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Abstract—Using wireless sensor networks (WSNs) to observe
physical processes for control systems has attracted much
attention recently. For some real-time control applications,
controllers need to accurately estimate the process state within
rigid delay constraints. In this paper, we jointly consider state
estimation and scheduling problems in multihop WSNs. For
accurately estimating a process state as well as satisfying
rigid delay constraints, we propose an in-network estimation
approach which includes two coupled parts: the estimation
operations performed at sensor nodes and an aggregation
scheduling algorithm. Our in-network estimation operation
performed at intermediate relay nodes not only optimally
fuses the estimates obtained from different sensors but also
predicts upper stream sensors’ estimates which can not be
aggregated to the sink before deadlines. Our estimate-based
aggregation scheduling algorithm, which is interference-free,
is able to aggregate as much estimate information as possible
from a network to a sink within delay constraints. We prove
the unbiasedness of in-network estimation, and theoretically
analyze the optimality of our approach. Our simulation results
corroborate the theoretical results.

Keywords-estimation, aggregation scheduling, delay, wireless
sensor networks, cyber-physical systems

I. INTRODUCTION

Because of the advantages of low cost and easy deploy-

ment, WSNs are regarded as a more promising means of

observing physical world for future Cyber-Physical Systems

(CPS), e.g., the central plant heating, ventilation, and air-

conditioning (HVAC) system in intelligent building [1] and

the tunnel monitoring application [2]. In these control sys-

tems, WSNs are responsible for sensing physical processes

and gathering the state measurements or estimates of phys-

ical processes from physically distributed sensor nodes to

a control center or a sink (which we use interchangeably

in this paper). On the one hand, the process state can not

be obtained directly due to the presence of the process

noise and the measurement noise [3]. Therefore, the system

must estimate the process state as accurately as possible

based on the sensor measurements, and use the estimates

as the input of the controller. On the other hand, from the

viewpoint of networked control systems (NCSs), significant

transmission delay is equivalent to data loss, which leads

to performance degradation or even loss of stability of

systems. Thus, a key challenge in these systems is to design

efficient and effective transmission protocols to satisfy the

rigid delay requirement of the control applications under

wireless interference constraints.

Currently, in the field of WSNs, the researches of state es-

timation and protocol design have remained largely separate.

In the aspect of state estimation, estimation based on single

sensor information over lossy networks has been extensively

studied recently [4]−[8]. But these estimation techniques

only view the network as a single end-to-end communication

channel characterizing some data loss model and adapt to

underlying communication protocols passively. In addition,

multi-sensor information fusion is usually adopted in WSNs

to deal with sensing uncertainty, and many distributed esti-

mation algorithms have been proposed [9]−[12]. However,

the current distributed estimation methods are restricted to

either single-hop networks or multihop networks without

a center, and are not suitable for the multihop networks

with one fixed sink. In the aspect of protocol design in

WSNs, aggregation scheduling has attracted much attention

recently. In WSNs, compared with transmitting raw data,

in-network data aggregation is effective in improving delay

performance [13] as well as reducing energy consump-

tion [14]. Several protocols have been proposed in the

literature for delay-efficient data aggregation in WSN, e.g.,

[15]−[19]. All these work focus on minimizing the total

time of aggregating the whole sensor data from the network

to the sink under various interference models. However,

these scheduling schemes are not applied to some large-scale

networked real-time systems in which aggregating all the

sensor information can not satisfy the rigid delay constraints.

In [20] and [21], the authors jointly addressed estimation and

communication problems in CPS, and designed an adaptive-

reliability transport protocol. But they did not consider the

real-time issue of control systems.

In this paper, we consider a state estimation problem

with stringent delay constraints in large-scale WSNs, and

this is an important issue for real-time networked control

applications. The object is to obtain an optimal state esti-

mate at the sink within hard delay constraints through the

collaboration of a set of distributed sensors and the sink.

Compared with prior work, we jointly design the estimation

algorithm and the scheduling protocol in multihop WSNs,

2011 International Conference on Cyber-Physical Systems

978-0-7695-4361-1/11 $26.00 © 2011 IEEE

DOI 10.1109/ICCPS.2011.9

184

2011 IEEE/ACM Second International Conference on Cyber-Physical Systems

978-0-7695-4361-1/11 $26.00 © 2011 IEEE

DOI 10.1109/ICCPS.2011.9

184



and propose a novel in-network estimation approach for

accurately estimating a state as well as satisfying delay con-

straints. Our in-network estimation is a progressive estimate

fusion technique in which every intermediate node on the

route calculates an optimal fusion estimate based on the

received information from its children nodes and its own

measurements and then uses the fused estimate as a schedul-

ing unit. Unlike the minimum delay aggregation scheduling,

our aggregation scheduling is to gather maximum sensor

information at the sink within stringent delay constraints,

and thus collecting information from more sensors implies

the reduced estimation error.

