
Efficient and Fast Distributed Top-𝑘 Query Protocol
in Wireless Sensor Networks

Shao-Jie Tang†, Xufei Mao‡, Xiang-Yang Li‡†
Email: {stang7, xmao3}@iit.edu, xli@cs.iit.edu

†Department of Computer Science, Illinois Institute of Technology, USA
‡ TNLIST, School of Software, Tsinghua University

Abstract—In this paper, we focus on designing efficient query of
top-𝑘 data produced by sensor nodes in a wireless sensor network
(WSN). Assume that we are given a connected WSN of diameter
𝐷, consisting of 𝑛 nodes with maximum node degree Δ. Two
different models are studied. In the first model, each node holds
a numeric element, the goal is to determine the top-𝑘 smallest (or
biggest) of these elements from all nodes. In the second model,
there are 𝑚 objects in set ℒ, each node 𝑣𝑖, 1 ≤ 𝑖 ≤ 𝑛 holds a
numeric value 𝑠𝑗(𝑣𝑖) for each object 𝐿𝑗 ∈ ℒ, 1 ≤ 𝑗 ≤ 𝑚, the
goal is to find the 𝑘 objects in ℒ with the 𝑘 smallest (or biggest)
aggregated values 𝑓(𝑠𝑗(𝑣1), 𝑠𝑗(𝑣2), ⋅ ⋅ ⋅ , 𝑠𝑗(𝑣𝑛)), where 𝑓 is an
aggregation function given in advance. We propose both fast and
message efficient methods for conducting top-𝑘 queries in the two
aforementioned models. Following that we study the minimum
delay and messages required by any distributed method for top-
𝑘 queries in both models. Our analysis shows that our methods
are almost optimum. We conducted extensive experiments in both
testbed and simulations to study the practical performances of
our methods.

Index Terms—Wireless networks, top-𝑘 query, aggregation,
scheduling.

I. INTRODUCTION

In this paper, we design efficient top-𝑘 query methods with
small delay and small exchanging messages, and study some
fundamental complexities for various top-𝑘 queries in wireless
sensor networks (WSNs). This work is motivated by many top-
𝑘 related applications in WSN. For instance, one of important
applications [17] in agriculture using WSNs is to monitor the
light level of different areas inside a forest. In this application,
agriculture researchers are usually more interested at some
highest light readings. The other application is forest fire
monitoring, in order to detect potential forest fire using WSN,
we should be aware of those nodes with highest temperature
or smoke readings.

A typical or naive implementation of top-𝑘 query would
be using a centralized approach where all sensor readings are
collected by the base station (or the sink node), which then
computes the top-𝑘 result set. However, this is overkill in
most cases since collecting all sensor readings is less efficient
and effective [28]. Designing efficient top-𝑘 queries has been
widely studied in the database community [1], [6], [15], [24].
Surprisingly, only a few results [22], [27]–[30] have been
proposed to deal with top-𝑘 queries in WSNs.

In this paper, we study two types of top-𝑘 queries in WSNs.
The first type focuses on the scenario that each wireless sensor
node holds some data, e.g., the data could be the temperature
readings, moisture readings or light lever readings during the

last several minutes or hours. Since all readings of all wireless
nodes are kind of independent of each other, we call this
“single object model”, i.e., each reading can be considered
as a single object. The top-𝑘 query under single object model
is then to find the top-𝑘 ranked items, i.e., the 𝑘 highest (or
lowest) temperature (or moisture) readings during a period.

The second type focuses on the scenario that the data
items collected by different sensor nodes can be treated as
different measurements of same objects. In this model, we
assume that there are totally 𝑚 objects. The value of an object
is an aggregation of the observed values of all sensors for
this object. For example, the aggregation functions could be
summation, average and so on. We call this type as “multiple
objects model”. The top-𝑘 query under multiple objects model
is then to find the top-𝑘 objects whose aggregated observed
value are top-𝑘 ranked.

To the best of our knowledge, we are the first to study
message efficient and minimal delay top-𝑘 query for WSNs, to
present lower bounds on the minimum number of messages,
and minimum delay, required for these two types of top-𝑘
queries by any distributed methods for multihop WSNs. The
main contributions of this paper are as follows.

1) For single object model, we present efficient randomized
algorithms for top-𝑘 queries. One algorithm is able to find
top-𝑘 objects in expected time 𝑂(Δ + 𝐷 log𝐷 𝑘 + 𝑘) for
any wireless sensor network 𝐺 with diameter 𝐷, maximum
degree Δ, and each wireless node has at most 𝑂(1) different
data items (objects). We show that any randomized distributed
algorithm needs at least Ω(𝐷 log𝐷 𝑘 + 𝑘) time slots to find
the top-𝑘 data items and any deterministic algorithm needs
at least Ω(Δ + 𝐷 log𝐷 𝑘 + 𝑘) time slots to find the top-𝑘
data items. Thus our method is almost optimum. We also
propose distributed top-𝑘 query method that incurs small
message overhead. We prove that our method costs at most
𝑂(min(𝑛+ 𝑘𝑛c, 𝑛+ 𝑛c(𝑘 + log 𝑛c) + 𝑘𝐷)) messages to find
the top-𝑘 items. Here 𝑛c is the size of a connected dominating
set. We further show that there exists a network 𝐺 of 𝑛 nodes
such that Ω(𝑘𝐷 + 𝑛) messages are required by any method
(deterministic or randomized) to compute the 𝑘-th smallest (or
biggest) elements (objects) in 𝐺 under the single object model.

2) Under multiple objects model, we assume that there
are 𝑚 different objects totally in wireless network 𝐺 with
𝑛 wireless nodes. We design efficient deterministic distributed
methods that can find the 𝑘 objects whose aggregated values
are top-𝑘 ranked. Our methods answer the top-𝑘 queries in

2011 19th IEEE International Conference on Network Protocols

978-1-4577-1394-1/11/$26.00 ©2011 IEEE 99

𝑂(𝐷+𝑚Δ) time slots, with 𝑂(𝑚𝑛) messages. We show that
any deterministic distributed top-𝑘 query method in this model
needs Ω(𝐷 +𝑚Δ) time slots, and Ω(𝑚𝑛) messages.

3) We studied the practical performances of our methods
by extensive testbed (consisting of 36 Telosb nodes) exper-
iments. The experimental results verify the feasibility of all
proposed algorithms on small sensors with limited energy and
memory. We further evaluate our algorithms in large scale
network through simulation, simulation results show that our
algorithms perform well as network scales.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Wireless Sensor Network Model

We mainly focus on designing efficient methods for, and
study the complexities of, top-𝑘 query in WSNs. We assume
a simple and general model that is widely used in the
community. Assuming that there are 𝑛 + 1 wireless sensor
nodes 𝑉 = {𝑣0, 𝑣1, ⋅ ⋅ ⋅ , 𝑣𝑛} deployed in a certain geographic
region, where 𝑣0 is the sink node. Each wireless sensor node
corresponds to a vertex in a graph 𝐺 and two vertices are
connected iff their corresponding sensor nodes can communi-
cate directly. The graph 𝐺 is called the communication graph
of this sensor network. We say that wireless communication
links are “reliable”: when a node 𝑣𝑖 sends some data to a
neighboring node 𝑣𝑗 within 𝑣′𝑖𝑠 communication range, the total
message cost is only 𝑂(1), although 𝑣𝑖 may need to re-transmit
several times in practice. In addition all wireless sensor nodes
transmit at a fixed power, and there is a fixed integer 𝜚 such
that a transmitting node 𝑧 will cause interference to a node
𝑣 (receiving data from another sender 𝑢) if the hop distance
between 𝑣 and 𝑧 is at most 𝜚. For example, 𝜚 = 2 or 3 typically
in the literature.

Let ℎ𝐺(𝑣𝑖, 𝑣𝑗) be the hop number of the minimum hop path
connecting 𝑣𝑖 and 𝑣𝑗 in graph 𝐺, and 𝐷(𝐺) be the diameter
of the graph. Here, we assume that 𝐷(𝐺) ≥ 2. Otherwise,
the graph 𝐺 is simply a completed graph and all questions
studied in this paper can either be trivial or have been solved
[10]–[12]. For a graph 𝐺, we denote its maximum degree as
Δ(𝐺). When each node 𝑣𝑖 has 𝑛𝑖 data items, we define the
weighted degree, denoted as 𝑑𝑣𝑖

(𝐺), of a node 𝑣𝑖 in graph 𝐺
as 𝑛𝑖 +

∑
𝑣𝑗 :𝑣𝑖𝑣𝑗∈𝐺 𝑛𝑗 . The maximum weighted degree of a

graph 𝐺, denoted as Δ̃(𝐺), is defined as max𝑖 𝑑𝑣𝑖
(𝐺).

For some of the results, we further assume that the wireless
sensor network 𝐺 is growth-bounded by a polynomial function
𝑔. A network 𝐺 is said to be growth-bounded by function 𝑔 if
for every node 𝑣 and any integer ℓ, any set 𝑆 of independent
nodes within ℓ hops of node 𝑣 has size at most 𝑔(ℓ).

