir andz; is a positive number

Pick the first sucht and adda to J. satisfying that for each € F

Clearly, eachJ;, for k € [A] remains inductively independent
in < throughout the process. The final partition

k
d(a) =Y z;|{a} NC;l;
{Je ke N} =

is called agreedy IIS-partitionof Jj. the valuezle x; are referred to as thiength of S, and

is denoted by||S||. Any inductive scheduleS of F' can be

In general, inductive compatibility does not imply compatiexpanded as follows to a schedule 6f with the length

bility. An inductively compatible sef’ in < can be partitioned increased by a factor of at most+ [loga]. For each pair
into at mostl + |log «] compatible subsets as follows. (C,z) in S,



« compute a greedy CS-partition 6fin < into compatible
sets

(SRFES(e}
for some positive integelr(C) < 1+ |log a|;
« then replac€C, z) by I (C) pairs

(Crax):jell(O).

E. Greedy Schedule

Now, are ready to present the transmission scheduling of a
given subsetF’ C A. The schedule of is produced in two
steps

1) Compute a greedy inductive scheddleof F' in <.

2) Compute a greedy expansiéti of S.

Let S* be the resulting schedule, and it is referred to as tfige scheduleS* is referred to as thgreedy schedulef F

greedy expansionf S in < . Clearly,
[8¥] < (1 + [loga]) IS

Given a subsef’ C A, an inductive schedul§ of F' can
be produced in the following iterative manner. Initially, is
empty, letF’ be the subset of requesiss F' with d (a) > 0.
Repeat the following iteration whilé&” is non-empty:
o Compute a maximal inductively compatible sub&ebf
F'in <.

e Let z = mingec d(a), and add(C, z) to S.

» For eachu € C, replaced (a) by d (a) —z, and ifd (a) =
0 then removex from F’.

The finalS is referred to as thgreedy inductive schedule of of

Fin <. Since|F’| strictly decreases, the number of iteration
is bounded by|F'|. The next theorem gives an upper boun
on the length ofS. Denote

A (F) = max > 0(ba)d(b).

bEFja

Lemma 3.1}|S|| < A (F).

Proof. Let C be the collection of inductively compatible
sets of requests i transmitting concurrently is. For each
C €, let x (C) be the transmission time by. Consider an
arbitrary request. € F' which completes its transmission last
Then, for eachC € C,

0 (Cja, CL) > 1.
Thus,
> 0(b,a)d(b)

beEF,

Y 0(0,0) Ceeer(O)1CN{bY]

bEFja

=Y cect(C) Y 0(b,a)|C N {b}]

bEF<,

= cect(C) Z 6 (b, a)
bEC<,

= Yeee (C)0(Cxqgya)

> > cect (C)

= [IS]]

So, the lemma holdsm

in <. The following upper bound ofjS*| is an immediate
consequence of Lemma 3.1.

Theorem 3.2]|S*|| < (1 + |loga|) A (F).

In the remaining of this subsection, we present a lower
bound on minimum schedule lengiti (F') of F, from which
can immediately obtain an approximation boundSsf The
backward local independence numb@LIN) of A in <,
denoted by, is defined to the be maximum value@fI<,, a)
over all independent subseisof A and all requests in A.

It was shown in [11] thag = O (log «). Denote

175N ::/1'—’_2(1_1;) .
S
d
Theorem 3.3For any ' C A and anya € A,
X" (F) > A
25N

Proof. We first claim that for any compatible subggtC A
and anya € A.
0 (C<a,a) < px.

Let C’ be the set of requests ifi<, which do not share any
common endpoint fronu, and C” be the set of the rest
requests inC<,. Then,

4 1/\ !
0(Car0) = C"| + 55(C,0).

Clearly,
|IC" < 2.
IC"] + 5(C"ya) < .
Thus,
1
0(Czara) = "]+ 57(C",a)
_ N 1 7 l Z ~
= (1-3) 11+ 50"+ 5(C" )
1 1
<(1-<)2+2x
<(1-3) 2+ 3w
=pu+2 (1 - )

So, the claim holds.



Next, we prove the inequality in the theorem. Consider
shortest schedule df'. Let C be the collection of compatible
sets of requests it appearing in this shortest schedule, an
for eachC € C let z (C) be the total transmission time lfy
in this shortest schedule. Then,

> cecr (C)=x"(F).
and for eachh € F,
d(b) =X cec® (O)|CN{b}.

Thus,

> 0(ba)d(b

beF<,

>

bGF—ja

= chcCIj ()

0(b,a) X gec (C) |C N {b}]

> 0(ba)|CN{bY

bEFja

=Y cecr (C) > 6(ba)

beC=,

=2 cec®(C)0(Czq,0)
< M/\ECecx ()

< ax" (F).

So, the theorem holdsm

@iven a subsef C B, ad-CIFS F' C S can be computed in
a greedymanner as follows:
d « Initially, F is empty.
o For eacha € S in <, a is added toF' if and only if
T(F,a) <1
The final setF is referred to as thenaximal§-CIFS of S in
<. It is maximal in the sense that for eacke S\ F,

T(Fzq,a) > 1.

Based on local-ratio strategy, a “candidate” subSets
selected fromB in a greedy manner as follows.
« Initially, S is empty.
o For eacha € B in the reverseorder of <, a discounted
weightw (a) of a is computed by

W(a)=w(a)— Y 7(a,b)w(b);
bes
and ifw (a) > 0, a is added toS.
The final setS is referred to as the thgreedy candidate subset
of B in <.

Now, we are ready to describe our algorittuR-CIFS. The
algorithm proceeds in two steps:
« Step 1 Compute the greedy candidate subSedf B in
<.
o Step 2 Compute the maximal-CIFS F' of S in < and
return F.

