A New Paradigm for Shortest Link Scheduling in Wireless Networks: Theory And Applications

F. Al-dhelaan, P.-J. Wan, and H.Q. Yuan

wan@cs.iit.edu

F. Al-dhelaan, **P.-J. Wan**, and H.Q. Yuan (w<mark>A New Paradigm for Shortest Link Scheduling</mark>

- Overview
- An Adaptive Zero-Sum Game with Retirement
- The General Paradigm
- Discussion

∃ >

• *m* node-level communication links

æ

(日) (周) (三) (三)

- *m* node-level communication links
- E_l : communication primitives of the *l*-th link for $l \in [m]$

- *m* node-level communication links
- E_l : communication primitives of the *l*-th link for $l \in [m]$
 - radio-level links in MCMR wireless networks

- *m* node-level communication links
- E_l : communication primitives of the *l*-th link for $l \in [m]$
 - radio-level links in MCMR wireless networks
 - streams in MIMO wireless networks

- *m* node-level communication links
- E_l : communication primitives of the *l*-th link for $l \in [m]$
 - radio-level links in MCMR wireless networks
 - streams in MIMO wireless networks
- $E := E_1 \cup E_2 \cup \cdots \cup E_m$

- *m* node-level communication links
- E_l : communication primitives of the *l*-th link for $l \in [m]$
 - radio-level links in MCMR wireless networks
 - streams in MIMO wireless networks
- $E := E_1 \cup E_2 \cup \cdots \cup E_m$
- Data rates $b: E
 ightarrow \mathbb{R}^+$

- *m* node-level communication links
- E_l : communication primitives of the *l*-th link for $l \in [m]$
 - radio-level links in MCMR wireless networks
 - streams in MIMO wireless networks
- $E := E_1 \cup E_2 \cup \cdots \cup E_m$
- Data rates $b:E
 ightarrow\mathbb{R}^+$
- \mathcal{I} : collection of all independent subsets of E.

• Link demands $d:[m] \rightarrow \mathbb{R}^+$

・ 何 ト ・ ヨ ト ・ ヨ ト

- Link demands $d:[m]
 ightarrow \mathbb{R}^+$
- A *link schedule* of *d*:

$$\Gamma = \left\{ (I_j, x_j) \in \mathcal{I} \times \mathbb{R}^+ : j \in [k] \right\}$$

s.t.

$$d\left(l
ight)\leq\sum_{j\in\left[k
ight]}x_{j}\sum_{e\in E_{l}\cap I_{j}}b\left(e
ight)$$
 , $orall l\in\left[m
ight]$;

 $\|\Gamma\| := \sum_{j=1}^k x_j$: the *length* of S

- Link demands $d:[m] \to \mathbb{R}^+$
- A link schedule of d:

$$\Gamma = \left\{ (I_j, x_j) \in \mathcal{I} \times \mathbb{R}^+ : j \in [k] \right\}$$

s.t.

$$d\left(I\right)\leq\sum_{j\in\left[k
ight]}x_{j}\sum_{e\in E_{l}\cap I_{j}}b\left(e
ight)$$
 , $orall I\in\left[m
ight]$;

 $\|\Gamma\| := \sum_{j=1}^{k} x_{j}: \text{ the length of } S$ • $\chi^{*}(d) = \text{minimum length of all link schedules of } d$

- Link demands $d:[m] \to \mathbb{R}^+$
- A *link schedule* of *d*:

$$\Gamma = \left\{ (I_j, x_j) \in \mathcal{I} \times \mathbb{R}^+ : j \in [k] \right\}$$

s.t.

$$d\left(I\right)\leq\sum_{j\in\left[k
ight]}x_{j}\sum_{e\in E_{l}\cap I_{j}}b\left(e
ight)$$
 , $orall I\in\left[m
ight]$;

 $\|\Gamma\| := \sum_{j=1}^k x_j$: the *length* of \mathcal{S}

- $\chi^{*}\left(d
 ight)=$ minimum length of all link schedules of d
- Shortest Link Scheduling (SLS): find a shortest link schedule of d

• Greedy method

2

イロト イヨト イヨト イヨト

- Greedy method
 - limited to protocol Interference model with uniform data rates

æ

< 4 ₽ × <

- Greedy method
 - limited to protocol Interference model with uniform data rates
- Ellipsoid method

æ

ヨト イヨト

- Greedy method
 - limited to protocol Interference model with uniform data rates
- Ellipsoid method
- Arbitrary wireless network

.∋...>

- Greedy method
 - limited to protocol Interference model with uniform data rates
- Ellipsoid method
- Arbitrary wireless network
 - Arbitrary wireless network

