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Abstract—Consider a set of communication requests in a multi-
channel wireless network, each of which is associated with a
traffic demand of at most one unit of transmission time, and a
weight representing the utility if its demand is fully met. A subset
of them is said to be feasible if they can be scheduled within
one unit of time. The problem Maximum-Weighted Feasible Set
(MWFS) seeks a feasible subset with maximum total weight
together with a transmission schedule of them whose length
is at most one unit of time. This paper develops an efficient
O

(

log2 α
)

-approximation algorithms for the problem MWFS
under the physical interference model (aka, SINR model) with a
fixed monotone and sub-linear power assignment, whereα is the
maximum number of requests which can transmit successfully
at the same time over the same channel.

I. I NTRODUCTION

Consider a set of point-to-point communication requests in
a multi-channel wireless network. Each request is associated
with a traffic demand of at most one unit of transmission time,
and a weight representing the utility if its demand isfully
met. A subset of them is said to befeasible if they can be
scheduled within one unit of time. The problemMaximum-
Weighted Feasible Set(MWFS) seeks a feasible subset with
maximum total weight together with a transmission schedule
of them whose length is at most one unit of time. The
problemMWFS arises from many fundamental applications
in spectrum allocation and wireless scheduling [13], [16].
Technically, it is a non-trivial generalization of the well-known
Maximum-Weighted Independent Set(MWIS ) [14], which
is a special case ofMWFS in which all requests have unit
traffic demands and transmit over the same channel. On the
other hand, the strict harder-ness ofMWFS than MWIS is
witnessed by the restriction to simple instances of mutually
disjoint but conflicting communication requests in which no
pair can transmit at the same time. For any such restricted
instance, a maximum weighted independent set is trivially
the singleton communication request with the largest weight;
the MWFS is essentially equivalent to the classicKnapsack
problem [7], and hence is NP-complete.

Variants of the problemMWFS under protocol interfer-
ence model has been recently studied in [13], [16]. To the

best of our knowledge, the problemMWFS under physical
interference model (aka, SINR model) has not been studied
before. Wireless communication scheduling under physical
interference model is notoriously hard due to the non-locality
and the additive nature of the wireless interference under the
physical interference model. As such, both the design and
analysis of the algorithms developed in [13], [16] forMWFS
underprotocol interference model cannot be extended directly
to the setting of physical interference model. Indeed, the works
in [13], [16] heavily rely on two key properties ofprotocol
interference model:

• the equivalence of the independence and the inductive
independence (to be defined precisely in III-B),

• the availability of the explicit bound of transmission
schedule length in terms of the transmission demands.

However, under the physical interference model, there is a
significant gap between independence and inductive inde-
pendence, and no known transmission scheduling algorithm
is able to provide an explicit bound on the length of the
produced transmission schedule in terms of the transmission
demands. The main objective of this paper is to develop new
algorithmic techniques for achieving efficient and provably
good approximations for the problemMWFS under the phys-
ical interference model with a fixed monotone and sub-linear
power assignment [2], [8], [9], [10]. This specific problem is
described as follows.

Suppose thatA is a set of communication requests andλ
is the number of available channels. Each requesta has a
demandd (a) ∈ (0, 1] of transmission time, a positive weight
w (a) of utility, and a transmission powerp (a). The weight
of any subsetF of A is

w (F ) :=
∑

a∈F

w (a) .

For each requesta, ℓ (a) denotes the distance between the
sender and receiver ofa. For any two requestsa and b in A,
ℓ (a, b) denotes the distance between the sender ofa and the
receiver ofb. The signal strength attenuates with a path loss
factorηr−κ, wherer is the distance from the transmitter,κ is
path-loss exponent(a constant between2 and5 depending on
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the wireless environment), andη is the reference loss factor.
The signal quality perceived by a receiver is measured by the
signal to interference and noise ratio(SINR), which is the
quotient between the power of the wanted signal and the total
power of unwanted signals and the ambient noiseξ. In order
to correctly interpret the wanted signal under the physical
interference model, the SINR must be greater than certain
thresholdσ > 1. Thus, for each requesta to communicate
even without any interference,p (a) should exceed

p0 (a) :=
σξ
η
ℓ (a)

κ
.

The interference of a requesta ∈ A toward another request
b ∈ A is p (a)·ηℓ (a, b)−κ when they transmit at the same time
over the same channel. A setI of requests inA is independent
if when all requests inI transmit at the same time over the
same channel, the SINR of each request inI is greater than
σ.