The main contributions of the paper are as follows. First,

we give a formulation of optimal in-network estimation with

delay constraints in multihop WSNs, which addresses the

co-design of the estimate fusion operation and the aggrega-

tion scheduling. Second, we present an in-network estimate

fusion method which not only optimally fuses the estimates

obtained from different sensors but also predicts upper

stream sensors’ estimates which can not be aggregated to the

sink before deadlines. Third, under the protocol interference

model, we propose an aggregation scheduling algorithm for

optimally estimating a process state and satisfying delay

constraints, and we theoretically prove that the proposed

scheduling algorithm is interference-free. Fourth, we prove

the unbiasedness of our in-network estimation, and analyze

the optimality of our approach. In addition to theoretical

analysis, extensive simulations are conducted, and the results

corroborate our theoretical analysis.

The rest of the paper is organized as follows. Section II

outlines the related work. Section III formulates the prob-

lem. The in-network estimation operations are presented in

Section IV. We propose an estimate aggregation scheduling

algorithm in Section V. Section VI analyzes the perfor-

mance of our in-network estimation approach. Section VII

presents the simulation results. We conclude the paper in

Section VIII.

II. RELATED WORK

A. State Estimation in WSNs

Estimation over lossy networks has been well studied in

recent years. Sinopoli et al. [4] considered the problem of

performing Kalman filtering with intermittent observations

whose arrival is modeled as a random process. Smith et
al. [5] proposed a suboptimal but computationally efficient

estimator that can be applied when the arrival process is

modeled as a Markov chain. In [6] and [7], the authors

proposed to estimate the process state (or encode the sensor

measurements) at the sensor side of the link without assum-

ing any statistical model for the data loss process. Schenato

et al. [8] designed the optimal estimators over lossy networks

under the TCP-like and UDP-like communication proto-

cols respectively. All the methods mentioned above treat

a network of communication links as a single end-to-end

link with some data loss model. By using the memory and

processing ability of intermediate nodes, Gupta et al. [22]

proposed a recursive algorithm for information processing at

the nodes of the network so that the estimator can calculate

the optimal state estimate for any packet-dropping process,

but the strategy is only for the single source case.

Distributed estimation is an important signal processing

problem for wireless sensor networks. If the sensors in

networks exchange and fuse their sensing information, the

resulting estimate can be better than that based on the sensor

own measurements. Roumeliotis et al. [9] decomposed a

single Kalman filter into a number of smaller communicating

filters for the multirobot localization problem. Sun et al. [10]

proposed a multi-sensor optimal information fusion criterion

weighted by matrices in the linear minimum variance sense.

Based on this optimal fusion criterion, a general multi-

sensor optimal information fusion decentralized Kalman

filter with a two-layer fusion structure was given for dis-

crete time linear stochastic control systems with multiple

sensors and correlated noises. However, all of the above

referenced works are restricted to single-hop networks. For

many applications, large-scale sensor networks are needed

to collect data from a wide area. Distributed estimation

for multihop networks has also attracted strong interests

recently. Based on consensus averaging, Schizas et al. [11]

presented a distributed Kalman smoother state estimator.

Speranzon et al. [12] proposed a new distributed algorithm

for cooperative estimation of a slowly time-varying signal

using WSNs. However, the above mentioned algorithms for

multihop networks are all iterative in nature, and they are not

suitable for the network with one fixed sink because their

convergence can not be guaranteed within any given time

window.

B. Delay-Efficient Scheduling for Data Aggregation

Data aggregation is considered to be an effective method

for improving delay performance in multihop wireless net-

works. In multihop WSNs, every intermediate node com-

bines all received data with its own data according to

an aggregation function, and transmits the aggregated data

rather than the raw data in networks. Consequently, the data

aggregation time from the network to a distinguished sink

and the energy consumption are reduced because the data

needed to be scheduled in networks is reduced [13] [14].

Minimum delay data aggregation in WSNs under various

interference models has been proven to be NP-hard [15],

and several approximation algorithms have been proposed

recently, e.g., [15]−[19]. Chen et al. [15] proposed an

algorithm to generate a collision-free schedule with a latency

bound of (Δ− 1)R, where Δ is the maximum node degree

and R is the network radius. Huang et al. [16] proposed

a centralized aggregation scheduling algorithm with the

latency bound 23R + Δ − 18, and the algorithm is based

on a simple primary interference model: no node can send
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and receive simultaneously. Under the protocol interference

model, Wan et al. [18] proposed three centralized data

aggregation methods for networks when nodes have the

same transmission radius and interference radius. An effi-

cient distributed algorithm that produces an interference-free

schedule for data aggregation was proposed in [17], and the

delay is at most 24D + 6Δ + 16 time-slots where D is

the network diameter. Xu et al. [19] proposed a distributed

aggregation scheduling method generating interference-free

schedules with an upper-bound on delay of 16R +Δ − 14
time-slots where R is the radius of the network..