We use 𝐴𝑖 to denote all data items (e.g., temperature,
moisture and so on) collected by wireless node 𝑣𝑖. We assume
that one packet (i.e., message) can only contain one data item
𝑎 ∈ 𝐴𝑖, plus the node ID and additional constant number of
bits, i.e., the packet size is at the order of Θ(log 𝑛 + log𝑈),
where 𝑈 is the upper-bound on values of 𝑎. Such a restriction
on the message size is realistic and needed, otherwise a single
convergecast would suffice to accumulate all data items to the

sink which will subsequently solve the problems easily. We
consider a TDMA MAC schedule and assume that one time-
slot duration allows transmission of exactly one packet.

For data queries in WSNs, we often need to build a spanning
(routing) tree 𝑇 of the communication graph 𝐺 first for
pushing down queries and propagating back the intermediate
results. Given a tree 𝑇 , we use 𝐻(𝑇) denote the height of the
tree.

B. Problems and Complexities

We mainly study the time complexity and message complex-
ity of distributed top-𝑘 query in multihop wireless networks.
The complexity measures used to evaluate the performance
of a given protocol are worst-case measures. The message
complexity of a protocol is defined as the maximum number
of total messages transmitted by all nodes over all inputs,
i.e., over all possible wireless networks 𝒢 of 𝑛 nodes (with
additional requirement of having diameter 𝐷 and/or maximum
nodal degree Δ) and all possible data distributions of 𝐴 over
𝑉 . The time complexity is defined as the elapsed time from the
time when the first message was sent by some node to the time
when the last message was received by the sink. The lower
bound on a complexity measure is the minimum complexity
required by all protocols that answer the queries correctly. We
now formally define top-𝑘 query problem under two different
models.

Single Object Model: In this model, we assume that 𝐴 =
{𝑎1, 𝑎2, ⋅ ⋅ ⋅ , 𝑎𝑁} is a totally ordered multi-set of 𝑁 elements
collected by all 𝑛 nodes. Each node 𝑣𝑖 has 𝑛𝑖 number of raw
data, denoted as 𝐴𝑖 ⊂ 𝐴. Since 𝐴 is a multi-set, we assume
𝐴𝑖 ∩ 𝐴𝑗 = ∅ and 𝐴 =

∪𝑛
𝑖=1 𝐴𝑖. Then ⟨𝐴1, 𝐴2, ⋅ ⋅ ⋅ , 𝐴𝑛⟩ is

called a distribution of 𝐴 at sites of 𝑉 . The top-𝑘 query is then
to find the top-𝑘 ranked items under a certain ranking function
𝑟(). Here we assume that, given any two data items 𝑎𝑖 and 𝑎𝑗 ,
we can compare the ranks 𝑟(𝑎𝑖) and 𝑟(𝑎𝑗) in constant time.

Multiple Objects Model: The second type focuses on the
scenario that the data items collected by different sensor nodes
can be treated as different measurements of same objects.
Under this model, we assume that there are totally 𝑚 data
objects ℒ = {𝐿1, 𝐿2, ⋅ ⋅ ⋅ , 𝐿𝑚}. Each wireless sensor node
𝑣𝑖 ∈ 𝑉 will have a measurement 𝑠𝑗(𝑣𝑖) for the object
𝐿𝑗 . In other words, each wireless node 𝑣𝑖 ∈ 𝑉 will have
a vector 𝑠(𝑣𝑖) = [𝑠1(𝑣𝑖), 𝑠2(𝑣𝑖), ⋅ ⋅ ⋅ , 𝑠𝑚(𝑣𝑖)]. Assume that
there is an aggregation function 𝑓 such that for object 𝐿𝑗 ,
its aggregated observed value, denoted as 𝑏𝑗 , is defined
as 𝑓(𝑠𝑗(𝑣1), 𝑠𝑗(𝑣2), ⋅ ⋅ ⋅ , 𝑠𝑗(𝑣𝑛)). Here we assume that the
aggregation function 𝑓 is distributive and symmetric. Assume
that we are given an aggregation function 𝑓 that can be
expressed as the combination of 𝑞 distributive functions 𝑔1(),
𝑔2(), ⋅ ⋅ ⋅ , 𝑔𝑞(), for some integer constant 𝑞, i.e., 𝑓(𝑋) =
ℎ(𝑔1(𝑋), 𝑔2(𝑋), ⋅ ⋅ ⋅ , 𝑔𝑞(𝑋)). For example, when 𝑓 is aver-
age, then 𝑞 = 2, 𝑔1 can be set as sum, 𝑔2 can be set as count
(obviously both 𝑔1 and 𝑔2 are distributive) and ℎ can be set
as ℎ(𝑦1, 𝑦2) = 𝑦1/𝑦2. Hereafter, we assume that an algebraic
function 𝑓 is given in formula ℎ(𝑔1(𝑋), 𝑔2(𝑋), ⋅ ⋅ ⋅ , 𝑔𝑞(𝑋))
by providing functions ℎ(), 𝑔𝑖(), for 1 ≤ 𝑖 ≤ 𝑞. Thus, instead

100

of computing 𝑓 , we can just compute 𝑦𝑖 = 𝑔𝑖(𝑋) distributively
for 𝑖 ∈ [1, 𝑞] and ℎ(𝑦1, 𝑦2, ⋅ ⋅ ⋅ , 𝑦𝑞) at the sink node.

When 𝑣𝑖 does not have a measurement for the object 𝐿𝑗 , we
use 𝑠𝑗(𝑣𝑖) = ∅ to denote this and 𝑣𝑖 will not participate in the
final aggregation of the value 𝑓(𝑠𝑗(𝑣1), 𝑠𝑗(𝑣2), ⋅ ⋅ ⋅ , 𝑠𝑗(𝑣𝑛)).
The top-𝑘 query is then to find the top-𝑘 ranked items whose
aggregated value are the 𝑘 smallest (or biggest) under a
ranking function 𝑟(). From now on, we assume that we want
𝑘 smallest ranked items.

C. Connected Dominating Set

Our results are based on some connected dominating set
(CDS) of the original communication graph 𝐺. We can con-
struct a dominating set using a distributed method in [26]. For
a graph 𝐺, let C(𝐺) = (𝑉C, 𝐸C) be the CDS constructed using
method in [26]. In the rest of the paper, we assume that such
CDS has been constructed in advance. Here, our assumption
is reasonable since constructing CDS is one-time work after
all wireless nodes are deployed. Let 𝑑𝐺(𝑢) denote the degree
of node 𝑢 in a graph 𝐺.

Let 𝑇C be a BFS tree of C. For a node 𝑣 ∈ 𝑉 ∖ 𝑉C, we
define an unique dominator, denoted as 𝑑(𝑣), which is the one
having the shortest hop distance to the sink 𝑣0. Then our top-
𝑘 query is based on the following data communication tree
(DCT).

Definition 1: For a WSN 𝐺 and its CDS, the data com-
munication tree (DCT) 𝑇 (𝐺) = (𝑉,𝐸𝑇) is defined as 𝐸𝑇 =
𝐸C ∪{𝑣𝑑(𝑣) ∣ 𝑣 ∈ 𝑉 ∖𝑉C}). Here 𝐸C is the set of edges used
in the CDS C(𝐺), 𝑣𝑑(𝑣) denotes the edge between 𝑣 and 𝑑(𝑣).

Given a data communication tree 𝑇 = (𝑉,𝐸𝑇), an aggre-
gate operation consists of (possibly repeated) two phases: a
propagation phase where the query demands are pushed down
into the sensor network along the tree; and an aggregation
phase where the aggregated values are propagated up from
the children to their parents. Next, we present one theorem
and one lemma proposed in [20], which will be used in our
proof later.

Theorem 1: [20] Let 𝐺 be a growth-bounded communi-
cation graph by a function 𝑔(), and C be the constructed
CDS graph on 𝐺. The data communication tree 𝑇 (𝐺) has
the following properties:

1) Δ(𝑇C) is at most a constant d
2) For any edge 𝑒 ∈ 𝐸𝑇 , let 𝐼(𝑒) be the set of edges in 𝐸𝑇

that have interferences with 𝑒, then ∣𝐼(𝑒)∣ ≤ 𝑐 ⋅Δ(𝐺) for
some constant 𝑐 depending on 𝜚.

All our methods are based on data clustering: given a good
CDS, for a node 𝑣 ∈ 𝑉 ∖ 𝑉C, it sends the data items to its
dominator 𝑑(𝑣) in a TDMA manner.

Lemma 2: [20] Given a good CDS of the graph 𝐺, data
clustering can be done in time 𝑂(Δ̃(𝐺)).

After data clustering, all data elements are clustered in 𝑇C.
In other words, each node 𝑣𝑖 in the connected dominating set
now will have data from all nodes dominated by 𝑣𝑖.

III. SINGLE OBJECT MODEL

In this section, we study the top-𝑘 query for the single-
object model (SO). For simplicity, we assume ∣𝐴𝑖∣ = 𝑝 for

every node 𝑣𝑖 and further define 𝑤 = min{𝑝, 𝑘}. We not
only present efficient algorithms to minimize the latency, or
minimize the number of messages communicated, but also give
lower bounds on the latency and communication cost of any
top-𝑘 query method under this model for multihop WSNs.