A set C of requests is said to becompatibleif no pair of
requests inC have a primary conflict, andC can be partitioned
into λ independent subsets. Physically, compatible requests
correspond to those which can transmit successfully overλ
channels at the same time. A (transmission)scheduleof a
subsetF ⊆ A is a sequenceS of pairs(Cj , xj) for 1 ≤ j ≤ k
where eachCj is a compatible subset ofF andxj is a positive
number satisfying that for eacha ∈ F ,

d (a) =

k∑

j=1

xj |{a} ∩ Cj | ;

the value
∑k

j=1 xj are referred to as thelength of S, and is
denoted by‖S‖. A set of requestsF is said to befeasibleif F
admits a schedule of length at most one. Throughout of this
paper, the power assignmentp is assumed to bemonotone,
i.e. p (a) is non-decreasing withℓ (a), and to besub-linear,
i.e., p (a) ℓ (a)−κ is non-increasing withℓ (a). The problem
MWFS seeks a feasible subsetF of A with maximum weight
w (F ) together with a schedule ofF with length at most one.
This paper develops an efficientO

(
log2 α

)
-approximation

algorithm for the problemMWFS, whereα is the maximum
size of the independent subsets ofA. Innovative variants of the
local-ratio scheme [1], [3], [4], [6], [17], which is equivalent
to the primal-dual scheme [5], are utilized in our algorithm
design and analyses.

The remainder of this paper is organized as follows. In
Section II we give an approximation algorithm for seeking
a maximum-weighted compatible subset of requests. Such al-
gorithm also provides anO

(
log2 α

)
-approximation algorithm

for the problemMWFS when all requests have demands
at leastΩ(1/ logα). In Section III, we present a greedy
O
(
log2 α

)
-approximation algorithm for seeking a shortest

schedule of a subset of requests. An advantage of this schedul-
ing algorithm is that the produced schedule admits an explicit
upper bound on its length in terms of the demands, which
provides an approximate feasibility test. In Section IV, we

introduce a notion of constrained inductive feasibility, and
develop an approximation algorithm for seeking a maximum-
weighted inductively feasible subset of requests. This algo-
rithm is applicable to selection of low-demanded requests.In
Section V, we present our main result on joint selection and
scheduling algorithm for the problemMWFS. It is a special
divide-and-conquerO

(
log2 α

)
-approximation algorithm, and

is built upon all the algorithms developed in the preceding
sections. We conclude this paper in Section VI.

We conclude this section with the a few notations adopted
throughout this paper. Let≺ be an request ordering in the
decreasing order ofℓ (a). For any pair of requestsa and b,
both a ≺ b and b ≻ a represent thata appears beforeb in
the ordering≺. For any a ∈ A and anyB ⊆ A, we use
B≺a (respectively,B≻a) to denote the set ofb ∈ B satisfying
that b ≺ a (respectively,b ≻ a); in addition, B�a denotes
{a} ∪ B≺a, andB�a denotes{a} ∪ B≻a. For any positive
integerk, [k] denotes the set of positive integers at mostk;
for any two positive integersk andl with k ≤ l, [k, l] denotes
the set of integers between (including)k and l. Consider a
non-empty setE.

• For any real-valued functionf on E and anyS ⊆ E,
f (S) represents

∑
e∈S f (S) with f (∅) = 0.

• For any real-valued functionf on E × E, any a ∈ E,
and anyS ⊆ E, f (S, a) represents

∑
b∈S f (b, a) with

f (∅, a) = 0.

II. M AXIMUM -WEIGHTED COMPATIBLE SUBSET

In this section, we develop an approximation algorithm
for the problemMaximum-Weighted Compatible Subset
(MWCS): Given a subset ofB, seek a compatible subset ofB
with maximum total weight. This problem is a special case of
the problemMWFS in which all requests have unit demands,
but a multi-channel generalization of the problemMWIS .
Suppose that there is aβ-approximation algorithmA for the
problem MWIS . We shall develop a(β + 2)-approximation
algorithmA∗ for the problemMWCS.

For eacha ∈ B, let Γ (a) denote the set of requests inB
which have a primary conflict witha; and letΓ [a] denote
Γ (a) ∩{a}. The algorithmA∗ is based on the local-ratio
strategy and proceeds in two phases:

1) Growing Phase: This phase producesλ independent
sets S1, S2, · · · , Sλ sequentially inλ iterations. For
each 1 ≤ j ≤ λ, the j-th iteration first computes a
“discounted” weight functionwj ; and then produces an
independent setSj by applying the algorithmA to the
instance consisting of

Aj := {a ∈ A : wj (a) > 0}

andwj . The “discounted” weight functionwj is com-
puted as follows:
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• w1 = w.
• For each2 ≤ j ≤ λ,

wj (a) := w (a)−
∑

i∈[j−1]

wi (Si ∩ Γ [a]) , ∀a ∈ A.

2) Pruning Phase: This phase producesλ independent sets
Iλ, Iλ−1, · · · , I1 sequentially satisfying that no pair of
requests from theseλ sets have a primary conflict; and
the union of them, denoted byI, is returned as the
output. They are produced as follows:

• Iλ is simplySλ.
• For each integerj from λ−1 down to1, Ij consists

of all requests inSj which have no primary conflict
with any request in

⋃
i∈[j+1,λ]Ij .

