Joint Selection And Transmission Scheduling of Point-to-Point Communication Requests in Multi-Channel Wireless Networks

Presenter: Fahad Al-dhelaan; Author: Peng-Jun Wan

wan@cs.iit.edu

- Overview
- Light Requests
- Heavy Requests
- Summary

æ

・ 御 ト ・ ヨ ト ・ ヨ ト

Maximum-Weight Feasible Set of Requests

• $d \in (0, 1]^A$: a transmission-demand function

- $d \in (0, 1]^A$: a transmission-demand function
- G: request-conflict graph under a protocol interference model.

- $d \in (0, 1]^A$: a transmission-demand function
- G: request-conflict graph under a protocol interference model.
- λ : number of channels

- $d \in (0, 1]^A$: a transmission-demand function
- G: request-conflict graph under a protocol interference model.
- λ : number of channels
- \mathcal{F} : collection of $F \subseteq A$ schedulabe in one unit of time.

- $d \in (0, 1]^A$: a transmission-demand function
- G: request-conflict graph under a protocol interference model.
- λ : number of channels
- \mathcal{F} : collection of $F \subseteq A$ schedulabe in one unit of time.
- **MWFS**: Given $w \in \mathbb{R}^{A}_{+}$, find an $F \in \mathcal{F}$ maximizing $w(F) = \sum_{a \in F} w(a)$.

• Maximum-Weight Independent Set of Links (MWIS): unit-demand

∃ ▶ ∢

- Maximum-Weight Independent Set of Links (MWIS): unit-demand
 - NP-hard even with single channel: [Wan, Mobihoc' 09]

- Maximum-Weight Independent Set of Links (MWIS): unit-demand
 - NP-hard even with single channel: [Wan, Mobihoc' 09]
- MWFS is harder than MWIS:

- Maximum-Weight Independent Set of Links (MWIS): unit-demand
 - NP-hard even with single channel: [Wan, Mobihoc' 09]
- MWFS is harder than MWIS:
 - Single-channel, single-interference domain: MWIS is trivially solvable, MWFS \equiv Knapsack

- Maximum-Weight Independent Set of Links (MWIS): unit-demand
 - NP-hard even with single channel: [Wan, Mobihoc' 09]
- MWFS is harder than MWIS:
 - Single-channel, single-interference domain: MWIS is trivially solvable, MWFS \equiv Knapsack
- Feasibility test is NP-hard alone!

• \prec : an ordering of requests

∃ ▶ ∢

- \prec : an ordering of requests
- conflict factor $\varrho(a, b)$ of conflicting $a, b \in A$:

- \prec : an ordering of requests
- conflict factor $\varrho(a, b)$ of conflicting $a, b \in A$:
 - 1 if a and b have primary conflict;

- \prec : an ordering of requests
- conflict factor $\varrho(a, b)$ of conflicting $a, b \in A$:
 - 1 if a and b have primary conflict;
 - $1/\lambda$ if they have secondary conflict.

- \prec : an ordering of requests
- conflict factor $\varrho(a, b)$ of conflicting $a, b \in A$:
 - 1 if a and b have primary conflict;
 - $1/\lambda$ if they have secondary conflict.
- Greedy schedule of $B \subseteq A$ in \prec has length at most

$$\Delta^{\prec}(B) := \max_{a \in B} \left[d(a) + \sum_{b \in N(a) \cap B_{\prec a}} \varrho(a, b) d(b) \right].$$

- \prec : an ordering of requests
- conflict factor $\varrho(a, b)$ of conflicting $a, b \in A$:
 - 1 if a and b have primary conflict;
 - $1/\lambda$ if they have secondary conflict.
- Greedy schedule of $B \subseteq A$ in \prec has length at most

$$\Delta^{\prec}(B) := \max_{a \in B} \left[d(a) + \sum_{b \in N(a) \cap B_{\prec a}} \varrho(a, b) d(b) \right].$$

• *inductivity* of *B* in an ordering

Division:

$$\begin{array}{l} A_{1} \leftarrow \left\{ a \in A : d\left(a\right) \leq \frac{1}{2} \right\} \ // \ \text{light requests} \\ A_{2} \leftarrow \left\{ a \in A : d\left(a\right) > \frac{1}{2} \right\} \ // \ \text{heavy requests} \end{array}$$

- Conquer: Apply a μ_i-approx. alg. to select a feasible subset F_i of A_i for i = 1, 2.
- **Combination**: Return the better one between F_1 and F_2 .
 - a $(\mu_1 + \mu_2)$ -approximate solution.