- Greedy method
 - limited to protocol Interference model with uniform data rates
- Ellipsoid method
- Arbitrary wireless network
 - Arbitrary wireless network
 - Approx.-preserving reduction to **MWIS**: Given $w : E \to \mathbb{R}_+$, find $I \in \mathcal{I}$ maximizing $w(I) := \sum_{e \in I} w(e)$

- Greedy method
 - limited to protocol Interference model with uniform data rates
- Ellipsoid method
- Arbitrary wireless network
 - Arbitrary wireless network
 - Approx.-preserving reduction to **MWIS**: Given $w : E \to \mathbb{R}_+$, find $I \in \mathcal{I}$ maximizing $w(I) := \sum_{e \in I} w(e)$
 - Impractical

• \mathcal{A} : μ -approximation algorithm for **MWIS**

.∋...>

- \mathcal{A} : μ -approximation algorithm for **MWIS**
- $\varepsilon \in (0, 1/2]$: trade-off between accuracy and efficiency

- \mathcal{A} : μ -approximation algorithm for **MWIS**
- $\varepsilon \in (0, 1/2]$: trade-off between accuracy and efficiency
- $LS(\varepsilon)$: iterative $(1 + \varepsilon) \mu$ -approx. alg. for SLS by making $O\left(\varepsilon^{-2}m\ln m\right)$ calls to \mathcal{A}

- \mathcal{A} : μ -approximation algorithm for **MWIS**
- $\varepsilon \in (0, 1/2]$: trade-off between accuracy and efficiency
- $LS(\varepsilon)$: iterative $(1 + \varepsilon) \mu$ -approx. alg. for SLS by making $O\left(\varepsilon^{-2}m\ln m\right)$ calls to \mathcal{A}
 - Augmentation Stage: Compute a LS Γ of ϕd for some $\phi > 0$ by successively selecting an approximate MWIS and its duration

- \mathcal{A} : μ -approximation algorithm for **MWIS**
- $\varepsilon \in (0, 1/2]$: trade-off between accuracy and efficiency
- $\mathbf{LS}(\varepsilon)$: iterative $(1 + \varepsilon) \mu$ -approx. alg. for **SLS** by making $O\left(\varepsilon^{-2}m\ln m\right)$ calls to \mathcal{A}
 - Augmentation Stage: Compute a LS Γ of ϕd for some $\phi > 0$ by successively selecting an approximate MWIS and its duration
 - Scaling Stage: return $\frac{1}{\phi}\Gamma$.

• How to choose the scaling factor ϕ ?

- How to choose the scaling factor ϕ ?
- What is an appropriate weight of E?

- How to choose the scaling factor ϕ ?
- What is an appropriate weight of E?
- How much is the duration of an IS?

- ∢ ∃ ▶

 $\bullet~$ Each iteration \leftrightarrow a game round

- Each iteration \leftrightarrow a game round
- In each round,

- Each iteration \leftrightarrow a game round
- In each round,
 - a link earns a profit in service,

- Each iteration \leftrightarrow a game round
- In each round,
 - a link earns a profit in service,
 - the scheduler incurs a loss in schedule length.

Overview

• An Adaptive Zero-Sum Game with Retirement

- The General Paradigm
- Discussion

3) 3

• S: the set of active agents, initially A

- S: the set of active agents, initially A
- P(a): the cumulative profit of $a \in A$, initially 0

- S: the set of active agents, initially A
- P(a): the cumulative profit of $a \in A$, initially 0
- w(a): the weight of $a \in A$, initially 1.

- S: the set of active agents, initially A
- P(a): the cumulative profit of $a \in A$, initially 0
- w(a): the weight of $a \in A$, initially 1.
- $\phi = \frac{\ln m + \varepsilon}{\varepsilon(1 + \varepsilon) + \ln(1 \varepsilon)}$: retirement threshold

Repeat following round while $S \neq \emptyset$:

Generation of profits and loss by the adversary:

Repeat following round while $S \neq \emptyset$:

- **Generation of profits and loss** by the adversary:
 - Each $a \in S$ earns a profit $p(a) \in \mathbb{R}_+$ (i.e., $P(a) \leftarrow P(a) + p(a)$) subject to the **Normalization Rule**:

$$\max_{a\in S} p\left(a\right) = 1$$

Repeat following round while $S \neq \emptyset$:

- **Generation of profits and loss** by the adversary:
 - Each $a \in S$ earns a profit $p(a) \in \mathbb{R}_+$ (i.e., $P(a) \leftarrow P(a) + p(a)$) subject to the **Normalization Rule**:

$$\max_{\mathbf{a}\in S}p\left(\mathbf{a}\right)=1$$

• The adversary incurs a loss by the Zero-Sum Rule:

$$\frac{1}{w\left(S\right)}\sum_{a\in S}w\left(a\right)p\left(a\right)$$

Repeat following round while $S \neq \emptyset$:

- **Generation of profits and loss** by the adversary:
 - Each $a \in S$ earns a profit $p(a) \in \mathbb{R}_+$ (i.e., $P(a) \leftarrow P(a) + p(a)$) subject to the **Normalization Rule**:

$$\max_{a\in S} p\left(a\right) = 1$$

• The adversary incurs a loss by the Zero-Sum Rule:

$$\frac{1}{w\left(S\right)}\sum_{a\in S}w\left(a\right)p\left(a\right)$$

Ø Multiplicative Weights Update (MWU) by the agents:

$$w(a) \leftarrow w(a)(1 - \varepsilon p(a)), \forall a \in S.$$

Repeat following round while $S \neq \emptyset$:

- **Generation of profits and loss** by the adversary:
 - Each $a \in S$ earns a profit $p(a) \in \mathbb{R}_+$ (i.e., $P(a) \leftarrow P(a) + p(a)$) subject to the **Normalization Rule**:

$$\max_{a\in S} p\left(a\right) = 1$$

• The adversary incurs a loss by the Zero-Sum Rule:

$$\frac{1}{w\left(S\right)}\sum_{a\in S}w\left(a\right)p\left(a\right)$$

Output: Multiplicative Weights Update (MWU) by the agents:

$$w\left(a
ight) \leftarrow w\left(a
ight)\left(1-arepsilon p\left(a
ight)
ight)$$
 , $orall a \in S$.

③ Retirement of agents: $\forall a \in S$, if $P(a) \ge \phi$ then $S \leftarrow S \setminus \{a\}$.

Theorem

The number of rounds $\leq m \lceil \phi \rceil = O(\varepsilon^{-2}m \ln m)$. At the end of the game, the cumulative profit of each agent is at least ϕ , and the cumulative loss of the adversary is at most $(1 + \varepsilon) \phi$.

- Overview
- An Adaptive Zero-Sum Game with Retirement
- The General Paradigm
- Discussion

3 🕨 3

• Each link $l \in [m] \leftrightarrow$ an agent

- Each link $I \in [m] \leftrightarrow$ an agent
- Each iteration \leftrightarrow a game round

F. Al-dhelaan, **P.-J. Wan**, and H.Q. Yuan (wA New Paradigm for Shortest Link Scheduling

- Each link $I \in [m] \leftrightarrow$ an agent
- Each iteration \leftrightarrow a game round
- Cumulative profit of $I \leftrightarrow$ proportion of its demand served by Γ

- Each link $I \in [m] \leftrightarrow$ an agent
- Each iteration \leftrightarrow a game round
- Cumulative profit of $I \leftrightarrow$ proportion of its demand served by Γ
- Active set $S \leftrightarrow$ the set of links not fully served by $\frac{1}{\phi}$ -

3

- 4 緑 ト - 4 三 ト - 4 三 ト

 $I \leftarrow \text{the IS of } \bigcup_{I \in S} E_I \text{ output by } \mathcal{A} \text{ w.r.t. } \overline{w};$

F. Al-dhelaan, **P.-J. Wan**, and H.Q. Yuan (wA New Paradigm for Shortest Link Scheduling

.

$$I \leftarrow \text{the IS of } \bigcup_{I \in S} E_I \text{ output by } \mathcal{A} \text{ w.r.t. } \overline{w};$$

• \overline{w} : the weight function on *E* defined by

$$\overline{w}(e) = rac{w(l)}{d(l)}b(e); \forall e \in E_l, l \in [m].$$

$$I \leftarrow \text{the IS of } \bigcup_{I \in S} E_I \text{ output by } \mathcal{A} \text{ w.r.t. } \overline{w};$$

• \overline{w} : the weight function on *E* defined by

$$\overline{w}(e) = rac{w(l)}{d(l)}b(e)$$
; $\forall e \in E_l, l \in [m]$.