Now, we provide a lower bounds onw (I) in terms of the
maximum weight of compatible subsets ofB.

Theorem 2.1:Let O be a maximum-weighted compatible
subset ofB. Then,

w (I) ≥
w (O)

β + 2
.

Proof. We shall prove the theorem by establishing the
relations

w (I) ≥
∑

j∈[λ]wj (Sj) ≥
w (O)

β + 2
.

We first claim that for any subsetC of B and for any
partitionC1, C2, · · · , Cλ of C,

w (C)−
∑

j∈[λ]wj (Cj)

=
∑

j∈[λ−1]

∑
a∈Sj

∣∣∣Γ [a] ∩
(⋃

i∈[j+1,λ]Ci

)∣∣∣wj (a) .

Sincew = w1, we have

w (C)−
∑

j∈[λ]wj (Cj)

=
∑

j∈[λ]w (Cj)−
∑

j∈[λ]wj (Cj)

=
∑

j∈[2,λ]w (Cj)−
∑

j∈[λ−2]wj (Cj)

=
∑

j∈[2,λ] [w (Cj)− wj (Cj)]

=
∑

j∈[2,λ]

∑
a∈Cj

[w (a)− wj (a)] .

Using the relations between the original weights and the
discounted weights, we have

w (C)−
∑

j∈[λ]wj (Cj)

=
∑

j∈[2,λ]

∑
a∈Cj

∑
i∈[j−1]wi (Γ [a] ∩ Si)

=
∑

i∈[λ−1]

∑
j∈[i+1,λ]

∑
a∈Cj

wi (Γ [a] ∩ Si)

=
∑

j∈[2,λ]

∑
i∈[j−1]

∑
a∈Cj

∑
C∈Γ[a]∩Si

wi (b) .

Note that for any pair of requestsa andb,

a ∈ Cj , b ∈ Γ [a] ∩ Si

⇔ b ∈ Si, a ∈ Cj ∩ Γ [b] .

Thus,

w (C)−
∑

j∈[λ]wj (Cj)

=
∑

i∈[λ−1]

∑
j∈[i+1,λ]

∑
b∈Si

∑
a∈Cj∩Γ[b]wi (b)

=
∑

i∈[λ−1]

∑
b∈Si

∑
j∈[i+1,λ]

∑
a∈Cj∩Γ[b]wi (b)

=
∑

i∈[λ−1]

∑
b∈Si

∣∣∣Γ [b] ∩
(⋃

j∈[i+1,λ]Cj

)∣∣∣wi (b)

=
∑

j∈[λ−1]

∑
a∈Sj

∣∣∣Γ [a] ∩
(⋃

i∈[j+1,λ]Ci

)∣∣∣wj (a) .

So, the claim holds.
Next, we prove that

w (I) ≥
∑

j∈[λ]wj (Sj) .

Note thatIλ = Sλ; and for eachj ∈ [λ− 1] and anya ∈
Sj \ Ij , ∣∣∣Γ [a] ∩

(⋃
i∈[j+1,λ]Ii

)∣∣∣ ≥ 1.

Thus,

w (I)−
∑

j∈[λ]wj (Ij)

=
∑

j∈[λ−1]

∑
a∈Sj

∣∣∣Γ [a] ∩
(⋃

i∈[j+1,λ]Ii

)∣∣∣wj (a)

≥
∑

j∈[λ−1]

∑
a∈Sj\Ij

∣∣∣Γ [a] ∩
(⋃

i∈[j+1,λ]Ii

)∣∣∣wj (a)

≥
∑

j∈[λ−1]

∑
a∈Sj\Ij

wj (a)

=
∑

j∈[λ−1]wj (Sj \ Ij) ,

which implies that

w (I) ≥
∑

j∈[λ]wj (Ij) +
∑

j∈[λ−1]wj (Sj \ Ij)

= wλ (Iλ) +
∑

j∈[λ−1]wj (Sj)

= wλ (Sλ) +
∑

j∈[λ−1]wj (Sj)

=
∑

j∈[λ]wj (Sj) .

Finally, we prove that

w (O) ≤ (β + 2)
∑

j∈[λ]wj (Sj) .

Let {O1, O2, · · · , Oλ} be a partition ofO into independent
sets. Then, for anyj ∈ [λ],

wj (Oj) ≤ wj (Oj ∩Aj) ≤ βwj (Sj) ;

and for anya ∈ Sj ,∣∣∣Γ [a] ∩
(⋃

i∈[j+1,λ]Oi

)∣∣∣ ≤ |Γ [a] ∩O| ≤ 2.