There have been lots of work on delay-efficient aggre-

gation scheduling in WSNs and the object is to minimize

the total time of aggregating the whole sensor data from

the network to the sink, but there is no work on estimate

aggregation scheduling for large-scale network systems in

which the object is to gather maximum sensor information

at the sink within stringent delay constraints.

III. MODELS AND PROBLEM FORMULATION

A. Network Model

Consider a multihop WSN G = (V,E) where V is the set

of n nodes in the network and E is the set of communication

links. Assume a node cannot send and receive data simulta-

neously. To let two links transmit simultaneously, we must

ensure they are interference-free. In the protocol interference

model [23] on which our work is based, we assume that

each node has an interference range rI . A receiver v of a

link uv is interfered by the signal from another sender p if

‖ p− v ‖≤ rI .

We assume that there is an aggregation tree Q rooted at

a sink node vn ∈ V . There are many ways to construct an

aggregation tree. One example is the distributed approach

presented by Wan et al. [24]. But this aggregation tree may

not be optimal for the purpose of in-network estimation.

Finding the best tree for state estimation remains an open

research topic.

B. Data Model

In this paper, we consider a common discrete-time data

model which characterizes the linear process state and

observation and can be motivated by many practical appli-

cations. We assume sufficient bits per data packet so that

the quantization error is negligible. This assumption makes

sense if the communication packet provides enough bits for

transmitting data so that the effect of quantization error is

dominated by the effect of the process and the measurement

noises [22].

The discrete-time linear dynamical process considered in

this paper is modeled by [4] [8]

x(k + q) = Ax(k) + w(k) (1)

where x(k) ∈ Rp is the process state vector at time k,

A is the state-transition matrix of the process, q is the

sampling period, and w(k) ∈ Rp is the zero-mean white

Gaussian process noise with covariance matrix Rw > 0 and

uncorrelated across time. The initial state x(0) is assumed

to be independent of w(k) and to have mean zero and

covariance matrix R(0). The process state to be estimated

has different physical interpretation in different systems,

e.g., the temperature vector whose component is the local

temperature at different locations, and the position vector

of a target to be tracked [3]. The state-transition matrix A
characterizes the temporal correlation between the states of

two consecutive sampling time slots. The observations about

the common state are collected by physically distributed

sensors according to the measurement model

yi(k) = Bix(k) + vi(k) (2)

where yi(k) ∈ Rpi is the measurement output vector gener-

ated by the sensor i at time k, Bi is the observation matrix

of the sensor i, and vi ∈ Rpi is the measurement noise

of the sensor i which is assumed to be white, zero-mean,

Gaussian with covariance matrix Ri > 0 (1 ≤ i ≤ n − 1)
and is uncorrelated across time and sensors and independent

of the process noise w(k).

C. Problem Formulation

For the accurate estimation of the state x(k), the sink

needs to gather the sensing information as much as possible.

Moreover, the sensing information collected at time k should

be received by the sink before a given deadline. Therefore,

we address the problem from two coupled aspects. The

first aspect is an effective aggregation scheduling which

can gather much sensing information as possible from the

network to the sink within every scheduling period (which

will be defined later). The other aspect is the estimation

operation which is performed by each node and responsible

for processing the sensor information aggregated from the

upper stream sensors.

In our in-network estimation approach, we transmit the

estimates of the state instead of the measurements. In the

network G, when the sensor i (1 ≤ i ≤ n−1) samples a new

measurement yi(k) at time k, it computes a state estimate

x̂i(k) based on its local measurements and the estimates

received from its upper stream sensors, and then forwards

the estimate x̂i(k) to the next hop node along the aggregation

tree. The estimate error covariance matrix of the node i is

expressed as

Pi(k) = E
{
[x(k)− x̂i(k)] [x(k)− x̂i(k)]

T
}

(3)

where E is the expectation, and T denotes the transpose.

Finally, based on the acquired estimates from the network,

the sink performs an unbiased fusion estimation.

Let A,B ⊂ V and A ∩ B = ∅. We say that data are

aggregated from A to B in one time-slot if all the nodes in A
transmit data simultaneously in one time-slot and all the data
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are received by some nodes in B without interference, and

A is called a sender set. In this paper, the delay constraint

is set to the sampling period q. This is reasonable because

the sensor information sensed at time k is outdated when

there is the new sensing information obtained right after

time k + q. For simplicity, we assume that q is an integer

multiple of one time-slot assigned to each scheduled sensor,

the networked system starts running at time 0, and the clocks

of all nodes are synchronized. Within every sampling period

q, since there is no new sensing information, the object of

the scheduling is unchanged and q can also be termed as a

scheduling period.

Then, in the l-th round of schedule (l = 0, 1, . . .), an ag-

gregation schedule for in-network estimation can be defined

as a sequence of sender sets S1, S2, . . . , Sq satisfying the

following conditions:

1) Si ∩ Sj = ∅, ∀i 	= j and i, j ∈ {1, 2, . . . , q};
2) The estimates are aggregated from Sk to V −⋃k

i=1 Si

at time-slot k, for all k = 1, 2, . . . , q, and the estimates

of the state of time lq are aggregated to the sink vn
before time (l + 1)q.