- Local-ratio (primal-dual) scheme: ordering based
- Fractional local-ratio (primal-dual) scheme: orientation based

- Overview
- Light Requests
- Heavy Requests
- Summary

æ

・四ト・モニト ・ヨト

• \prec : an ordering of requests

æ

B ▶ < B ▶

- \prec : an ordering of requests
- A set $F \subseteq A$ is said to be *inductively feasible* in \prec if $\Delta^{\prec}(F) \leq 1$

- \prec : an ordering of requests
- A set $F \subseteq A$ is said to be *inductively feasible* in \prec if $\Delta^{\prec}(F) \leq 1$
- Greedy computation of an inductively feasible subset F of $S \subseteq A$:

- \prec : an ordering of requests
- A set $F \subseteq A$ is said to be *inductively feasible* in \prec if $\Delta^{\prec}(F) \leq 1$
- Greedy computation of an inductively feasible subset F of $S \subseteq A$:

- \prec : an ordering of requests
- A set $F \subseteq A$ is said to be *inductively feasible* in \prec if $\Delta^{\prec}(F) \leq 1$
- Greedy computation of an inductively feasible subset F of $S \subseteq A$:

$$\begin{array}{l} F \leftarrow \emptyset;\\ \text{for each } a \in S \text{ in } \prec \text{ do}\\ \text{ if } d\left(a\right) + \sum_{b \in N(a) \cap F} \varrho\left(a, b\right) d\left(b\right) \leq 1, \ F \leftarrow F \cup \{a\};\\ \text{return } F. \ // maximal \ inductively \ feasible \ subset \ of \ S \ in \ \prec \end{array}$$

• What is a good "candidate" subset S?

- What is a good "candidate" subset S?
- Which ordering \prec is appropriate?

- What is a good "candidate" subset S?
- Which ordering ≺ is appropriate?
- (Fractional) Local-ratio (equivalently, primal-dual) scheme

 $\mu := \max_{a \in A} \max_{I \in \mathcal{I}_{G}} \left| I_{\preceq a} \cap N\left[a\right] \right|$

-∢∃>

$$\mu := \max_{a \in A} \max_{I \in \mathcal{I}_{G}} |I_{\preceq a} \cap N[a]|$$

• Approximation bound: $2\left(\mu + 2\left(1 - \frac{1}{\lambda}\right)\right)$

$$\mu := \max_{\mathbf{a} \in \mathcal{A}} \max_{I \in \mathcal{I}_{\mathcal{G}}} |I_{\preceq \mathbf{a}} \cap N[\mathbf{a}]|$$

• Approximation bound: $2\left(\mu + 2\left(1 - \frac{1}{\lambda}\right)\right)$

伺下 イヨト イヨト

$$\mu := \max_{\mathbf{a} \in \mathcal{A}} \max_{\mathbf{I} \in \mathcal{I}_{\mathcal{G}}} \left| \mathbf{I}_{\preceq \mathbf{a}} \cap \mathcal{N}\left[\mathbf{a}\right] \right|$$

• Approximation bound: $2\left(\mu + 2\left(1 - \frac{1}{\lambda}\right)\right)$

Interference Radii	Ordering	BLIN
arbitrary	[Wan, Mobihoc' 09]	23
symmetric	[Wan et, al, Infocom' 11]	8
uniform	[Joo, et, al,, IEEE TAC'09]	6

伺下 イヨト イヨト

• **Phase 1**: Selection of the candidate set *S*:

$$\begin{split} & S \leftarrow \emptyset; \\ & \text{for each } a \in A \text{ in the reverse order of } \prec \text{ do} \\ & \overline{w}\left(a\right) \leftarrow w\left(a\right) - d\left(a\right) \sum_{b \in N(a) \cap S} \varrho\left(a, b\right) \frac{\overline{w}(b)}{1 - d(b)}; \\ & \text{if } \overline{w}\left(a\right) > 0, \ S \leftarrow S \cup \{a\}; \end{split}$$

• **Phase 2**: Compute the maximal inductively feasible subset *F* of *S* in *≺*.