Thus,

w (O)−
∑

j∈[λ]wj (Oj)

=
∑

j∈[λ−1]

∑
a∈Sj

∣∣∣Γ [a] ∩
(⋃

i∈[j+1,λ]Oi

)∣∣∣wj (a)

≤ 2
∑

j∈[λ−1]

∑
a∈Sj

wj (a)

= 2
∑

j∈[λ−1]wj (Sj) ,

which implies that

w (O) ≤
∑

j∈[λ]wj (Oj) + 2
∑

j∈[λ−1]wj (Sj)

= β
∑

j∈[λ]wj (Sj) + 2
∑

j∈[λ−1]wj (Sj)

≤ (β + 2)
∑

j∈[λ]wj (Sj) .
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This completes the proof the theorem.

Next, we provide a lower bounds onw (I) in terms of the
maximum weight of feasible subsets ofB.

Theorem 2.2:LetF be a maximum-weighted feasible subset
of B. Then,

w (I) ≥
mina∈F d (a)

β + 2
w (F ) .

Proof. Consider a shortest scheduleS of F . Let C be the
collection of compatible sets of requests inF transmitting
concurrently inS, and for eachC ∈ C let x (C) be the total
transmission time byC in S. Then,

∑
C∈Cx (C) ≤ 1,

and for eachb ∈ F ,

d (b) =
∑

C∈Cx (C) |C ∩ {b}| .

Thus,

w (F ) =
∑

a∈F

w (a) =
∑

a∈F

w (a)

d (a)
d (a)

=
∑

a∈F

w (a)

d (a)

∑
C∈Cx (C) |C ∩ {a}|

=
∑

C∈Cx (C)
∑

a∈F

w (a)

d (a)
|C ∩ {a}|

=
∑

C∈Cx (C)
∑

a∈C

w (a)

d (a)

≤
1

mina∈F d (a)

∑
C∈Cx (C)

∑

a∈C

w (a)

≤
1

mina∈F d (a)

∑
C∈Cx (C)w (C)

≤
maxC∈C w (C)

mina∈F d (a)

∑
C∈Cx (C)

≤
maxC∈C w (C)

mina∈F d (a)
.

Hence,
max
C∈C

w (C) ≥ w (F )min
a∈F

d (a) .

By Theorem 2.1

w (I) ≥
maxC∈C w (C)

β + 2
≥

mina∈F d (a)

β + 2
w (F ) .

So, the theorem holds.

Finally, we remark that the smallest-knownβ is O (logα)
[14] when the power assignment is monotone and sub-linear.
Thus, in the remaining of this paper,β is assumed to be
O (logα). Correspondingly,A∗ is an O (logα)-approximate
algorithm for the problemMWCS. If all requests inB have
demands at leastΩ(1/ logα), thenA∗ is also anO

(
log2 α

)
-

approximate algorithm for the problemMWFS.

III. T RANSMISSIONSCHEDULING

In this section, we present a transmission scheduling algo-
rithm which produces a schedule with an explicit bound on the
schedule length. Such explicit upper bound is very essential
to the joint optimization of selection and scheduling prob-
lem. This algorithm has an approximation boundO

(
log2 α

)
.

We remark that anO (logα)-approximation bound can be
achieved by a general approximation-preserving reduction
[14] to the problemMWCS via a very impractical ellipsoid
method. However, the transmission schedule produced by such
reduction does not admit any explicit upper bound on the
schedule length, and hence cannot be utilized by the joint
selection and scheduling algorithm to be presented later in
this paper. In contrast, our algorithm is greedy in nature, and
is much more efficient in implementation.

A. Conflict Factors

The independence under the SINR model has the following
convenient characterization. For two requestsa and b in A,
the relative interferenceof a toward b, denoted byRI (a, b),
is defined as follows: Ifa and b share a common endpoint
(i.e., a and b have aprimary conflict), thenRIp (a, b) = ∞;
otherwise,

RI (a, b) = σ
p (a) ℓ (a, b)

−κ

(p (b)− p0 (b)) ℓ (b)
−κ .

Theconflict factorof a requesta toward another requestb ∈ A,
denoted byρ (a, b), is defined as follows:

ρ (a, b) = min {1, RI (a, b)} .

Then, a setI of requests is independent if and only if

max
a∈I

∑

b∈I\{a}

ρ (I \ {a} , a) < 1.

B. Inductively Independent Set

For any pair of requestsa andb, define

ρ (a, b) = ρ (a, b) + ρ (b, a) ,

ρ̂ (a, b) = min {1, 2ρ (a, b)} .

A subsetJ of A is said to beinductively independentin ≺
if

max
a∈J

ρ̂ (J≺a, a) < 1.

Equivalently, a subsetJ of A is inductively independent in
≺ if and only if

max
a∈J

ρ (J≺a, a) < 1/2.