Notice that we discard the condition
⋃p

i=1 Si = V − v0
required in the other delay-efficient aggregation scheduling

problems [17] [19]. This is because we can not gather all the

estimates from the network to the sink before the deadlines

when q is so small relative to the network size. The condition

1 is to ensure that a node participates in the data aggregation

at most once in one scheduling period.

Given the multihop WSN G, the in-network estimation

problem with delay constraints is to jointly design the

estimation operation x̂i(k) (1 ≤ i ≤ n) of each node and an

aggregation schedule S1, S2, . . . , Sq such that the estimate

x̂n(t) at the sink vn satisfies the following goals:

1) Unbiasedness, E[x̂n(k)] = E[x(k)];
2) Optimality, minimizing the trace of fusion estimate

error covariance, min{tr[Pn(k)]}, where tr[·] denotes

the trace of matrix.

IV. IN-NETWORK ESTIMATION

In this section, we present the estimation operation x̂i(t)
(1 ≤ i ≤ n) of every node in the network. Before giving

the details, we outline the overall process of our in-network

estimation approach in every scheduling period as follows:

1) Every sensor node samples the dynamical process state

at time lq and performs a local estimation based on

its own measurements obtained before time lq (l =
0, 2, . . .). Then, it waits for being scheduled.

2) If a leaf node is scheduled, it transmits the local

estimate to its parent directly. If a relay node is

scheduled, it first performs an optimal information

fusion based on the estimates received from its child

nodes and its own local estimate, and then transmits

the fused estimate to the next-hop node.

3) At the deadline of every scheduling period, the sink

calculates an optimal estimate based on the previously

received information.

Note that we consider a large-scale multihop network

scenario in which not all the estimates of the state of time

lq can be aggregated to the sink before time (l + 1)q.

Therefore, we need to design an optimal estimate fusion

method which is capable of dealing with the two cases: the

complete upper stream information and the incomplete upper

stream information. In addition, the selection of the estimate

fusion scheme depends on the scheduling, and this will be

discussed in Section V.

A. Estimation at the Leaf

The local estimator at the leaf node adopts the standard

Kalman filter. We respectively define x̂i(k) � E[x(k)|Yi(k)]
and Pi(k) � E[(x(k) − x̂i(k))(x(k) − x̂i(k))

T|Yi(k)] as

the local filtering estimate and the estimate error covariance

of the node i at time k where Yi(k) � {yi(0), . . . , yi(k)}
(k = lq). The prediction step of the filter estimation is given

by

x̂i(k|k − q) � Ax̂i(k − q) (4)

Pi(k|k − q) � APi(k − q)AT +Rw. (5)

The correction step is given by

Ki(k) � Pi(k|k − q)BT
i

(
BiPi(k|k − q)BT

i +Ri

)−1
(6)

x̂i(k) = x̂i(k|k − q) +Ki(k) [yi(k)−Bix̂i(k|k − q)] (7)

Pi(k) = Pi(k|k − q)−Ki(k)BiPi(k|k − q). (8)

After the local filter estimation, the leaf node i uses the

message msgi(k) = (x̂i(k), Pi(k), k) as the scheduling unit

of the l-th scheduling period, and waits for being scheduled.

B. Estimation at the Relay and the sink

As a relay sensor node i, once it obtains a new mea-

surement at sampling time k, it first performs the Kalman

filtering based on its own measurements according to the

equations (4)-(8), and the local estimate x̂t
i(k) and the local

error covariance P t
i (k) are acquired. We define CSi as the

children set of the node i and define Ci = CSi ∪ {i}.
During the l-th scheduling period, the relay i may receive

the messages msgj(k) (j ∈ CSi) from its children before

being scheduled. Now we will give an estimate fusion

method which combines the previous received estimation

information and its local estimation results. The fusion

method is based on the optimal fusion algorithm weighted

by matrices in the linear minimum variance sense. Based on

our variable definitions, we represent the following optimal

fusion theorem introduced in [25] and [26].

Theorem 1: Let x̂t
j(k) (j ∈ Ci) be unbiased estimates

of a p-dimensional stochastic vector x(k). Let the estimate
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errors be x̃t
j(k) = x(k) − x̂t

j(k). Assume that x̃t
j1
(k) and

x̃t
j2
(k) (j1 	= j2) are uncorrelated, and the estimate error

variance matrix is denoted by P t
j (k). Then, the optimal

fusion estimator with matrix weights is given by

x̂i(k) =
∑
j∈Ci

wj(k)x̂
t
j(k) (9)

where the optimal matrix weights wj(k) are computed by

wj(k) =

[ ∑
m∈Ci

(
P t
m(k)

)−1

]−1 (
P t
j (k)

)−1
, (10)

and the corresponding minimal fusion error variance matrix

is

Pi(k) =

[ ∑
m∈Ci

(
P t
m(k)