A. Time Complexity: Efficient Methods and Lower Bounds

1) Delay Efficient Methods: We first present our method
(Algorithm 1) for distributed top-𝑘 query in growth-bounded
multihop WSNs. The main idea is as follows. At the be-
ginning, each dominator node collects top-𝑘 data items
from all its dominatee nodes. Next, the distributed selection
method (Algorithm 2) is run over the CDS to find the 𝑘-th
ranked data item. This selection method has time complexity
𝑂(𝐷 log𝐷 𝑁) in wired communication model [14]. When
taking interference into account, the time complexity is still
𝑂(𝐷 log𝐷 𝑘) since the wireless networks have the growth-
bounded property and the interference only happens within 𝜚
hops. Finally, the sink node distributes the 𝑘-th smallest data
item (assume 𝑎𝑘) to all the wireless nodes and the top-𝑘 data
items can be collected by returning all the data items which
are larger than 𝑎𝑘 from each wireless node.

Algorithm 1 Distributed Top-𝑘 Query With Low Latency

Input: Growth-bounded (conflict) graph 𝐺 = (𝑉,𝐸) and 𝜌.
Output: top-𝑘 data items.

1: Construct a CDS with bounded degree d as in [2], [3]. Then
construct the BFS tree 𝑇C of the CDS C.

2: Data Clustering: Each dominator collects the local top-𝑘 data
items from all its dominatee nodes within time 𝑂(𝑤Δ) when we
consider the interferences. Here each node 𝑣𝑖 has to report ≤ 𝑤
data items, where 𝑤 = min(𝑝, 𝑘).

3: Rank Selection: Using BFS tree 𝑇C, we run randomized Algo-
rithm 2, with 𝑡 = 8𝜆𝐷 for a constant 𝜆 > 1 to find the 𝑘-th
smallest data item 𝑎𝑘 using only nodes and links of the CDS,
i.e., only nodes in CDS will participate.

4: Sink node broadcasts 𝑎𝑘 to all the wireless nodes in CDS.
5: Collect all the data items which are larger than 𝑎𝑘 from all

wireless nodes, which can be done in time 𝑂(𝑘 +𝐷).

In Algorithm 2, getRndElementsInRange will find 𝑡 ran-
dom elements within range (𝐿,𝑈) from data items of all
wireless sensor nodes (Main idea and related proof shown
in Lemma 3). Procedure countElementsInRange((𝑎, 𝑏]) is an
aggregation function that counts the total number of elements
𝑎𝑖 in the range of (𝑎, 𝑏] (i.e., 𝑎 < 𝑎𝑖 ≤ 𝑏) among all wireless
nodes. This counting function can clearly be done using 𝑛c

messages and in time Θ(𝐷) since counting is a distributive
function. We then show that our method will finish in certain
time-slots with high probability (w.h.p).

Lemma 3: Procedure getRndElementsInRange can find 𝑡
random items within range (𝐿,𝑈) with equal probability. The
total messages used to get 𝑡 random elements is at most 2𝑡𝑛c.
The time delay is at most 𝑂(𝑡+𝐷) when we let nodes report
the selected data items in sequel.

Proof: Assume that the BFS tree 𝑇C of the CDS has been
constructed in advance. The procedure getRndElementsIn-
Range(𝐿,𝑈) will be implemented as follows. For each node

101

Algorithm 2 Random Data Selection 𝑅𝐷𝑆(𝑡, 𝑘)

1: 𝐿← −∞; 𝑈 ←∞; phase← 0;
2: repeat
3: 𝑥0 ← 𝐿; 𝑥𝑡+1 ← 𝑈 ; phase←phase+1;
4: {𝑥1, . . . , 𝑥𝑡} ← getRndElementsInRange(𝑡, (𝐿,𝑈))
5: for 𝑖 = 1, . . . , 𝑡 in sequel do
6: 𝑟𝑖 =countElementsInRange((𝑥𝑖−1, 𝑥𝑖])
7: if 𝑥0 ∕= −∞ then
8: 𝑟1 ← 𝑟1 + 1
9: 𝑗 ← min𝑙∈{1,...,𝑡+1}

∑𝑙
𝑖=1 𝑟𝑖 > 𝑘

10: 𝑘 ← 𝑘 −∑𝑗−1
𝑖=1 𝑟𝑖

11: if 𝑘 ∕= 0 and 𝑗 ∕= 1 then
12: 𝑘 ← 𝑘 + 1
13: until 𝑟𝑗 ≤ 𝑡 or 𝑘 = 0
14: if 𝑘 = 0 then
15: return 𝑥𝑗

16: else
17: {𝑥1, . . . , 𝑥𝑠} =getElementsInRange([𝑥𝑗−1, 𝑥𝑗]);
18: return 𝑥𝑘

𝑣 in the CDS, let 𝑐(𝑣) be the total number of data items stored
in 𝑣 (including its own data items and data collected from its
dominatee nodes) within the range (𝐿,𝑈). First for each node
𝑣, we get a counting on the total number (denoted as 𝑛(𝑣)) of
data items in the range (𝐿,𝑈) from the subtree rooted at 𝑣.
This clearly can be done by simple aggregation function sum
with 𝑛c number of messages and Θ(𝐷) delay, considering the
wireless interferences. Then the root node 𝑣0 knows the total
number of data items 𝑛(𝑣0) in the range (𝐿,𝑈). The root
randomly chooses 𝑡 random integers, say 𝑝1 < 𝑝2 < ⋅ ⋅ ⋅ < 𝑝𝑡,
in range [1, 𝑛(𝑣0)]. Let 𝑝0 = 0. These integers 𝑝𝑖, 1 ≤ 𝑖 ≤ 𝑡
denote the sorted order of the random data items in (𝐿,𝑈)
to be picked from all nodes. We then implement another
procedure fetchRndElementsInRange(𝑣0, [𝑝1, 𝑝2, ⋅ ⋅ ⋅ , 𝑝𝑡]) as
follows:

1) Let 𝑠 = 1. While 𝑝𝑠 ≤ 𝑐(𝑣0), let 𝑠 = 𝑠+1. We randomly
pick 𝑠− 1 data items in range (𝐿,𝑈) from node 𝑣0.

2) Let 𝑢1, 𝑢2, ⋅ ⋅ ⋅ , 𝑢𝑑 be the 𝑑 children nodes of 𝑣0 in
the BFS tree 𝑇C. For each child 𝑢𝑖, find 𝑙(𝑖) and 𝑟(𝑖)
such that 𝑐(𝑣0) +

∑𝑖−1
𝑗=1 𝑛(𝑢𝑗) < 𝑝𝑙(𝑖) < 𝑝𝑙(𝑖)+1 <

⋅ ⋅ ⋅ < 𝑝𝑟(𝑖) ≤ 𝑐(𝑣0) +
∑𝑖

𝑗=1 𝑛(𝑢𝑗). Let 𝑄 = 𝑐(𝑣0) +
∑𝑖−1

𝑗=1 𝑛(𝑢𝑗), 𝑞1 = 𝑝𝑙(𝑖) − 𝑄, 𝑞2 = 𝑝𝑙(𝑖)+1 − 𝑄,
⋅ ⋅ ⋅ , 𝑞𝑟(𝑖)−𝑙(𝑖)+1 = 𝑝𝑟(𝑖) − 𝑄. We then call fetchRn-
dElementsInRange(𝑢𝑖, [𝑞1, 𝑞2, ⋅ ⋅ ⋅ , 𝑞𝑟(𝑖)−𝑙(𝑖)+1]) to get
𝑟(𝑖)− 𝑙(𝑖)+1 random data items from the subtree rooted
at 𝑢𝑖.

Lemma 4: For any growth-bounded wireless networks, the
𝑘-th smallest data item can be found with delay at most 𝑂(𝐷+
𝐷 log𝐷 𝑘) in Line 3 of Algorithm 1 w.h.p.

Proof: Let 𝑛c denote the size of CDS constructed in
Algorithm 1. Then the total number of data items contained
in all dominators is 𝑛c𝑘 before Line 3 runs. This is because
when data are collected to the dominators (after Line 2 is
done), every dominator maintains the set of local top-𝑘 data
items including its dominatees and its own. As proved in [14],
finding the 𝑘-th smallest data item will cost 𝑂(𝐷 log𝐷(𝑛c𝑘))

rounds1 of communications w.h.p, i.e., 𝑂(𝐷 log𝐷(𝑛c𝑘)) time-
slots w.h.p, since (1) each dominator node contains at most
𝑘 data items, and (2) each round is composed of 𝛽 ≤ 𝑔(2)
timeslots because the maximum degree in CDS is 𝑔(2) for
growth-bounded 𝐺.

For multihop WSNs modeled by a growth-bounded network
𝐺 using a function 𝑔(), the size of the minimum dominating
set (MDS) is ≤ 𝑔(𝐷). It is easy to show that the size of
the connected dominating set found by our method is at most
2𝑔(1) times of the MDS. Thus, 𝑛c ≤ 2𝑔(1) ⋅ 𝑔(𝐷). Therefore,
𝑂(𝐷 log𝐷(𝑛c𝑘)) ≤ 𝑂(𝐷 log𝐷(𝑘 × 2𝑔(1)𝑔(𝐷))) = 𝑂(𝐷 +
𝐷 log𝐷 𝑘).

because 𝑔() is a polynomial. This finishes the proof.
Observe that 𝑂(𝐷 + 𝐷 log𝐷 𝑘) = 𝑂(⌈𝐷 log𝐷 𝑘⌉) when

𝑘 = Ω(𝐷). For simplicity, we will use 𝐷 log𝐷 𝑘 to denote
⌈𝐷 log𝐷 𝑘⌉. Then 𝑂(𝐷 +𝐷 log𝐷 𝑘) = 𝑂(𝐷 log𝐷 𝑘).