In general, inductive independence does not imply indepen-
dence. However, the following facts on an inductively inde-
pendent subsetJ of A can be easily verified:
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• If |J | ≤ 3, thenJ is independent.
• Let

I = {a ∈ J : ρ (J \ {a} , a) < 1} .

Then,I is independent and|I| > |J | /2.

The above two facts have two implications. First, each
inductively independent subset has size less than2α. Second,
a partition Π of an inductively independent subsetJ into
independent sets can be produced as follows.

• Π is initially empty
• While J is not independent, let

I = {a ∈ J : ρ (J \ {a} , a) < 1} ,

addI to Π, and removeI from J .
• Finally, if J is non-empty, addJ to Π.

Such partition is referred to thegreedy IS-partitionof J . We
claim that

|Π| ≤ 1 + ⌊logα⌋ .

Indeed, ifJ is independent then|Π| = 1 and the inequality
holds. So we assume thatJ is not independent. Then,|J | ≥ 4.
It is easy to show that

|Π| ≤ ⌊log |J |⌋ ≤ ⌊log (2α)⌋ = 1 + ⌊logα⌋ .

C. Inductively Compatible Set

A setC of requests is said to beinductively compatiblein
≺ if no pair of requests inC have a primary conflict and

max
a∈C

ρ̂ (C≺a, a) < λ.

Suppose thatC is an inductively compatible subset ofA in
≺. Then C can be greedily partitioned intoλ inductively
independent subsets

{Jk : k ∈ [λ]} .

in ≺ as follows:

• Initially, Jk is empty for eachk ∈ [λ].
• For eacha ∈ C in ≺, there must existsk ∈ [λ] such that

ρ̂ (Jk, a) < 1 since
∑

k∈[λ]

ρ̂ (Jk, a) = ρ̂ (C≺a, a) < λ.

Pick the first suchk and adda to Jk.

Clearly, eachJk for k ∈ [λ] remains inductively independent
in ≺ throughout the process. The final partition

{Jk : k ∈ [λ]} .

is called agreedy IIS-partitionof Jk.

In general, inductive compatibility does not imply compati-
bility. An inductively compatible setC in ≺ can be partitioned
into at most1 + ⌊logα⌋ compatible subsets as follows.

• Compute a greedy IIS-partition ofC into inductively
independent sets

{Jk : k ∈ [λ]} .

• For eachk ∈ [λ], compute a greedy IS-partition ofJk
into independent sets

{Ik,j : j ∈ [lk]}

• Let l∗ = maxk∈[λ] lk, andIkj = ∅ for eachk ∈ [λ] and
each lk < j ≤ l∗. For eachj ∈ [l∗], let C∗

j be the
compatible set formed by theλ independent setsIkj for
k ∈ [λ].

The final partition {
C∗

j : j ∈ [l∗]
}

is called agreedy CS-partitionof C.

Inductive compatibility can be conveniently characterized
by a channel-awareconflict factor function θ defined as
follows: For any pair of requestsa and b, if a and b are
identical or have primary conflict, then

θ (a, b) = 1;

otherwise

θ (a, b) =
1

λ
ρ̂ (a, b) .

Then, a setC is inductively compatible in≺ if and only if

max
a∈C

θ (C≺a, a) < 1.

Given a subsetS of A, an inductively compatible subsetC
of S in ≺ can be greedily constructed as follows. InitiallyC
is empty. For eacha ∈ S in ≺, if θ (C, a) < 1 then adda to
C. The final setC is referred to as themaximal inductively
compatible subsetof S in ≺. It is maximal in the sense that
for eacha ∈ S,

θ (C�a, a) ≥ 1.

D. Inductive Schedule

An inductive scheduleof a subsetF ⊆ A in ≺ is a sequence
S of pairs (Cj , xj) for 1 ≤ j ≤ k where eachCj is an
inductively compatible subset in≺ andxj is a positive number
satisfying that for eacha ∈ F ,

d (a) =
k∑

j=1

xj |{a} ∩ Cj | ;

the value
∑k

j=1 xj are referred to as thelength of S, and
is denoted by‖S‖. Any inductive scheduleS of F can be
expanded as follows to a schedule ofF with the length
increased by a factor of at most1 + ⌊logα⌋. For each pair
(C, x) in S,
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• compute a greedy CS-partition ofC in ≺ into compatible
sets {

C∗
j : j ∈ [l (C)]

}

for some positive integerl (C) ≤ 1 + ⌊logα⌋;
• then replace(C, x) by l (C) pairs

(
C∗

j , x
)
: j ∈ [l (C)] .

Let S∗ be the resulting schedule, and it is referred to as the
greedy expansionof S in ≺ . Clearly,

‖S∗‖ ≤ (1 + ⌊logα⌋) ‖S‖

Given a subsetF ⊆ A, an inductive scheduleS of F can
be produced in the following iterative manner. Initially,S is
empty, letF ′ be the subset of requestsa ∈ F with d (a) > 0.
Repeat the following iteration whileF ′ is non-empty:

• Compute a maximal inductively compatible subsetC of
F ′ in ≺.