)−1

]−1

. (11)

Theorem 1 gives an optimal fusion criterion in the linear

minimum variance sense, and we use the equations (9)-(11)

as the estimate fusion method executed at relays. However,

at some relays, not all the children state estimates of time

k can be aggregated to them at the l-th scheduling period

due to the rigid delay constraint. For example, if the relay

i does not receive the message from the child j before i
is scheduled at the l-th scheduling period, i can predict the

child j’s estimate and the covariance of time k based on

the previously obtained information from the child j. Then,

at the relay i, the fused estimate and the corresponding

covariance of the child j are respectively computed by

x̂t
j(k) = (1− γj(k))x̂

t
j(k|k − q) + γj(k)x̂j(k), (12)

and

P t
j (k) = (1− γj(k))P

t
j (k|k − q) + γj(k)Pj(k), (13)

where x̂t
j(k|k− q) and P t

j (k|k− q) are respectively the pre-

dicted estimate and the corresponding predicted covariance

of time k based on those of the previous scheduling period

and they are both initialized to 0, and γj(k) ∈ {0, 1} is a

binary parameter. In the prediction process, we respectively

use the prediction equations (4) and (5) for computing

x̂t
j(k|k− q) and P t

j (k|k− q). In the l-th scheduling period,

if i can receive the msgj(k) before being scheduled, γj(k)
is set to 1, else γj(k) is set to 0. γj(k) is jointly determined

by the scheduling, the network topology and q, and it will

be further discussed in Section V.

At the sink, we also adopt the above estimate fusion

method expressed by (9)-(13) except that we use CSn

instead of Cn in the fusion equations (9)-(11).

Remark 1: The state estimates obtained from different

sensors are not conditionally independent in general due

to the common process noise. Therefore, the proposed

estimate fusion algorithm is suboptimal. However, it is more

computation-efficient than the complicated fusion method

that takes the correlation of the state estimates into account,

and is a more attractive in-network computation scheme for

resource-constraint WSNs.

V. AGGREGATION SCHEDULING WITH DELAY

CONSTRAINTS FOR ESTIMATION

In this section, we design an effective interference-free

estimate aggregation scheduling algorithm EASDC for sat-

isfying delay constraints and accurately estimating the state.

Our estimate aggregation scheduling algorithm is based on

an aggregation tree which can either be a BFS (breadth-

first-search) tree or that constructed by existing methods,

like [24] [17]. For each node i in the aggregation tree Q, let

pi be i’s parent, let NSi be the set of i’s one-hop neighbors

except pi. In our algorithm, every node i should maintain

the following local variables.

1) Number of Children: NoCi, the number of i’s children

nodes in the aggregation tree Q.

2) Children Number of i’s Parent: CNoPi, the number

of the children nodes of i’s parent in the aggregation

tree Q.

3) Time-Slot to First Transmit: TSFTi, the assigned

time-slot at which i send its data to its parent for the

first time.

4) Node Scheduling Period: NSPi, the scheduling period

of i such that i is scheduled once every NSPi time-

slots after time TSFTi.

5) Children Set: CSi, the node set of i’s children such

that the set elements are arranged according to the

descending order of the size of the subtree rooted at

j ∈ CSi.

6) Indicator Array of Available Time-Slot: IAATSi[·], a

binary array such that if a child node of i can transmit

data without interference in time-slot t, IAATSi[t] is

1, else IAATSi[t] is 0. IAATSi.size is the size of

the array.

7) PSNi = {pj}j∈NSi−CSi .

8) NSCi[j] = NSj (j ∈ CSi).

9) RANKi = (level, i) where level is the hop distance

of i to the root. The ranks of nodes are compared using

lexicographic order.

For accurately estimating the state, the estimate infor-

mation should be gathered at the sink as much as pos-

sible within delay constraints. We define PSNuNSCi =
PSNi

⋃
(
⋃

j∈CSi
NSCi[j]). The scheduling time of a node

i is determined by TSFTi and NSPi. To determine the

schedules for all the nodes in a sensor network, we use

a up-bottom time-slot assignment method: assign the time-

slot to nodes level by level starting from the root level. The

node i assigns the time-slot to its children according to the

known interference conditions expressed by IAATSi, and

sends the message SCHDL(tsft, nsp) to its children and

then send the message SCHDL-CMPLT(tsft, nsp) to PSNi

and the corresponding NSCi[·]. Upon receiving a message
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SCHDL(tsft, nsp), a child j sets tsft and nsp to TSFTj

and NSPj , respectively. Upon receiving a message SCHDL-

CMPLT(tsft, nsp), a node updates its IAATS according

to it. Once a node finish the schedule assignment task for

its children, it sends the message FINISHED-SCHDL to

its PSNuNSC. Upon receiving a message FINISHED-

SCHDL from v, a node delete v from its PSNuNSC,

and if its RANK is smaller than that of every node in its

PSNuNSC, it begins to assign time-slots to its children.