Theorem 5: Algorithm 1 can find the top-𝑘 data items in
expected time 𝑂(𝑤Δ+𝐷 log𝐷 𝑘 + 𝑘).

Proof: This lemma follows from the time complexity
analysis for each phase as follows: (1) the data clustering step
has time complexity Θ(𝑤Δ); (2) the rank selection step will
cost 𝑂(𝐷 + 𝐷 log𝐷 𝑘) time-slots w.h.p based on Lemma 4;
(3) the broadcast step costs Θ(𝐷) time slots to broadcast 𝑎𝑘;
(4) the last step costs 𝑂(𝐷 + 𝑘) time slots to collect the real
top-𝑘 data items to sink node since we can collect these 𝑘
items in parallel without interference, e.g. the 𝑘 items can be
transmitted one by one. This finishes the proof.

Note that, we can derandomize our algorithm as in [14] to
find a deterministic top-𝑘 query algorithm. The proof of the
following theorem is a simple combination of a proof similar
to Theorem 5 and the proof of Theorem 4.4 of [14].

Theorem 6: There is a deterministic algorithm that can find
the top-𝑘 data items in time 𝑂(𝑤Δ+𝐷(log𝐷 𝑘)2 + 𝑘).

2) Lower Bound on Query Latency: In this subsection, we
give a lower bound on the time complexity for any top-𝑘 query
method in multihop WSNs.

Lemma 7: For any Δ, there exists a wireless network with
maximum degree Δ such that any deterministic algorithm
needs at least Δ time slots to compute the top-𝑘 set.

Proof: Given any Δ > 1, we construct a simple network
with Δ+ 1 nodes such that all other Δ nodes are located in
the transmission range of the sink. We then prove that for any
deterministic algorithm, there always exists a data placement
such that every node needs to be active (i.e., send a message
to sink) at least once during the computation for the top-𝑘 set.
Since we study deterministic distributed algorithms here, all
sensor nodes will have a uniform method in determining their
actions (whether to send a message, if send then send what
message) based on the messages they received historically

1In wired networks, a round is the time-duration such that, given any node
𝑢, each of the neighboring nodes of the node 𝑢 can send one message to
𝑢. Clearly, in wireless networks, such communications cannot be finished in
one time-slot. For arbitrary wireless sensor networks, such communications
need at least Δ(𝐺) time-slots. Since we run the Rank Selection on top of
the CDS structure, such communications can be finished in at most 𝑔(2)
time-slots when networks 𝐺 is growth-bounded by a function 𝑔(). Recall that
Δ(C(𝐺)) ≤ 𝑔(2) in this case.

102

and its own data. Without loss of generality, assume we
have a binary function 𝑓(𝑥𝑖,𝑚𝑡,𝑀𝑡−1) for any deterministic
algorithm. Here, 𝑥𝑖 denotes the data located at the 𝑖th node,
𝑚𝑡 denotes the message received from the sink node at time 𝑡,
𝑀𝑡−1 denotes all historical messages received from the sink
node upto time 𝑡− 1. Each node decides whether to be active
or not according to the value of 𝑓(𝑥𝑖,𝑚𝑡,𝑀𝑡−1), e.g., the
node will send message to sink if 𝑓(𝑥𝑖,𝑚𝑡,𝑀𝑡−1) = 1, or
keep silent otherwise.

In the initial phase, without receiving any information from
the other nodes, the sink will send some fixed message 𝑚1 to
all the other nodes. There are two possible cases we need to
consider:

1) there are infinite number of values 𝑎 such that
𝑓(𝑎,𝑚1, ∅) = 1, we may set 𝑥𝑖 such that 𝑓(𝑥𝑖,𝑚1, ∅) =
1 for every node 𝑣𝑖. In this case, all 𝑛 nodes will send
message to the sink node.

2) there are infinite number of values 𝑎 such that
𝑓(𝑎,𝑚1, ∅) = 0. In this case, we set 𝑥𝑖 such that
𝑓(𝑥𝑖,𝑚1, ∅) = 0 for every node 𝑣𝑖. The algorithm gets
no information and must send another message 𝑚2 ∕= 𝑚1

under some fixed rules (otherwise, the sink will never get
any information).

Thus, as long as for some message 𝑚𝑡, there exists enough 𝑎
such that 𝑓(𝑎,𝑚𝑡,𝑀𝑡−1) = 1, we set 𝑥𝑖 = 𝑎 for every node.
Therefore, every node needs to be active at least once under
our data placement. Obviously, we need at least Δ time slots
to finish all the data collection due to the interference. This
finishes the proof.

Theorem 8: There are multihop WSNs and data distri-
butions such that any distributed method (deterministic or
randomized) needs at least Ω(𝐷+𝐷 log𝐷 𝑘+𝑘) time slots to
find the top-𝑘 data items.

Proof: The time complexity of finding the top-𝑘 data
items for a wireless network is at least as expensive as that of
finding the 𝑘-th smallest data item in a corresponding wired
network (by assuming that no interferences exist among all
transmission links). For wired networks, it was proved in [14]
that any 𝑘-th selection method needs Ω(𝐷+𝐷 log𝐷 𝑘) time-
slots. Thus, any top-𝑘 query algorithm for WSNs needs at
least Ω(𝐷+𝐷 log𝐷 𝑘) time-slots. In addition, no matter what
method is implemented, we need to spend at least Ω(𝑘) time
slots in collecting the real top-𝑘 data items with size 𝑘 to the
sink. This finishes the proof.

Based on Lemma 7, we have
Theorem 9: There are multihop WSNs and data distribu-

tions such that any deterministic distributed method needs at
least Ω(Δ + 𝐷 log𝐷 𝑘 + 𝑘) timeslots to find the top-𝑘 data
items.

Thus, when each node has only 𝑝 = 𝑂(1) data items, the
time-slots needed by our method matches the lower bound of
any deterministic algorithm. It remains an interesting question
to close the gap between the lower bounds and upper bounds
for deterministic algorithms when 𝑝 = 𝑂(𝑘), and to further
find a possibly better lower bound for randomized algorithms
by proving a better lower bound needed by any randomized

algorithm in data collection phase.

B. Message Complexity: Efficient Methods and Lower Bounds

1) Message Efficient Methods: In this section, we propose
two algorithms in order to minimize the number of messages
incurred for top-𝑘 query. Here we include both the data
messages and the control messages. The first algorithm is
called Breadth First Searching Tree-Based Algorithm (BFS-
BA) which is shown in Algorithm 4. The second one (Algo-
rithm 3) is Data Selection Based Algorithm (DS-BA). Based
on further analysis on their message costs, we choose the better
one depending on the value of 𝑘.

Algorithm 3 DS-BA
Input: A CDS with bounded node degree d. A control
parameter 𝑑 ≥ 2.
Output: top-𝑘 data items.

1: Data Cluster: As in Algorithm 4, each dominator collects the
local top-𝑘 data items among its dominatees.

2: Rank Selection: Then the 𝑘-th smallest data item 𝑎𝑘 is found
using only the CDS nodes by running randomized Algorithm 2,
with 𝑡 = 8𝑑𝜆 for a constant 𝜆 > 1.

3: Sink node broadcasts 𝑎𝑘 to all nodes in CDS.
4: Collect the top-𝑘 data items by letting each node in CDS report

its data items that are larger than 𝑎𝑘.

The basic idea of BFS-BA is as follows. We first construct a
BFS tree of the CDS C rooted at sink node 𝑣0. Each dominator
node 𝑣𝑖 ∈ C will collect the local top-𝑘 data items from its
all dominatees using one of the two following methods: (1)
dominatee nodes directly report their data to 𝑣𝑖; or (2) 𝑣𝑖 uses
the binary search to find the 𝑘-th ranked data item and all
dominatee nodes report the data items smaller than this one.
Then for each node 𝑣𝑖, if it has received local top-𝑘 items from
all its children nodes in 𝑇 , it sends the aggregated top-𝑘 items
to the sink (choosing the top-𝑘 items among its own data and
received data). Finally, returning the top-𝑘 items computed by
sink node as the desired top-𝑘 set.

Algorithm 4 BFS-BA
Input:BFS tree 𝑇C of CDS C rooted at sink node 𝑣0. Each
node with ≤ 𝑝 items. Network 𝐺 with maximum degree Δ.
Output: top-𝑘 data items.

1: Data Cluster: Each dominator node 𝑣𝑖 in CDS C finds the top-𝑘
data items among data items stored in its 𝑑(𝑣𝑖) dominatee nodes.
If 𝑝𝑑(𝑣𝑖) ≤ 𝑘, each dominatee node simply reports its local top-𝑘
items to 𝑣𝑖. Otherwise, 𝑣𝑖 applies Algorithm 2 to find the ranked
𝑘 items among data items stored in its 𝑑(𝑣𝑖) dominatee nodes.
Then local top-𝑘 items are reported to 𝑣𝑖.