 $\mu := \max_{\mathbf{a} \in \mathcal{A}} \max_{I \in \mathcal{I}} \left| I \cap \mathcal{N}_{D}^{in}\left[\mathbf{a}\right] \right|$

$$\mu := \max_{a \in A} \max_{I \in \mathcal{I}} \left| I \cap N_D^{in}[a] \right|$$

• Approximation Bound: 4 $\left(\mu + 2\left(1 - \frac{1}{\lambda}\right)\right)$

$$\mu := \max_{a \in A} \max_{I \in \mathcal{I}} \left| I \cap N_D^{in}[a] \right|$$

• Approximation Bound: 4 $\left(\mu + 2\left(1 - \frac{1}{\lambda}\right)\right)$

$$\mu := \max_{\mathbf{a} \in \mathcal{A}} \max_{I \in \mathcal{I}} \left| I \cap N_D^{in}\left[\mathbf{a}\right] \right|$$

• Approximation Bound: 4 $\left(\mu + 2\left(1 - \frac{1}{\lambda}\right)\right)$

Mode	Orientation	ILIN
Unidirectional	[Wan, Mobihoc' 09]	$\left[\pi/\arcsin\frac{1-c}{2}\right]-1$
Bidirectional	[Wan et. al, Infocom' 11]	8

$$\begin{array}{ll} \max & \sum_{a \in A} \frac{w(a)}{d(a)} x\left(a\right) \\ s.t. & x\left(a\right) + \sum_{b \in N_D^{in}(a)} \varrho\left(a, b\right) x\left(b\right) \leq 1/2, \forall a \in A \\ & 0 \leq x\left(a\right) \leq d\left(a\right), \forall a \in A \end{array}$$

- **Phase 0**: Compute an optimal *partial demand x* and a smallest-last ordering *≺* of *A* w.r.t. *x*.
- Phase 1: Selection of the candidate set S as in Local-Ratio Scheme
- Phase 2: Compute the maximal inductively feasible subset F of S in ≺.

- Overview
- Light Requests
- Heavy Requests
- Summary

æ

- ∢ 🗗 ト

• \prec : an ordering of requests

< 67 ▶

< 3 > < 3 >

- \prec : an ordering of requests
- A set F ⊆ A is said to be *inductively compatible* in ≺ if for each a ∈ F,

$$\sum_{b\in \mathsf{N}(\mathsf{a})\cap \mathsf{F}_{\prec \mathsf{a}}}\varrho\left(b,\mathsf{a}\right)<1.$$

- \prec : an ordering of requests
- A set F ⊆ A is said to be *inductively compatible* in ≺ if for each a ∈ F,

$$\sum_{b\in \mathsf{N}(\mathsf{a})\cap \mathsf{F}_{\prec \mathsf{a}}}\varrho\left(b,\mathsf{a}\right)<1.$$

• Greedy computation of an inductively compatible subset F of $S \subseteq A$:

- \prec : an ordering of requests
- A set F ⊆ A is said to be *inductively compatible* in ≺ if for each a ∈ F,

$$\sum_{b\in \mathsf{N}(\mathsf{a})\cap \mathsf{F}_{\prec \mathsf{a}}}\varrho\left(b,\mathsf{a}\right)<1.$$

• Greedy computation of an inductively compatible subset F of $S \subseteq A$:

- \prec : an ordering of requests
- A set F ⊆ A is said to be *inductively compatible* in ≺ if for each a ∈ F,

$$\sum_{b\in \mathsf{N}(\mathsf{a})\cap \mathsf{F}_{\prec \mathsf{a}}}\varrho\left(b,\mathsf{a}\right)<1.$$

• Greedy computation of an inductively compatible subset F of $S \subseteq A$:

$$\begin{array}{l} F \leftarrow \emptyset;\\ \text{for each } a \in S \text{ in } \prec \text{ do}\\ & \text{if } \sum_{b \in N(a) \cap F} \varrho \left(b, a \right) \leq 1, \ F \leftarrow F \cup \{a\};\\ \text{return } F. \ // maximal \ inductively \ compatible \ subset \ of \ S \ in \ \prec \end{array}$$

• **Phase 1**: Selection of the candidate set *S*:

$$\begin{array}{l} S \leftarrow \varnothing;\\ \text{for each } a \in A \text{ in the reverse order of } \prec \text{ do}\\ \overline{w}\left(a\right) \leftarrow w\left(a\right) - \sum_{b \in N(a) \cap S} \varrho\left(a, b\right) \overline{w}\left(b\right);\\ \text{if } \overline{w}\left(a\right) > 0, \ S \leftarrow S \cup \{a\}; \end{array}$$

• **Phase 2**: Compute the maximal inductively compatible subset *F* of *S* in *≺*.