The details of our scheduling algorithm EASDC are shown

in Algorithm 1.

Algorithm 1 Estimate Aggregation Scheduling with Delay

Constraints EASDC.
1: Input: A network G, the aggregation tree Q rooted at the node

n, and the delay constraint q;
2: Output: TSFTi and NSPi for every node i (1 ≤ i < n)
3: Every node i initializes NoCi, CNoPi (CNoPn ← 1),

RANKi, CSi, PSNi, and NSCi[·] based on the tree Q; and
TSFTi ← 0; NSPi ← q; allocates space for the binary array
IAATSi[·] whose size is q ·max{NoCi, CNoPi} and each
element of the array is initialized to 1, DONEi ← FALSE;

4: Root n calls TAAC(CSn, NoCn, IAATSn, q + 1, NSPn,
PSNn, NSCn);

5: for Each node i, upon receiving a message SCHDL(tsft, nsp)
do

6: TSFTi ← tsft; NSPi ← nsp; DONEi ← TRUE;
7: m← 0;
8: while tsft+m · nsp ≤ IAATSi.size do
9: IAATSi[tsft+m · nsp]← 0; m← m+ 1;

10: if There is available time-slot based on IAATSi,
tsft+ nsp and nsp then

11: if RANKi < RANKj for each j ∈ PSNuNSCi then
12: Call TAAC(CSi, NoCi, IAATSi, TSFTi, NSPi,

PSNi, NSCi).
13: for Each node i, upon receiving a message SCHDL-

CMPLT(tsft, nsp) do
14: m← 0;
15: while tsft+m · nsp ≤ IAATSi.size do
16: IAATSi[tsft+m · nsp]← 0; m← m+ 1;
17: for Each node i, upon receiving a message FINISHED-

SCHDL from node k do
18: if k ∈ PSNuNSCi then
19: PSNuNSCi ← PSNuNSCi − {k};
20: if DONEi = TRUE then
21: if There is available time-slot based on IAATSi,

tsft+ nsp and nsp then
22: if RANKi < RANKj for each j ∈ PSNuNSCi

then
23: Call TAAC(CSi, NoCi, IAATSi, TSFTi, NSPi,

PSNi, NSCi).

TAAC (shown in Algorithm 2) is the time allocation

procedure for children. The time-slot assignment principle

of our algorithm is as follows. Consider a node i with the

assigned TSFTi and NSPi, we assume NACS is the set

of i’s children which have not been assigned time-slots

and noc is the size of NACS. If a child j ∈ NACS
has the maximum size of subtree rooted at j compared

to the other children in NACS, it may aggregate more

estimate information before time TSFTi. Therefore, we

should set the maximum available time-slot t before TSFTi

to TSFTj , and NSPj is equal to NSPi. Based on IAATS,

TSFT and NSP , the available time-slot t is a time-slot

such that t < TSFT and IAATS[t+m ·NSP ] = 1 where

m ∈ {m′|0 ≤ m′ ≤ (IAATS.size − TSFT )/NSP,m′ ∈
Z}. If there is only one available time-slot t before time

TSFTi and noc > 1, we can not schedule all the children

in NACS within one node scheduling period NSPi. Then,

in every node scheduling period, we choose one child j
in NACS in turn to be scheduled and NSPj is set to

NSPi · noc. If there is no one available time-slot and

noc > 0, node i can not gather any information from

its children in the current scheduling period. However, by

exploiting the temporal correlation of the process state, we

can predict the estimates based on the previously obtained

estimate information from NACS, and the predicted esti-

mate information can contribute to the estimation accuracy.

Therefore, if the estimate information of NACS can be

scheduled before time TSFTi + NSPi, it is also useful

for estimation accuracy.

Algorithm 2 Time Allocation Algorithm for Children

TAAC(CS, noc, IAATS, tsft, nsp, PSN,NSC).

1: for Select a node j from CS according to the descending
order of the size of the subtree rooted at j.

2: if There is no available time-slot based on IAATS,
tsft and nsp, and noc > 0 then

3: tsft← tsft+ nsp;
4: if There is only one available time-slot t based on IAATS,

tsft and nsp, and noc > 1 then
5: Send the message SCHDL(t, nsp · noc) to j;
6: Send the message SCHDL-CMPLT(t, nsp · noc) to
7: PSN

⋃
NSC[j];

8: CS ← CS − {j};
9: i← 1;

10: for Select a node k from CS do
11: Send the message SCHDL(t+nsp · i, nsp ·noc) to k;
12: Send the message SCHDL-CMPLT(t+nsp·i, nsp·noc)

to PSN
⋃

NSC[k];
13: i← i+ 1;
14: CS ← CS − {k}.
15: else
16: Find the maximum available time-slot t based on

IAATS,
tsft and nsp;

17: m← 0;
18: while t+m · nsp ≤ IAATS.size do
19: IAATS[t+m · nsp]← 0; m← m+ 1;
20: Send the message SCHDL(t, nsp) to j;
21: Send the message SCHDL-CMPLT(t, nsp) to

PSN
⋃

NSC[j];
22: CS ← CS − {j};
23: noc← noc− 1.