• Let x = mina∈C d (a), and add(C, x) to S.
• For eacha ∈ C, replaced (a) by d (a)−x, and ifd (a) =

0 then removea from F ′.
The finalS is referred to as thegreedy inductive schedule of of
F in ≺. Since|F ′| strictly decreases, the number of iterations
is bounded by|F |. The next theorem gives an upper bound
on the length ofS. Denote

∆(F ) := max
a∈F

∑

b∈F�a

θ (b, a) d (b) .

Lemma 3.1:‖S‖ ≤ ∆(F ).

Proof. Let C be the collection of inductively compatible
sets of requests inF transmitting concurrently inS. For each
C ∈ C, let x (C) be the transmission time byC. Consider an
arbitrary requesta ∈ F which completes its transmission last.
Then, for eachC ∈ C,

θ (C�a, a) ≥ 1.

Thus,
∑

b∈F�a

θ (b, a) d (b)

=
∑

b∈F�a

θ (b, a)
∑

C∈Cx (C) |C ∩ {b}|

=
∑

C∈Cx (C)
∑

b∈F�a

θ (b, a) |C ∩ {b}|

=
∑

C∈Cx (C)
∑

b∈C�a

θ (b, a)

=
∑

C∈Cx (C) θ (C�a, a)

≥
∑

C∈Cx (C)

= ‖S‖

So, the lemma holds.

E. Greedy Schedule

Now, are ready to present the transmission scheduling of a
given subsetF ⊆ A. The schedule ofF is produced in two
steps

1) Compute a greedy inductive scheduleS of F in ≺.
2) Compute a greedy expansionS∗ of S.

The scheduleS∗ is referred to as thegreedy scheduleof F
in ≺. The following upper bound on‖S∗‖ is an immediate
consequence of Lemma 3.1.

Theorem 3.2:‖S∗‖ ≤ (1 + ⌊logα⌋)∆ (F ).

In the remaining of this subsection, we present a lower
bound on minimum schedule lengthχ∗ (F ) of F , from which
can immediately obtain an approximation bound ofS∗. The
backward local independence number(BLIN) of A in ≺,
denoted byµ, is defined to the be maximum value ofρ̂ (I�a, a)
over all independent subsetsI of A and all requestsa in A.
It was shown in [11] thatµ = O (logα). Denote

µλ := µ+ 2

(
1−

1

λ

)
.

Theorem 3.3:For anyF ⊆ A and anya ∈ A,

χ∗ (F ) ≥
∆(F )

µλ

.

Proof. We first claim that for any compatible subsetC ⊆ A
and anya ∈ A.

θ (C�a, a) ≤ µλ.

Let C ′ be the set of requests inC�a which do not share any
common endpoint froma, and C ′′ be the set of the rest
requests inC�a. Then,

θ (C�a, a) = |C ′′|+
1

λ
ρ̂ (C ′, a) .

Clearly,

|C ′′| ≤ 2.

|C ′′|+ ρ̂ (C ′, a) ≤ λµ.

Thus,

θ (C�a, a) = |C ′′|+
1

λ
ρ̂ (C ′, a)

=

(
1−

1

λ

)
|C ′′|+

1

λ
(|C ′′|+ ρ̂ (C ′, a))

≤

(
1−

1

λ

)
2 +

1

λ
λµ

= µ+ 2

(
1−

1

λ

)

= µλ.

So, the claim holds.
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Next, we prove the inequality in the theorem. Consider a
shortest schedule ofF . Let C be the collection of compatible
sets of requests inF appearing in this shortest schedule, and
for eachC ∈ C let x (C) be the total transmission time byC
in this shortest schedule. Then,

∑
C∈Cx (C) = χ∗ (F ) .

and for eachb ∈ F ,

d (b) =
∑

C∈Cx (C) |C ∩ {b}| .

Thus,

∑

b∈F�a

θ (b, a) d (b)

=
∑

b∈F�a

θ (b, a)
∑

C∈Cx (C) |C ∩ {b}|

=
∑

C∈Cx (C)
∑

b∈F�a

θ (b, a) |C ∩ {b}|

=
∑

C∈Cx (C)
∑

b∈C�a

θ (b, a)

=
∑

C∈Cx (C) θ (C�a, a)

≤ µλ

∑
C∈Cx (C)

≤ µλχ
∗ (F ) .

So, the theorem holds.

The above two theorems immediately imply that the greedy
schedule has an approximation bound

µλ (1 + ⌊logα⌋) = O
(
log2 α

)
.