The theorem below presents a lower bound on the weight of
The above two theorems immediately imply that the greedy.
schedule has an approximation bound

Theorem 4.1Let O be a maximum-weighted feasible subset
i (14 [loga]) = O (log” @) .

of B. Then,w (F) > 5w (0O).

Proof. Let S be the greedy candidate set Bfcomputed at

IV. CONSTRAINEDINDUCTIVELY FEASIBLE SET Step 1 We shall show that

w(F)>W(8) > o-w(0),
For anyo > 0, a subsetF' of requests is said to be a Fx
0-constrained inductively feasible subs@-CIFS) in < if
A(F) < 4. By Theorem 3.2, wherd is sufficiently small,
any 6-CIFS is feasible. Suppose th#ét is a set of requests
in which the demand of each request is at mh&L. In this
section, we present an algorithoR-CIFS which selects & jgjng the relations between the original weights and the
CIFS F' from B based on the local-ratio strategy, and providgiscounted weights, we have

a lower bound onw (F) in terms of the maximum weight of

from which the theorem holds.
We first claim that for any subsé® of B

w (B) —|—Zw

a€sS

Tk B-<aa ) .

feasiblesubsets ofB. w(B) = w(b)
beB
We define yet anothefemand-awareonflict factor function =Y wh)+ Y Y 7(ba)
7 on B. For any pair of requests andb in B, if a = b then beB beB a€Ssy
7 (a,b) = 1; otherwise _Zw +Z Z 7 (b,a) @ (a
d(a) beB beB a€S, s
7(a,b) = ———==0(a,b).

§—d(b) wW(B)+ Y W) > 7(ba)
It is easy to verify that a subsét of B is ad-constrained IFS a€S be€B<a
if and only if )+ > _w(a) 7k (Bza,a),

max 7 (Fzq,a) < 1. a€s

a€F



where the second inequality follows from the fact that foy anThus

pair of requests andb, b € B anda € S, if and only if

a € S andb e B_,.
Now, we prove

w(F) >w(9).

By the greedy selection of, for eacha € S\ F,
T(Fzq,a) > 1.

Thus,

Il
g|

(F)+ Y w(a)7 (Fza,a)

a€sS

(F)+ Y w(a)7(Fara)

a€S\F

(F)+ Y w(a)

aeS\F

Y
gl

Y
gl

|
g|

(5)-

Next, we prove that for any € B,

T(0=q,0a) < 2&
By Theorem 3.3,
> Y 6(ba)d(b)
beF<,
=d(a)|[FN{a}l+ > 0(ba)d(b)
beF-,
=d(a)|FNn{a}| + (6 —d(a)) Z 7 (b, a)

bEF<q,
=d(a) |[FN{a}| + (6 — d(a)) T (Fza,a)

Thus,
px —d(a) [F N {a}|
<
7o) < T
_ i~ [Fnfa}]d
= 5—d(a) +|Fn{a}|
px =S |F 0 {a}|
< 552 +|Fn{a}|
=2 |F N {a)
So,
2
T (Fza,a) = [FN{a}|+ 7 (Fzq,a) < %
Finally, we prove
T(S) > 2w (0)
Z .

Sincew (a) < 0 for eacha € B\ S, we have

w(0)<w(0ONS).

So,

This completes the proof of the theorem.

V. JOINT SELECTION & SCHEDULING

In this section, we present a@ (log” «)-approximation
algorithm DC-JSS for the problemMWFS. We first give
a brief overview of the algorithm design strategy. For any
positive integerk, we partition A into a “low-demanded”
subset

Ak::{aeA:d(a)g;k}

and a “high-demanded” subsdf := A\ A;. The algorithm
DC-JSSwill first find a smallest: such that for thd /k-CIFS

F of A; computed by theLR-CIFS developed in Section
IV, its greedy schedule length is at most one and hence it is
feasible. Suctt must be no more thatH-|log «| by Theorem
3.2. The algorithmrDC-JSSwill then find a compatible (thus
feasible) subsef' of A) can be computed by the algorithat
developed in Section Il. The better (in terms of weight) one
betweenF and C is returned as the output. Thus, while the
algorithm DC-JSS follows the divide-and-conquer strategy,
the division component is subtle and it is integrated witle on
of conquer components. Such subtleness is necessitated due
to the NP-completeness of determining the valuexof

Now, we describe our algorithr®C-JSS The algorithm
proceeds in three stages:
o Stage 1 Initially & is one. Repeat the following iteration
which takes three steps:
— Step 1 Compute the maximal /k-CIFS F' of A
by applying the algorithnLR-CIFS.
— Step 2 Compute a greedy scheduf& of F' in <.
— Step 3 If ||S*| > 1, increasek by one, and move
on to Step 1; otherwise, move on tStage 2
« Stage 2 Compute a compatible subsét of Aj by
applying the algorithm4*.



» Stage 3 If w(F) > w(C) then returnF and §*; approximated withinO (log«) factor with uniform power
otherwise returrC. assignment. The second open question is whether the problem

By Theorem 3.2Stage ltakes at most + |log o] iterations. MWFS can be approximated within eonstantfactor with
linear power assignment [15] (i.e., the wanted signal strength

Next, we establish the approximation bound of the algorithAf €ach request in a constant). For both open problems, pos-
DC-JSS itive answers must take an algorithmic approach dramétical
different from that taken in this paper.

Theorem 5.1: The algorithm DC-JSS produces an
O (log® a)-approximate solution.
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Let O, andO;, be the maximum-weighted feasible subset of

Ay, and A, respectively. By Theorem 4.1,
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