24: Send the message FINISHED-SCHDL to PSNuNSC.

Figure 1 illustrates the scheduling results of our algorithm

for a small sensor network. There is a label x(y, z) beside
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1(1,4)
2(4,4) 3(2,4)

4(3,4)

5(3,8) 6(7,8) 7(1,4)

8(2,8)
9(8,8) 10(7,8)

11(6,8)

12(1,4) 13(4,4)

14(6,8) 15(7,8) 16(9,8) 17(4,8) 18(5,8) 19(2,4) 20(3,4)

21(8,8) 22(6,8) 23(3,8)

level 0

level 1

level 2

level 3

level 4

level 5

Figure 1. An example of the result of our scheduling algorithm.

a node where x is the node’s ID, y and z are respectively

the TSFT and NSP of the node. The solid lines represent

edges in the aggregation tree and the dotted lines represent

the other edges in the graph. Node n is the sink. The delay

constraint q is set to 4. At first, the nodes at the level

1 are assigned the scheduling time. Because the subtree

of node 2 has a maximal size than the subtrees of node

1, 3 and 4 (the size of the subtree of a leaf node is 0),

node n sends the message SCHDL(4, 4) to node 2, and

sends the message SCHDL-CMPLT(4, 4) to nodes 1 and 3.

Then, node n respectively sends the messages SCHDL(3, 4),

SCHDL(2, 4) and SCHDL(1, 4) to nodes 4, 3 and 1 in

sequence, and respectively sends the corresponding SCHDL-

CMPLT messages to its PSN and the corresponding NSCs.

Upon receiving the message SCHDL(4, 4), node 2 respec-

tively sets 4 and 4 to its TSFT and NSP , and waits for

the FINISHED-SCHDL message from 1. Upon receiving the

messages, node 2 calls TAAC to assign scheduling time to

its children. Since there is only one available time-slot 3

and two nodes 5 and 6 need to be assigned time, node

2 respectively sends the messages SCHDL(3, 4 × 2) and

SCHDL(3 + 4 × 1, 4 × 2) to nodes 5 and 6. In this way,

all the nodes are assigned scheduling time.

Remark 2: The sink estimates the state every q time-slots.

However, when the size of the network is so large that not

all the estimates can be aggregated from the network to the

sink within q time-slots. In the above example (shown in

Fig. 1), the estimate of node 12 can not be aggregated to

the sink before the deadline. Node 12 still sends its estimate

to its parent node 7 because node 7 can predict the estimate

of node 12 in the next scheduling period based on the

estimate sent in the current scheduling period. Therefore, the

parameter γ12(lq) of node 7 is 0 (l = 0, 1, . . .). Similarly, the

parameters γ5(2lq) and γ6((2l + 1)q) of node 2 are 1, and

γ5((2l+1)q) and γ6(2lq) are 0. In summary, the parameters

γx(t) are determined by schedule, network topology and

delay constraints, and thus the in-network estimation is not

stochastic.

Theorem 2: Algorithm EASDC generates an

interference-free aggregation schedule.

Proof: We prove that the resulting schedule is

interference-free by contradiction. For each node i in the

aggregation tree, we define CoNi =
⋃

j∈NSi−CSi
CSj .

Suppose there is an interference in time-slot k0, then there

must exist two nodes v1 and v2 both have k0 as their

schedules, and v1’s parent or v2’s parent hears two messages

in k0. There are four cases in this situation. The first

case is p1 = p2. In EASDC, the schedules of a node

i is assigned by pi according to IAATSi[·] by calling

TAAC. If p1 (or p2) sets v1’s schedule to k0, it can not

set v2’s schedule to k0. Here comes the contradiction. The

second case is v2 ∈ CoN1, and this means p1 ∈ PSNp2

and p2 ∈ NSCp1 [1]. If RANKp1 ≤ RANKp2 , p2 can

not assign time-slots to v2 until it receives a FINISHED-

SCHDL message from p1, else p1 receives a FINISHED-

SCHDL message from v2 before assigning time-slots to

v1. Therefore, v1 and v2 can not obtain the same schedule

anyway. The three case, which is v1 ∈ CoN(v2), can be

proved by the same way as the second case. The fourth case

is v2 ∈
⋃

u∈CS1
CSu (or v1 ∈

⋃
u∈CS2

CSu). This means

p2 ∈ NSCp1
[1] (or p1 ∈ NSCp2

[2]), and p2 (or p1) can

receive the SCHDL-CMPLT message from p1 (or p2) before

setting schedule to v2 (or v1). Therefore, if the schedule k0
is set to v1 (or v2), v2 (or v1) can not obtain the schedule

k0. Till now we have completed the proof of Theorem 2.