IV. CONSTRAINED INDUCTIVELY FEASIBLE SET

For any δ > 0, a subsetF of requests is said to be a
δ-constrained inductively feasible subset(δ-CIFS) in ≺ if
∆(F ) ≤ δ. By Theorem 3.2, whenδ is sufficiently small,
any δ-CIFS is feasible. Suppose thatB is a set of requests
in which the demand of each request is at mostδ/2. In this
section, we present an algorithmLR-CIFS which selects aδ-
CIFSF from B based on the local-ratio strategy, and provide
a lower bound onw (F ) in terms of the maximum weight of
feasiblesubsets ofB.

We define yet anotherdemand-awareconflict factor function
τ on B. For any pair of requestsa andb in B, if a = b then
τ (a, b) = 1; otherwise

τ (a, b) =
d (a)

δ − d (b)
θ (a, b) .

It is easy to verify that a subsetF of B is aδ-constrained IFS
if and only if

max
a∈F

τ (F≺a, a) ≤ 1.

Given a subsetS ⊆ B, a δ-CIFSF ⊆ S can be computed in
a greedymanner as follows:

• Initially, F is empty.
• For eacha ∈ S in ≺, a is added toF if and only if

τ (F, a) ≤ 1.
The final setF is referred to as themaximalδ-CIFS of S in
≺. It is maximal in the sense that for eacha ∈ S \ F ,

τ (F≺a, a) > 1.

Based on local-ratio strategy, a “candidate” subsetS is
selected fromB in a greedy manner as follows.

• Initially, S is empty.
• For eacha ∈ B in the reverseorder of≺, a discounted

weightw (a) of a is computed by

w (a) = w (a)−
∑

b∈S

τ (a, b)w (b) ;

and if w (a) > 0, a is added toS.
The final setS is referred to as the thegreedy candidate subset
of B in ≺.

Now, we are ready to describe our algorithmLR-CIFS . The
algorithm proceeds in two steps:

• Step 1: Compute the greedy candidate subsetS of B in
≺.

• Step 2: Compute the maximalδ-CIFSF of S in ≺ and
returnF .

The theorem below presents a lower bound on the weight of
F .

Theorem 4.1:LetO be a maximum-weighted feasible subset
of B. Then,w (F ) ≥ δ

2µλ
w (O).

Proof. Let S be the greedy candidate set ofB computed at
Step 1. We shall show that

w (F ) ≥ w (S) ≥
δ

2µλ

w (O) ,

from which the theorem holds.
We first claim that for any subsetB of B

w (B) = w (B) +
∑

a∈S

w (a) τk (B≺a, a) .

Using the relations between the original weights and the
discounted weights, we have

w (B) =
∑

b∈B

w (b)

=
∑

b∈B

w (b) +
∑

b∈B

∑

a∈S≻b

τk (b, a)w (a)

=
∑

b∈B

w (b) +
∑

b∈B

∑

a∈S≻b

τk (b, a)w (a)

= w (B) +
∑

a∈S

w (a)
∑

b∈B≺a

τk (b, a)

= w (B) +
∑

a∈S

w (a) τk (B≺a, a) ,
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where the second inequality follows from the fact that for any
pair of requestsa and b, b ∈ B anda ∈ S≻b if and only if
a ∈ S andb ∈ B≺a.

Now, we prove

w (F ) ≥ w (S) .

By the greedy selection ofF , for eacha ∈ S \ F ,

τ (F≺a, a) > 1.

Thus,

w (F ) = w (F ) +
∑

a∈S

w (a) τ (F≺a, a)

≥ w (F ) +
∑

a∈S\F

w (a) τ (F≺a, a)

≥ w (F ) +
∑

a∈S\F

w (a)

= w (S) .

Next, we prove that for anya ∈ B,

τ (O�a, a) ≤
2µλ

δ
.

By Theorem 3.3,

µλ ≥
∑

b∈F�a

θ (b, a) d (b)

= d (a) |F ∩ {a}|+
∑

b∈F≺a

θ (b, a) d (b)

= d (a) |F ∩ {a}|+ (δ − d (a))
∑

b∈F≺a

τ (b, a)

= d (a) |F ∩ {a}|+ (δ − d (a)) τ (F≺a, a)

Thus,

τ (F≺a, a) ≤
µλ − d (a) |F ∩ {a}|

δ − d (a)

=
µλ − |F ∩ {a}| δ

δ − d (a)
+ |F ∩ {a}|

≤
µλ − δ |F ∩ {a}|

δ − δ/2
+ |F ∩ {a}|

=
2µλ

δ
− |F ∩ {a}|

So,

τ (F�a, a) = |F ∩ {a}|+ τ (F≺a, a) ≤
2µλ

δ
.

Finally, we prove

w (S) ≥
δ

2µλ

w (O) .

Sincew (a) ≤ 0 for eacha ∈ B \ S, we have

w (O) ≤ w (O ∩ S) .