• Weak duality:

$$\chi^{*}(d) \geq \frac{w(S)}{\mu \overline{w}(I)}.$$

Augmentation: Duration of IS

$$\begin{split} & I \leftarrow \text{the IS of } \bigcup_{l \in S} E_l \text{ output by } \mathcal{A} \text{ w.r.t. } \overline{w}; \\ & x \leftarrow \frac{1}{\max_{l \in S} \frac{b(E_l \cap I)}{d(l)}}; \\ & \Gamma \leftarrow \Gamma \cup \{(I, x)\}; \end{split}$$

< ∃ > <

Augmentation: Duration of IS

$$\begin{split} I &\leftarrow \text{the IS of } \bigcup_{I \in S} E_I \text{ output by } \mathcal{A} \text{ w.r.t. } \overline{w}; \\ x &\leftarrow \frac{1}{\max_{I \in S} \frac{b(E_I \cap I)}{d(I)}}; \\ \Gamma &\leftarrow \Gamma \cup \{(I, x)\}; \end{split}$$

• each $l \in S$ earns a profit $x \frac{b(E_l \cap I)}{d(l)}$

$$\begin{split} & I \leftarrow \text{the IS of } \bigcup_{I \in S} E_I \text{ output by } \mathcal{A} \text{ w.r.t. } \overline{w}; \\ & x \leftarrow \frac{1}{\max_{I \in S} \frac{b(E_I \cap I)}{d(I)}}; \\ & \Gamma \leftarrow \Gamma \cup \{(I, x)\}; \end{split}$$

- each $I \in S$ earns a profit $x \frac{b(E_I \cap I)}{d(I)}$
- x is determined by the **Normalization Rule**:

$$x = \frac{1}{\max_{l \in S} \frac{b(E_l \cap l)}{d(l)}}$$

F. Al-dhelaan, **P.-J. Wan**, and H.Q. Yuan (wA New Paradigm for Shortest Link Scheduling

for each
$$l \in S$$
 do
 $P(I) \leftarrow P(I) + x \frac{b(E_l \cap I)}{d(I)}; //$ update the profit
 $w(I) \leftarrow w(I) \left(1 - \varepsilon x \frac{b(E_l \cap I)}{d(I)}\right); //$ MWU
if $P(I) \ge \phi$ then $S \leftarrow S \setminus \{I\}; //$ retirement

2

<ロ> (日) (日) (日) (日) (日)

Theorem

The algorithm $\mathbf{LS}(\varepsilon)$ runs in $O\left(\varepsilon^{-2}m\ln m\right)$ iterations and has an approximation bound $(1+\varepsilon)\mu$.

By Zero-Sum Rule, the loss of the adversary in a round is

$$\frac{1}{w(S)} \sum_{l \in S} w(l) \times \frac{b(E_l \cap I)}{d(l)}$$

$$= \frac{x}{w(S)} \sum_{l \in S} \sum_{e \in E_l \cap I} \frac{w(l) b(e)}{d(l)}$$

$$= \frac{x}{w(S)} \sum_{l \in S} \sum_{e \in E_l \cap I} \overline{w}(e)$$

$$= x \frac{\overline{w}(l)}{w(S)}$$

$$\geq \frac{x}{\mu \chi^*(d)}$$

• On one hand, the cumulative loss of the adversary $\geq \frac{\|\Gamma\|}{\mu\chi^*(d)}.$

• On one hand, the cumulative loss of the adversary $\geq \frac{\|\Gamma\|}{\mu\chi^*(d)}$. • On the hand, the cumulative loss of the adversary $\leq (1 + \varepsilon) \phi$

- On one hand, the cumulative loss of the adversary ≥ ||Γ||/μχ*(d).
 On the hand, the cumulative loss of the adversary ≤ (1 + ε) φ
- Thus,

$$\frac{\left\|\Gamma\right\|}{\mu\chi^{*}\left(d\right)} \leq \left(1+\varepsilon\right)\phi.$$

- On one hand, the cumulative loss of the adversary ≥ ||Γ||/μχ*(d).
 On the hand, the cumulative loss of the adversary ≤ (1 + ε) φ
- Thus,

$$rac{\left\|\Gamma
ight\|}{\mu\chi^{*}\left(d
ight)}\leq\left(1+arepsilon
ight)\phi.$$

On one hand, the cumulative loss of the adversary ≥ ||Γ||/μχ*(d).
On the hand, the cumulative loss of the adversary ≤ (1 + ε) φ
Thus,

$$\frac{\|\Gamma\|}{\mu\chi^{*}(d)} \leq (1+\varepsilon) \phi.$$
$$\frac{\|\Gamma\|}{\phi} \leq (1+\varepsilon) \,\mu\chi^{*}(d)$$

- Overview
- An Adaptive Zero-Sum Game with Retirement
- The General Paradigm
- Discussion

글▶ 글

• Almost approx.-preserving reduction from SLS to MWIS

æ

< 3 > < 3 >

< 一型

- Almost approx.-preserving reduction from SLS to MWIS
- Arbitrary wireless networks

э

-∢∃>

- Almost approx.-preserving reduction from SLS to MWIS
- Arbitrary wireless networks
- Broader applications of the game to covering problems.