2: for each node 𝑣𝑖 in C do
3: If node 𝑣𝑖 has received local top-𝑘 items from each of its

children nodes in 𝑇 , it sends the aggregated top-𝑘 items,
by choosing the top-𝑘 items among its own data items and
received local top-𝑘 items from each of its children nodes, to
its parent node.

4: Return the top-𝑘 items computed by sink node 𝑣0.

103

Theorem 10: Given a wireless network 𝐺 with 𝑛 nodes
(each with ≤ 𝑝 data items) and diameter 𝐷, Algorithm 4 costs
at most (𝑛+ 3𝑛c𝑘) messages to find the top-𝑘 items.

Proof: For a dominator node 𝑣𝑖, to find the local top-
𝑘 data items of its dominatee nodes, it will cost 𝑤𝑑(𝑣𝑖)
messages using direct reporting for 𝑤 = min(𝑝, 𝑘), or will cost
log(𝑤𝑑(𝑣𝑖)) + 𝑘 < 2𝑘 + logΔ messages using binary search
since 𝑤 ≤ 𝑘 and 𝑑(𝑣𝑖) ≤ Δ. Thus, in total, step 1 costs at
most

∑𝑛c
𝑖=1 min(2𝑘+log 𝑑(𝑣𝑖), 𝑝𝑑(𝑣𝑖)) ≤ 2𝑘𝑛c+𝑛 messages.

Obviously, each node on C then needs to transmit at most 𝑘
data items. Then the total number of messages transmitted at
step 2 is at most 𝑛c𝑘 by all nodes. Then the theorem follows.

We then present DS-BA, a selection based top-𝑘 query
algorithm. Our method will first find the 𝑘𝑡ℎ smallest data
item, saying 𝑎𝑘, using selection and then let each node in
CDS report its data items smaller than 𝑎𝑘.

Lemma 11: Given a wireless network 𝐺 with 𝑛 nodes (each
with 𝑝 data items) and diameter 𝐷, Algorithm 3 (by setting
𝑡 = 8𝑑𝜆) can find the top-𝑘 data items with at most min(𝑛+
2𝑘𝑛c, 𝑤𝑛) + 3𝑛c𝑑 log𝑑(𝑛c𝑘) + 𝑘𝐷 messages w.h.p, where 𝑛c

is the number of nodes in CDS.
Proof: First, in data cluster phase of Algorithm 3 (Line

1), it costs min(𝑛+2𝑘𝑛c, 𝑤𝑛) messages to find the local top-
𝑘 data items for all the dominators. Then we will prove in
Lemma 12 that the rank selection (Line 2 in Algorithm 3)
takes at most 3 log𝑑(𝑛c𝑘) phases (variable phase is defined in
Algorithm 2) w.h.p, when the 𝑘-th smallest number is found.
Since the number of links in the tree spanning the nodes
of CDS is 𝑛c − 1, and in each round every node needs to
send at most 𝑡 = 8𝑑𝜆 messages, we get an upper bound
on the number of messages sent in rank selection phase:
3𝑛c𝑑 log𝑑(𝑛c𝑘), w.h.p. Furthermore, we need at most 𝑂(𝑘𝐷)
messages to collect the real top-𝑘 data items from all nodes.
Thus, the number of messages (both data messages and control
messages) used by Algorithm 3 is, by setting 𝑡 = 8𝜆𝑑, at most
min(𝑛+ 2𝑘𝑛c, 𝑤𝑛) + 3𝑛c𝑑 log𝑑(𝑘𝑛c) + 𝑘𝐷, w.h.p.

Lemma 12: Variable phase takes at most 3 log𝑑 𝑁 rounds
w.h.p, when the 𝑘-th smallest data item is found by using
Algorithm 2 with 𝑡 = 8𝑑𝜆.

Proof: First, we compute an upper bound on the proba-
bility that after any phase 𝑖, the wanted element is in a fraction
of size at least 𝑐 log 𝑑

𝑑 times the size of the fraction after phase
𝑖 − 1 for a suitable constant 𝑐, i.e., 𝑛(𝑖) ≥ 𝑐 log 𝑑

𝑑 ⋅ 𝑛(𝑖−1).
Here 𝑛(𝑖) is the size of the all data items we have to check
to find the 𝑘𝑡ℎ smallest data before the phase 𝑖 starts. Notice
𝑛(0) = 𝑁 . Let {𝑎1, 𝑎2, ⋅ ⋅ ⋅ , 𝑎𝑛(𝑖)} be the sorted list of the 𝑛(𝑖)

data items that we will check for the 𝑘𝑡ℎ smallest element
in phase 𝑖 + 1. The probability that none of the 𝑡 = 𝑑𝜆
randomly selected elements is in {𝑎𝑘, 𝑎𝑘+1, ⋅ ⋅ ⋅ , 𝑎𝑘+𝑐 log 𝑑

𝑑
𝑛(𝑖)/2

}
is at most (1− 𝑐 log 𝑑

2𝑑)8𝜆𝑑. Same argument holds for data items
{𝑎𝑘−𝑐 log 𝑑

𝑑 𝑛(𝑖)/2, ⋅ ⋅ ⋅ , 𝑎𝑘−1, 𝑎𝑘}. Thus,

Pr
(
𝑛(𝑖) ≥ 𝑐 ⋅ log 𝑑

𝑑
⋅ 𝑛(𝑖−1)

)
≤ 2(1− 4𝜆𝑐 log 𝑑

8𝜆𝑑
)
8𝜆𝑑

≤ 2𝑒−4𝑐𝜆 log 𝑑.

When 𝑛(𝑖) ≤ 𝑐 log 𝑑
𝑑 ⋅ 𝑛(𝑖−1) the phase 𝑖 is considered to be

successful; otherwise it is considered to be failed. Clearly, we

need at most log𝑐 𝑑
log 𝑑

𝑁 successful phases to find the 𝑘-th

smallest element. By setting 𝑐 = 16
17 , less than 𝑆 = 2 log𝑑 𝑁

successful phases are required to find the 𝑘𝑡ℎ smallest number
based on the following inequality:

log𝑐 𝑑
log 𝑑

𝑁 = 2 log
(𝑐 𝑑

log 𝑑
)
2 𝑁 < 2 log𝑑 𝑁

A phase 𝑖 will fail with probability at most 𝑝 = 2𝑒−4𝑐𝜆 log 𝑑.
Then among 3

2𝑆 phases, the probability that we have less than
𝑆 successful phases (i.e., at least 1

2𝑆 failed phases) is at most

3
2
𝑆∑

𝑖= 1
2
𝑆

(
3
2
𝑆

𝑖

)
𝑝𝑖(1− 𝑝)

3
2
𝑆−𝑖 ≤

(
3
2
𝑆

1
2
𝑆

)
𝑝

1
2
𝑆 ≤ (

1

𝑑𝜆
)

1
2
𝑆

=
1

𝑛𝜆

This holds because 4𝜆𝑐 ln 𝑑
ln 2 − ln 6𝑒 > 𝜆 ln 𝑑 for 𝑐 = 16

17 and
𝑑 ≥ 2, Hence, w.h.p, Algorithm 2 terminates after less than
3 log𝑑 𝑁 phases when 𝑡 = 𝑑𝜆. Each phase will cost at most
2× 8𝜆𝑑𝑛c messages. This finishes the proof.

To minimize the number of messages, we may set 𝑡 as some
constant, e.g. 𝑡 = 16𝜆, in our DS-BA. Thus, we have

Theorem 13: When 𝑛c𝑘 ≥ (𝑤 − 1)𝑛/2, the message cost
of Algorithm 3 is at most 𝑤𝑛+ 3𝑛c log(𝑘𝑛c) + 𝑘𝐷.

Assume that each node has 𝑝 data items initially. Recall
that 𝑤 = min(𝑝, 𝑘). By combining the results in Theorem 10
and Theorem 13, our optimal decision between the above two
algorithms can be made as follows:

∙ When 𝑤𝑛 > 𝑛+ 2𝑛c𝑘, we use BFS-BA.
∙ When 𝑤𝑛 ≤ 𝑛+ 2𝑛c𝑘,

– if log 𝑛c > 𝑘, choose BFS-BA; Otherwise, DS-BA

2) Lower Bound on Message Complexity: Instead of study-
ing the lower bound of message complexity on top-𝑘 query
problem directly, we first focus on the lower bound on data
selection problem. Our lower bound of message complexity
is based on the result on two-party model. For two nodes
connected by a link, each with 𝑁/2 data, finding the median
need Θ(log𝑁) messages; or generally, the 𝑘𝑡ℎ smallest ele-
ment (𝑘 < 𝑁/2) can be found using Θ(log 𝑘) messages.

Results by [14] imply that there is a wireless network with
𝑛 nodes and data distribution in these nodes such that, for
any top-𝑘 query method, Ω(𝑛 log 𝑘) messages are needed to
compute the top-𝑘 items. Here we give a better lower bound
on message complexity for top-𝑘 query in any general wireless
network.

Theorem 14: For any wireless network 𝐺 with 𝑛 nodes and
diameter 𝐷, for any top-𝑘 query method, when 𝑘 = 𝑂(𝐷),
there exists a data placement such that at least Ω(𝐷𝑘) mes-
sages are needed to compute the top-𝑘 data items.