Thus

w (O) = w (O) +
∑

a∈S

w (a) τ (O≺a, a)

≤ w (O ∩ S) +
∑

a∈S

w (a) τ (O≺a, a)

=
∑

a∈S

w (a) [|O ∩ {a}|+ τ (O≺a, a)]

=
∑

a∈S

w (a) τ (O�a, a)

≤
δ

2µλ

∑

a∈S

w (a)

=
δ

2µλ

w (S) .

So,

w (S) ≥
δ

2µλ

w (O) .

This completes the proof of the theorem.

V. JOINT SELECTION & SCHEDULING

In this section, we present anO
(
log2 α

)
-approximation

algorithm DC-JSS for the problemMWFS. We first give
a brief overview of the algorithm design strategy. For any
positive integerk, we partition A into a “low-demanded”
subset

Ak :=

{
a ∈ A : d (a) ≤

1

2k

}

and a “high-demanded” subsetA′
k := A \ Ak. The algorithm

DC-JSSwill first find a smallestk such that for the1/k-CIFS
F of Ak computed by theLR-CIFS developed in Section
IV, its greedy schedule length is at most one and hence it is
feasible. Suchk must be no more than1+⌊logα⌋ by Theorem
3.2. The algorithmDC-JSSwill then find a compatible (thus
feasible) subsetC of A′

k can be computed by the algorithmA∗

developed in Section II. The better (in terms of weight) one
betweenF andC is returned as the output. Thus, while the
algorithm DC-JSS follows the divide-and-conquer strategy,
the division component is subtle and it is integrated with one
of conquer components. Such subtleness is necessitated due
to the NP-completeness of determining the value ofα.

Now, we describe our algorithmDC-JSS. The algorithm
proceeds in three stages:

• Stage 1: Initially k is one. Repeat the following iteration
which takes three steps:

– Step 1: Compute the maximal1/k-CIFS F of Ak

by applying the algorithmLR-CIFS .
– Step 2: Compute a greedy scheduleS∗ of F in ≺.
– Step 3: If ‖S∗‖ > 1, increasek by one, and move

on to Step 1; otherwise, move on toStage 2.
• Stage 2: Compute a compatible subsetC of A′

k by
applying the algorithmA∗.
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• Stage 3: If w (F ) > w (C) then returnF and S∗;
otherwise returnC.

By Theorem 3.2,Stage 1takes at most1+ ⌊logα⌋ iterations.

Next, we establish the approximation bound of the algorithm
DC-JSS.

Theorem 5.1: The algorithm DC-JSS produces an
O
(
log2 α

)
-approximate solution.

Proof. Let k be the number of iterations taken byStage 1.
Then,

k ≤ 1 + ⌊logα⌋ .

Let Ok andO′
k be the maximum-weighted feasible subset of

Ak andA′
k respectively. By Theorem 4.1,

w (Ok) ≤ 2kµλw (F ) .

By Theorem 2.2,

w (O′
k) ≤ 2k (β + 2)w (C) .

Let O be a maximum-weighted subset ofA. Then,

w (O) = w (O ∩Ak) + w (O ∩A′
k)

≤ w (Ok) + w (O′
k)

≤ 2kµλw (F ) + 2k (β + 2)w (C)

≤ 2k (µλ + β + 2)max {w (F ) , w (C)}

= O
(
log2 α

)
max {w (F ) , w (C)} .

So, the theorem holds.

VI. CONCLUSION

The problemMWFS involves both selection and trans-
mission scheduling of a feasible subset of requests. A rich
set of algorithm design strategies are exploited in our ap-
proximation algorithms for this problem. The transmission
scheduling follows thegreedy strategy. At the top level of
the selection algorithm, a specialdivide-and-conquerscheme
is adopted. At the medium level of the selection algorithm, a
restriction strategy is applied: the selection of feasible low-
demanded requests is restricted to constrained inductively
feasible sets, while the selection of feasible high-demanded
requests is restricted to compatible subsets. At the bottomlevel
of the selection algorithm, innovative variants of thelocal-ratio
(or equivalently,primal-dual) scheme are utilized. All our
algorithm design and analyses are quite general. Indeed, the
dependence on the monotone and sub-linear power assignment
is limited to theO (logα) upper bound on the two parameters
µ andβ. We expect that the algorithmic results can be applied
to other joint selection and scheduling problems by choosing
proper conflict factors among the requests.

We conclude this paper with two open questions. The first
open question is with whether the problemMWFS can be

approximated withinO (logα) factor with uniform power
assignment. The second open question is whether the problem
MWFS can be approximated within aconstant factor with
linear power assignment [15] (i.e., the wanted signal strength
of each request in a constant). For both open problems, pos-
itive answers must take an algorithmic approach dramatically
different from that taken in this paper.
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