• **Phase 1**: Selection of the candidate set *S*:

$$\begin{array}{l} S \leftarrow \varnothing;\\ \text{for each } a \in A \text{ in the reverse order of } \prec \text{ do}\\ \overline{w}\left(a\right) \leftarrow w\left(a\right) - \sum_{b \in N(a) \cap S} \varrho\left(a, b\right) \overline{w}\left(b\right);\\ \text{if } \overline{w}\left(a\right) > 0, \ S \leftarrow S \cup \{a\}; \end{array}$$

• **Phase 2**: Compute the maximal inductively compatible subset *F* of *S* in *≺*.

Approximation bound: $2(\mu + 2(1 - \frac{1}{\lambda}))$, where μ is the BLIN of \prec

$$\begin{array}{ll} \max & \sum_{a \in A} w\left(a\right) x\left(a\right) \\ s.t. & x\left(a\right) + \sum_{b \in N_D^{in}\left(a\right)} \varrho\left(a,b\right) x\left(b\right) \leq 1/2, \forall a \in A \\ & x\left(a\right) \geq 0, \forall a \in A \end{array}$$

- **Phase 0**: Compute an optimal *partial demand* x and a smallest-last ordering ≺ of A w.r.t. x.
- Phase 1: Selection of the candidate set S as in Local-Ratio Scheme
- Phase 2: Compute the maximal inductively feasible subset F of S in ≺.

$$\begin{array}{ll} \max & \sum_{a \in A} w\left(a\right) x\left(a\right) \\ s.t. & x\left(a\right) + \sum_{b \in N_D^{in}\left(a\right)} \varrho\left(a,b\right) x\left(b\right) \leq 1/2, \forall a \in A \\ & x\left(a\right) \geq 0, \forall a \in A \end{array}$$

- **Phase 0**: Compute an optimal *partial demand* x and a smallest-last ordering ≺ of A w.r.t. x.
- Phase 1: Selection of the candidate set S as in Local-Ratio Scheme
- Phase 2: Compute the maximal inductively feasible subset F of S in ≺.

Approximation bound: $4\left(\mu + 2\left(1 - \frac{1}{\lambda}\right)\right)$, where μ is the ILIN of D

- Overview
- Light Requests
- Heavy Requests
- Summary

æ

- ∢ 🗗 ト

• Greedy scheduling

2

イロト イヨト イヨト イヨト

- Greedy scheduling
- Divide & Conquer

æ

B ▶ < B ▶

< 🗗 ▶

- Greedy scheduling
- Divide & Conquer
- Local-ratio scheme

æ

.∋...>

- 一司

- Greedy scheduling
- Divide & Conquer
- Local-ratio scheme
 - An ordering with BLIN $\mu \Longrightarrow 2\left(\mu + 2\left(1 \frac{1}{\lambda}\right)\right)$ -approx.

э

- Greedy scheduling
- Divide & Conquer
- Local-ratio scheme
 - An ordering with BLIN $\mu \Longrightarrow 2\left(\mu + 2\left(1 \frac{1}{\lambda}\right)\right)$ -approx.
- Fractional local-ratio scheme

- Greedy scheduling
- Divide & Conquer
- Local-ratio scheme
 - An ordering with BLIN $\mu \Longrightarrow 2\left(\mu + 2\left(1 \frac{1}{\lambda}\right)\right)$ -approx.
- Fractional local-ratio scheme
 - An orientation with ILIN $\mu \Longrightarrow 4\left(\mu + 2\left(1 \frac{1}{\lambda}\right)\right)$ -approx.

- Greedy scheduling
- Divide & Conquer
- Local-ratio scheme
 - An ordering with BLIN $\mu \Longrightarrow 2\left(\mu + 2\left(1 \frac{1}{\lambda}\right)\right)$ -approx.
- Fractional local-ratio scheme
 - An orientation with ILIN $\mu \Longrightarrow 4\left(\mu + 2\left(1 \frac{1}{\lambda}\right)\right)$ -approx.
- Restriction: inductive feasibility, inductive compatibility,