Proof: Based on the definition of diameter 𝐷, we can
always find a pair of nodes, 𝑢 and 𝑣, such that the hop distance
between them is at least 𝐷. If we randomly place half of the
top-𝑘 data items on 𝑢 and the other half of the top-𝑘 items
on 𝑣, at least Ω(𝐷𝑘) messages are needed to just collect the
top-𝑘 items, regardless of where the sink node is. When each
node can store upto 𝑝 data items and 𝑘 < 𝐷, we can place

104

𝑝 data items on every node on the shortest path from 𝑢 to 𝑣.
We randomly place top-𝑘 data items on these nodes. Simple
calculation shows that the theorem still holds.

Obviously, for any deterministic method, each wireless node
needs to send at least one message. In summary, we get the
following lower bound on the total number of messages needed
by any deterministic top-𝑘 query method.

Theorem 15: For any wireless network 𝐺 with 𝑛 nodes and
diameter 𝐷, for any top-𝑘 query method, there exists a data
placement such that any deterministic top-𝑘 query method
needs at least Ω(𝑛+𝐷𝑘) messages.

In the previous analysis of lower-bound, we essentially
present lower-bounds using the diameter 𝐷 of the network.
We make the following conjecture on the message complexity
of any top-𝑘 query algorithm, for any general network.

Conjecture 16: For any wireless network 𝐺 with a mini-
mum dominating set of size 𝑛c, for any top-𝑘 query method
(deterministic or randomized), there exists a data placement
such that at least Ω(𝑛c log 𝑘) messages are needed to compute
the top-𝑘 data items.

IV. MULTIPLE OBJECTS MODEL

In this section, we propose two methods to compute the
top-𝑘 objects under multiple objects model. We further give
upper bounds of the time complexity and message complexity
for both methods respectively. Remember that under multiple
objects model, there are totally 𝑚 objects and each wireless
sensor node hold some value of each object, and the rank of
each object is determined by aggregating all values from all
nodes.

A. Time and Message Efficient Methods

1) Data Aggregation Based Algorithm: The main idea
of our first method, named as Data Aggregation Based
Algorithm(DA-BA), is as follows. We first construct a CDS,
and every dominator 𝑣𝑖 aggregates the local score of each
object 𝐿𝑖 from all its dominatees including 𝑣′𝑖𝑠 as well. In the
second phase, the sink node aggregates all the data contained
in dominators along BFS tree of CDS. Finally, the sink node
locally computes the top-𝑘 set based on these aggregated data.
Refer to Algorithm 5 for details. We will show that the time
complexity of DA-BA is of order Θ(𝐷 +𝑚Δ).

Theorem 17: DA-BA (Algorithm 5) performs top-𝑘 query
in 𝑂(𝐷 +𝑚Δ) time slots with 𝑂(𝑚𝑛) messages.

Proof: We first show that Algorithm 5 costs 𝑂(𝐷+𝑚Δ)
time slots. For simplicity of analysis, we first study a basic
case when 𝑚 = 1, e.g. there is only one object. The first step
in which each dominatee node sends its data to its dominator
node will take at most 𝑂(Δ) time slots. Then we perform
aggregation in rounds, where each round is composed of 𝛽
time slots (where constant 𝛽 is the number of colors needed
to color the interference graph induced by all CDS nodes). In
round 1, all nodes in level 𝐷 (all leaves) send a message to
their parents. In round 𝑡, all nodes in level 𝐷 − 𝑡+ 1 should
have received all the messages from their children, they then
compute the aggregation of all data received so far, and then

Algorithm 5 Efficient Data Aggregation Based Algorithm
Input: A CDS C, a distributive function 𝑓 .
Output: top-𝑘 objects.

1: for each dominator node 𝑣𝑖 do
2: 𝑣𝑖 collects all data items of each object from all its dominatees.
3: Constructing a BFS tree rooted at the sink node 𝑣0 among all

nodes in CDS.
4: for 𝑡 = 1 to 𝐷 do
5: for each node 𝑣𝑖 ∈ 𝑉C do
6: For each object 𝐿𝑗 , if node 𝑣𝑖 has received aggregated data

from all its children nodes in 𝑇C, it sends the aggregated
value to its parent node.

7: After received all information from all dominator nodes, the sink
node computes the top-𝑘 objects by choosing the 𝑘 objects with
the smallest aggregated observed value.

send the aggregated values to their parents. In all, the total
number of rounds to finish data aggregation is 𝐷. Recall that
each round is composed of 𝛽 time-slots. We get the total time
latency ≤ 𝛽𝐷 = 𝑂(𝐷).

The more general case is 𝑚 > 1, under which we can
deliver the messages one by one. We call this as sequential
aggregation. Considering the first phase, the dominators need
at most 𝛽𝑚Δ time slots to aggregate all 𝑚 object’s local
score due to the interference; In the second phase, we do the
scheduling using sequential aggregation, then for each object,
we can do it in parallel way without interference, the time
latency is increased by at most 𝛽𝑚. So, the total time latency
is 𝛽(𝐷 +𝑚Δ+𝑚) = 𝑂(𝐷 +𝑚Δ).

The message complexity then follows from the fact that the
length of the tree connecting 𝑛 nodes is 𝑛−1 and we have 𝑚
objects. Therefore, we need to send at most 𝑚× 𝑛 messages.
This finishes the proof.

2) Threshold Algorithm Based Algorithm: Top-𝑘 query
(with multiple objects) in distributed databases is well studied
before, a number of efficient algorithms have been proposed.
Among these, the Threshold Algorithm (TA) [7] is the most
well-known due to its simplicity and memory requirements.
TA is based on an early-termination condition and can evaluate
top-𝑘 queries without examining all the tuples. In particular,
TA terminates when a certain threshold is achieved.

Here we propose a TA based algorithm (TA-BA) to compute
the top-𝑘 set efficiently. The basic idea of our method is
as follows. First, imagining that the root node 𝑣0 has asked
each of its children nodes to find the top-𝑟 elements and its
aggregated values for these top-𝑟 elements using data items
contained by nodes in the subtree rooted at that child. The
root node 𝑣0 can find the partial aggregated value using these
partial results for each object 𝐿𝑖 ∈ ℒ. Since these top-𝑘
elements based on partial knowledge may be not the correct
final top-𝑘 elements, the root node computes a threshold 𝜏
that is the aggregated value of all the 𝑟𝑡ℎ objects from each
of the children. If 𝜏 is already larger than the 𝑘th smallest
value in those partial aggregated values, we find the corrected
top-𝑘 elements. Otherwise, we increase the search range by
increasing 𝑟 to 𝑟 + 1 and continue the same procedure until

105

Algorithm 6 TA-BA(𝑇, 𝑣0, 𝑘)

Input: BFS tree 𝑇 rooted at a root 𝑣0.
Output: Return top-𝑘 ranked objects.

1: Let 𝑣0,𝑗 , 1 ≤ 𝑗 ≤ 𝑞 be the 𝑞 children nodes of node 𝑣0 in the
tree 𝑇 . For the original data items [𝑠1(𝑣0), 𝑠2(𝑣0), ⋅ ⋅ ⋅ , 𝑠𝑚(𝑣0)]
of node 𝑣0, let 𝑏1(𝑣0) ≤ 𝑏2(𝑣0) ≤ ⋅ ⋅ ⋅ ≤ 𝑏𝑚(𝑣0) be the sorted
list in increasing order.
ℒ𝑅 = ∅. DONE = FALSE; 𝑟 ← 1.

2: repeat
3: for each children node 𝑣0,𝑗 of the root 𝑣0 in 𝑇 do
4: Let 𝑣0,𝑗 compute the top-𝑟 element by calling TA-

BA(𝑇𝑣0,𝑗 , 𝑣0,𝑗 , 𝑟). Here 𝑇𝑣0,𝑗 is the subtree of 𝑇 rooted
at 𝑣0,𝑗 . Let 𝐿(𝑟, 𝑗) be the set of 𝑟 objects returned and
let 𝑎1(𝑣0,𝑗), 𝑎2(𝑣0,𝑗), ⋅ ⋅ ⋅ , 𝑎𝑟(𝑣0,𝑗) be the sorted list of
𝑟 aggregated values of all nodes in the subtree 𝑇𝑣0,𝑗 for
these 𝑟 objects 𝐿(𝑟, 𝑗).

5: ℒ𝑅 ← ℒ𝑅 ∪ 𝐿(𝑟, 𝑗).
6: for each object 𝐿𝑡 ∈ ℒ𝑅 do
7: Let 𝑓𝑡(𝑣0,𝑗) be the aggregated value computed by node

𝑣0,𝑗 for this object 𝐿𝑡 using data from all nodes in the
subtree 𝑇𝑣0,𝑗 .

8: Compute the aggregated value of this object 𝐿𝑡, 𝑓𝑡(𝑣0)←
𝑓(𝑠𝑡(𝑣0), 𝑓𝑡(𝑣0,1), 𝑓𝑡(𝑣0,2), ⋅ ⋅ ⋅ , 𝑓𝑡(𝑣0,𝑞));

9: Sort the aggregated values of all objects in ℒ𝑅. Let 𝑎1(𝑣0),
𝑎2(𝑣0), ⋅ ⋅ ⋅ , 𝑎𝑚(𝑣0) be the sorted list. Find the top-𝑘 objects
that has the 𝑘 smallest values.

10: if ℒ𝑅 = ℒ then
11: Then node 𝑣0 can simply return the top-𝑘 objects correctly.

DONE=TRUE;
12: else
13: 𝜏𝑟 ← 𝑓(𝑏𝑟(𝑣0), 𝑎𝑟(𝑣0,1), 𝑎𝑟(𝑣0,2), ⋅ ⋅ ⋅ , 𝑎𝑟(𝑣0,𝑞)). Here 𝜏𝑟

is the threshold value for round 𝑟. If (𝜏𝑟 ≥ 𝑎𝑘(𝑣0)) then
DONE=TRUE, otherwise 𝑟 ← 𝑟 + 1.

14: until DONE
15: Return top-𝑘 objects.

finding the correct top-𝑘 objects. Refer to Algorithm 6 for
details.

Theorem 18: TA-BA (Algorithm 6) will answer the top-𝑘
query in 𝑂(𝐷 +𝑚Δ) time slots with 𝑂(𝑚𝑛) messages.

B. Lower Bounds on Message Complexity and Latency

Next, we show that our methods for top-𝑘 query in multiple-
objects model is asymptotically optimum.

Theorem 19: For any network 𝐺 of diameter 𝐷, and max-
imum degree Δ, for any deterministic distributed top-𝑘 query
method under multiple-objects model, there is a data place-
ment among nodes such that the method needs 𝑂(𝐷 +𝑚Δ)
time slots, and 𝑂(𝑚𝑛) messages.

Proof: First of all, the lower bound 𝐷 is obvious since
the information about the data on the furthest node 𝑢 from
root 𝑣0 should be known by the root node 𝑣0. To propagate
any information from node 𝑢 to 𝑣0, it takes time at least 𝐷.
Notice that, here the method may not need to know the actual
data items hold by the node 𝑢. The lower bound 𝑂(𝑚Δ) on

time-slots, and the lower bound 𝑂(𝑚𝑛) on the number of
messages come from the following statement: for any node
𝑢, node 𝑢 must send its data about at least 𝑚 − 𝑘 objects.
This will be proved using a special star network, with root
𝑣0 and Δ neighbors 𝑣1, 𝑣2, ⋅ ⋅ ⋅ , 𝑣Δ. If there are two nodes
𝑣𝑖 and 𝑣𝑗 , both send only at most 𝑚 − 𝑘 objects based on a
deterministic rule of selecting which objects to report. Then
we can carefully define values of the rest of 𝑘 objects so that
the computed top-𝑘 depending on the values of these 𝑘 objects.
This finishes the proof.

V. PERFORMANCE EVALUATION

To illustrate the feasibility and performance of our dis-
tributed top-𝑘 query algorithms, we implemented and tested
our algorithms on testbed consisting of 36 Telosb nodes. We
performed experiments of our algorithms under both single
object model and multiple objects model to measure message
complexity and time complexity.

A. Experiment Design

1) System Design: Our testbed consists of 36 Telosb sensor
nodes, each node has a unique 𝐼𝐷 between 0 and 35. In
addition, the node with ID 0 is the sink node and connected
to the laptop by USB port. We use Java 6 to implement the
related GUI on the laptop, which can exchange information
with the sink node, monitor the network and perform statistics
of the experimental results. We deployed 36 Telosb sensor
nodes with 6 × 6 mesh topology. The distance between two
vertical (horizontal) wireless nodes is 60cm. Here, we set the
transmission power of each Telosb node to level 2 such that
the valid transmission range of each wireless node is around
70cm.

For all top-𝑘 algorithms we have implemented, there are
two main layers: routing layer and the application layer. In
routing layer, all nodes continuously send beacon messages
to neighbors to maintain necessary routing information. In
the application layer, all nodes will cooperate to collect
(disseminate) necessary data messages (used to find final
top-𝑘 results) to/from the sink node. To test our algorithms
efficiently, we let each algorithm run 20 rounds, and study the
average performance. In our experiment, we choose max as
the function of interest 𝑓 for both single object and multiple
object model. The main metrics used in our experiment to
evaluate different algorithms are the overall delay (latency) and
total messages (including all the retransmissions) exchanged
among all nodes. Notice that the real wireless links are not
stable due to background noise and wireless communication
interference, to compare all implemented top-𝑘 algorithms
fairly, we use explicit ACK messages to guarantee the “stable”
property of a wireless link (with cost of retransmissions).

B. Experimental Results

Under single-project model, we compare the performance of
our Distributed top-𝑘 Query algorithm (Algorithm 1), BFS-BA
algorithm (Algorithm 4), and DS-BA algorithm (Algorithm 3).
For each sensor node, after booted, it continues to sense the

106

50 75 100 125 150 175 200 225 250
0.8

1

1.2

1.4

1.6

1.8

2
x 10

6

of k with 200 Deployed Sensors

La
te

nc
y

(m
s)

Distributed top−k Query
BFS−BA
DS−BA

25 50 75 100 125 150 175 200 225 250
5000

5500

6000

6500

7000

7500

8000

8500

9000

9500

10000

of k with 100 Deployed Sensors

T
ot

al
 M

es
sa

ge
s

Distributed top−k Query
BFS−BA
DS−BA

(a) Latency (b) number of messages

Fig. 1. Simulation results for single object model. 𝑘 continues to increase
from 25 to 250 with step 25.

50 75 100 125 150 175 200 225

2

4

6

8

10

12

14

16
x 10

5

of Deployed Sensors with k=25

La
te

nc
y

(m
s)

Efficient Data Aggregation
TA−BASED Top−k query
BFS
TA−BASED Top−k query (special)

50 75 100 125 150 175 200 225

0.5

1

1.5

2

2.5
x 10

4

of Deployed Sensors with k=25

T
ot

al
 M

es
sa

ge
s

Efficient Data Aggregation
TA−BASED Top−k query
BFS
TA−BASED Top−k query (special)

(a) Latency (b) number of messages

Fig. 2. Simulation results for multiple objects model where 𝑘 = 25
and 𝑝 = 50, 𝑛 continues to increase.

environmental illuminance (photo value) per second. Every
node maintains a window with size 𝑝 (𝑝 = 20 in our
experiment) which records the photo value of last 𝑝 seconds.
Therefore, for each round, the system totally has 36 × 20
readings, and the objective of the sink node is to find the top-𝑘
(we let 𝑘 vary from 25 to 250 with step 25 in our experiment)
largest readings.

As we can see from Fig. 3(a) and (b), the performances
of all three algorithms are similar. This is mainly because of
the limited network size and regular network topology. Notice
that both the message complexity and latency increase almost
linearly with 𝑘 for all three algorithms, this validates our
theoretical analysis. More importantly, the above experimental
results validate the feasibility of all three algorithms in sensors
with limited energy and memory.

For multiple objects model, we implement both Efficient
Data Aggregation Based Algorithm (Algorithm 5) and Thresh-
old Based Top-𝑘 Query Algorithm (Algorithm 6). We also
implement a simple BFS-based algorithm by which all wire-
less nodes construct a BFS tree rooted at the sink node. In
our experiments, given a set of 𝑝 time-slots, we want to find
the top-𝑘 time-slots with the highest average observed photo
values by all nodes. Here, the objects the set of time-slots and
the value of an object is the average of photo values collected
by all nodes. For each node, when it starts the top-𝑘 algorithm,
it will consider its last 𝑝 (𝑝 = 10 in our test cases.) monitored
photo values as the values for 10 objects respectively. In our
experiment, we let 𝑘 vary from 1 to 6 with step 1 and test
the latency and total messages used for each algorithm. The
latency and total used messages are shown in Fig. 4(a) and
Fig. 4(b) respectively.

For each algorithm, the total latency and used messages
increase slowly with the increment of 𝑘. This is because for
multiple object model, regardless of the value of 𝑘, the sink
node has to collect all values of all objects from all nodes in
order to find the final top-𝑘 objects, except for the TA-based
methods.

C. Simulation Results

In order to verify the performance of our algorithms when
applied to large-scale WSN, we also implement and test our
top-𝑘 algorithms on TOSSIM (TinyOS 2.0.2) [31] on Mac
OS X 10.5.6. We randomly deployed 𝑛 wireless nodes with

transmission range 100 meters on a 500× 500 𝑚𝑒𝑡𝑒𝑟2 square
region.

Fig. 1 and 2 demonstrate the simulation results for both
single object model and multiple objects model, under which
we either fix the number of sensors or 𝑘 in order to verify the
performance. Clearly, our distributed top-𝑘 method has smaller
latency and message complexity. Again, it is worth noting that
both the latency and amount of required messages appear to
increase linearly with 𝑘, which verified our theoretical analysis
in large scale wireless sensor network.

VI. RELATED WORK

To the best of our knowledge, there is no previous work
addressing the complexity problem on distributed top-𝑘 query
in multihop WSNs. For top-𝑘 query in traditional distributed
databases, one of the milestone result is [7]. They proposed
a simple, yet efficient algorithm, called Fagin’s algorithm
(FA), that works on sorted lists stored in different databases.
However, they did not strike to optimize the communication
costs and the latency. The most efficient algorithm over sorted
lists is the TA algorithm, proposed by several groups [8]. Very
recently, Akbarinia et al. [1] proposed another threshold based
method, called Best Position Algorithm (BPA) for top-𝑘 query.

Several TA-style algorithms, i.e., extensions of TA, have
been proposed for processing top-𝑘 queries in distributed
environments, e.g., [5], [16]. In [14], Kuhn et al. studied the
problem of distributed selection of median for general wired
networks with 𝑁 data items distributed in a network of 𝑛
nodes and diameter 𝐷. Babcock et al. [4] study a useful
class of queries that continuously report the 𝑘 largest values
obtained from distributed data streams (“top-𝑘 monitoring
queries”). Mouratidis et al. [18] studies continuous monitoring
of top-𝑘 queries over a fixed-size window 𝑊 of the most
recent data.

To the best of our knowledge, the only results in literature
that deal with related topics in wireless sensor networks are
[9], [13], [19], [21]–[23], [25], [27]–[30]. Most of the results
did not directly address the top-𝑘 query problems studied in
this paper, except [22], [28], [30]. In [22], Silberstein et al.
proposed a method to formulate the problem of optimizing
approximate top-𝑘 queries under an energy constraint as a
linear program by using the historical data to predict the future
data. In [28], [30], the authors address the top-𝑘 queries in

107

25 50 75 100 125 150 175 200 225 250
4

5

6

7

8

9

10

11

12

13

14

15
x 10

5

of k with 36 Deployed Sensors

La
te

nc
y(

m
s)

Distributed top−k Query
BFS−BA
DS−BA

25 50 75 100 125 150 175 200 225 250
1000

1500

2000

2500

3000

3500

4000

4500

5000

of k with 36 Deployed Sensors

T
ot

al
 M

es
sa

ge
s

Distributed top−k Query
BFS−BA
DS−BA

(a) Latency (b) number of messages

Fig. 3. Testbed results using 36 nodes for single object model. 𝑘 continues
to increase from 25 to 250 with step 25.

1 2 3 4 5 6
5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

6
x 10

5

of k with 36 Deployed Sensors

La
te

nc
y

(m
s)

Efficient Data Aggregation
TA−BASED Top−k query
BFS

1 2 3 4 5 6
4500

5000

5500

6000

6500

of k with 36 Deployed Sensors

M
es

sa
ge

−
C

on
su

m
pt

io
n

Efficient Data Aggregation
TA−BASED Top−k query
BFS

(a) Latency (b) number of messages

Fig. 4. Testbed results using 36 nodes for multiple object model.

streaming data and they exploit the semantics of top-𝑘 query
and propose a novel energy-efficient monitoring approach,
called FILA. No complexity bounds on the required time-slots
and messages by efficient top-𝑘 methods are known in the
literature.

VII. CONCLUSION

A number of interesting and challenging questions are
left for future study. The first question is to close the gap
between the lower bounds and upper bounds achieved by our
methods on various models. The second question is to relax
the requirement of exact top-𝑘 queries to approximate top-
𝑘 queries. The third question is to design efficient methods
for top-𝑘 query in data streams where each sensor node 𝑣𝑖
produces a data item every 𝑑𝑖 time-slots. We also would like
to know the time and message complexity of performing top-𝑘
query in this model.

VIII. ACKNOWLEDGEMENT

The authors would like to thank Laura Marie Feeney for
her constructive feedback. The research of authors is partially
supported by NSF CNS-0832120, NSF CNS-1035894, pro-
gram for Zhejiang Provincial Key Innovative Research Team,
program for Zhejiang Provincial Overseas High-Level Talents
(One-hundred Talents Program).

REFERENCES

[1] AKBARINIA, R., PACITTI, E., AND VALDURIEZ, P. Best position
algorithms for top-k queries. In VLDB (2007)

[2] ALZOUBI, K., LI, X.-Y., WANG, Y., WAN, P.-J., AND FRIEDER, O.
Geometric spanners for wireless ad hoc networks. IEEE TPDS 2003

[3] ALZOUBI, K. M., WAN, P.-J., AND FRIEDER, O. Message-optimal
connected dominating sets in mobile ad hoc networks. In ACM Mobihoc
(2002), pp. 157–164.

[4] BABCOCK, B., AND OLSTON, C. Distributed top-k monitoring. In ACM
SIGMOD (2003).

[5] CHANG, K. C.-C., AND WON HWANG, S. Minimal probing: supporting
expensive predicates for top-k queries. In ACM SIGMOD (2002),

[6] DAS, G., GUNOPULOS, D., KOUDAS, N., AND SARKAS, N. Ad-hoc
top-k query answering for data streams. In VLDB (2007).

[7] FAGIN, R. Combining fuzzy information from multiple systems (ex-
tended abstract). In ACM PODS (1996)

[8] FAGIN, R., LOTEM, A., AND NAOR, M. Optimal aggregation algorithms
for middleware. J. Comput. Syst. Sci. 66, 4 (2003)

[9] GANDHAM, S., ZHANG, Y., AND HUANG, Q. Distributed minimal time
convergecast scheduling in wireless sensor networks. In IEEE ICDCS (
2006), pp. 50.

[10] KASHYAP, S., DEB, S., NAIDU, K. V. M., RASTOGI, R., AND SRINI-
VASAN, A. Efficient gossip-based aggregate computation. In ACM
PODS (2006), pp. 308–317.

[11] KEMPE, D., DOBRA, A., AND GEHRKE, J. Gossip-based computation
of aggregate information. In IEEE FOCS (2003), p. 482.

[12] KESSELMAN, A., AND KOWALSKI, D. R. Fast distributed algorithm for
convergecast in ad hoc geometric radio networks. JPDC 66, 4 (2006)

[13] KOLLIOS, G., BYERS, J., CONSIDINE, J., HADJIELEFTHERIOU, M.,
AND LI, F. Robust Aggregation in Sensor Networks. IEEE Data
Engineering Bulletin (2005).

[14] KUHN, F., LOCHER, T., AND WATTENHOFER, R. Tight bounds for
distributed selection. In ACM SPAA (2007)

[15] MAMOULIS, N., YIU, M., CHENG, K., AND CHEUNG, D. Efficient
top-k aggregation of ranked inputs. In ACM TODS 2007.

[16] MARIAN, A. Evaluating top-k queries over web-accessible databases.
In IEEE ICDE (2002), p. 369.

[17] MO, LUFENG, HE, Y., LIU, Y.-H., ZHAO, J.-Z., TANG, S.-J., LI,
X.-Y., AND DAI, G.-J. Canopy Closure Estimates with GreenOrbs:
Sustainable Sensing in the Forest, ACM SenSys, 2009.

[18] MOURATIDIS, K., BAKIRAS, S., AND PAPADIAS, D. Continuous
monitoring of top-k queries over sliding windows. In ACM SIGMOD
(2006)

[19] PATT-SHAMIR, B. A note on efficient aggregate queries in sensor
networks. In ACM PODC (2004), pp. 283–289

[20] REN, C., MAO, X.-F., XU, P., DAI, G.-J., AND LI, Z.-H., Delay and
Energy Efficiency Tradeoffs for Data Collections and Aggregation in
Large Scale Wireless Sensor Networks. In IEEE WiNA-2009, co-located
with 6th IEEE MASS (2009)

[21] SANTINI, S., AND RÖMER, K. An adaptive strategy for quality-based
data reduction in wireless sensor networks. Proc. of (INSS) (2006).

[22] SILBERSTEIN, A., BRAYNARD, R., ELLIS, C., MUNAGALA, K., AND

YANG, J. A sampling-based approach to optimizing top-k queries in
sensor networks. ICDE (2006).

[23] SILBERSTEIN, A., BRAYNARD, R., AND YANG, J. Constraint chaining:
on energy-efficient continuous monitoring in sensor networks. ACM
SIGMOD (2006), 157–168.

[24] SOLIMAN, M. A., CHANG, K. C.-C., AND ILYAS, I. F. Top-k query
processing in uncertain databases. In IEE ICDE) (2007), pp. 896–905.

[25] TULONE, D., AND MADDEN, S. PAQ: Time Series Forecasting for
Approximate Query Answering in Sensor Networks. 3rd EWSN (2006).

[26] WAN, P.-J., ALZOUBI, K. AND FRIEDER, O. Distributed construction
of connected dominating set in wireless ad hoc networks. In IEEE
INFOCOM (2002)

[27] JIANG, H. AND CHENG, J. AND WANG, D. AND WANG, C. AND TAN,
G. CONTINUOUS MULTI-DIMENSIONAL TOP-K QUERY PROCESSING

IN SENSOR NETWORKS INFOCOM, 2011
[28] WU, M., XU, J., TANG, X., AND LEE, W. MONITORING TOP-K

QUERY IN WIRELESS SENSOR NETWORKS. Proc. of ICDE (2006).
[29] CHEN, B. AND LIANG, W. AND ZHOU, R. AND YU, J.X. ENERGY-

EFFICIENT TOP-K QUERY PROCESSING IN WIRELESS SENSOR NET-
WORKS. CIKM 2010

[30] WU, M., XU, J., TANG, X., AND LEE, W. TOP-K MONITORING IN

WIRELESS SENSOR NETWORKS. IEEE TKDE., 17, 7 (2007)
[31] HTTP://EN.WIKIPEDIA.ORG/WIKI/TINYOS.

108

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /SABAEN44
 /SAKURAalp
 /Shruti
 /SimSun
 /STSong
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