VI. PERFORMANCE ANALYSIS

A. Estimation Unbiasedness

Theorem 3: By using the in-network estimation approach

given in Section IV and Section V, the estimate obtained by

the sink is unbiased for every scheduling period, namely

E[x̂n(k)] = E[x(k)].
Proof: First, we consider the relay nodes whose chil-

dren are just the leaves in the aggregation tree Q, and we

define these relays as 1-relay nodes. If a 1-relay node i
can receive all the estimates x̂j(k) of its children within

the l-th scheduling period by using the algorithm EASDC

(k = lq), the estimates to be fused at node i are all the

Kalman filtering estimates of time k, and thus the fused

estimate x̂i(k) obtained by using the equations (9) and

(10) is unbiased according to Theorem 1. If some children

can not send their estimates to node i within the l-th
scheduling period, their estimates can be predicted based on

previously received estimates by using the equation (4), and

the predicted estimates are unbiased obviously. Then, the

fused estimate based on these partially predicted estimates

is still unbiased according to Theorem 1. Therefore, 1-relay

nodes perform an unbiased estimation.

Next, we consider the relay nodes whose children are the

leaves or 1-relay nodes, and these relays are defined as 2-

relay nodes. The estimates of 2-relay’s children are unbiased.

190190



Therefore, no matter whether a 2-relay node can receive all

the estimates from its children within one scheduling period,

the 2-relay node performs an unbiased estimation according

to the above unbiasedness proof about 1-relay nodes.
Third, we consider the relay nodes whose children are

the leaves, 1-relay nodes or 2-relay nodes, and these relays

are defined as 3-relay nodes. Similarly, we can conclude

the estimate of a 3-relay node for every scheduling period

is unbiased. Obviously, the sink is a 3-relay node, and the

theorem has been proved till now.

B. Optimality Analysis
Now we analyze the optimality of our in-network estima-

tion approach.
Definition 1: Given an tree consisting of a node set, the

root centered set (RCS) is a connected node subset which

contains the root of the tree.
Lemma 1: Suppose that V1 is a RCS of the aggregation

tree Q. Let P t
i (k) be the estimate error covariance matrix

of the node vi’s filtering estimation for the l-th scheduling

period (vi ∈ V1 and k = lq). If all the estimation information

of the nodes in V1 can be aggregated to the sink vn within

one scheduling period by using our in-network estimation

approach presented in Section IV and Section V, we have

Pn(k) = [
∑

i∈V1
(P t

i (k))
−1]−1.

The proof of lemma 1 is omitted due to space limitation.
Theorem 4: Suppose that the node subsets V1 and V2 are

two RCSs of the aggregation tree Q and satisfy V1 ⊂ V2.

By using our in-network estimation approach presented

in Section IV and Section V, PV1
n (k) and PV2

n (k) are

the estimate error covariance matrices of the sink vn for

the l-th scheduling period based on the estimates obtained

from V1 and V2, respectively (k = lq). Then, we have

tr[PV1
n (k)] ≥ tr[PV2

n (k)].
Proof: Since V1 ⊂ V2, there exists a node v1 that satisfy

v1 ∈ V2 − V1. We define V 1
1 � V1

⋃{v1}. Let P t
i (k) (> 0)

be the error covariance of the vi’s filtering estimate for the

l-th scheduling period. By using our estimate aggregation

approach, if the estimation information can be aggregated

to vn within one scheduling period, we have PV1
n (k) =

[
∑

vi∈V1
(P t

i (k))
−1]−1 > [

∑
vi∈V 1

1
(P t

i (k))
−1]−1 = P

V 1
1

n (k)
according to Lemma 1, else there exists a v1’s ancestor

node va1 whose estimation information can be aggregated

to vn within one scheduling period and va1 may obtain

a predicted estimation information P p
1 (k) (≥ 0) of v1

based on the previously received information, and thus we

also have PV1
n (k) ≥ P

V 1
1

n (k) according to Lemma 1. If

V 1
1 = V2, we have tr[PV1

n (k)] ≥ tr[PV2
n (k)], else there

exists a node v2 that satisfy v2 ∈ V2 − V 1
1 , and then we

define V 2
1 � V 1

1

⋃{v2}. Based on the above set construction

method, we can obtain a set sequence V 1
1 ⊂ V 2

1 ⊂ · · · ⊂ V r
1

(r = |V2−V1| and V r
1 = V2). According to the above proof,

we have PV1
n (k) ≥ P

V 1
1

n (k) ≥ · · · ≥ P
V r
1

n (k) = PV2
n (k).

Therefore, we have tr[PV1
n (k)] ≥ tr[PV2

n (k)].

Theorem 4 shows that estimation accuracy of the sink can

be improved by aggregating the more estimation information

of the nodes from the network. In addition, the new estima-

tion information is more useful for improving the estimation

accuracy than the old one obviously. Therefore, we can

evaluate optimality of our in-network estimation approach

through measuring how many nodes can send their updated

estimation information to the sink within delay constraints.

Next, we will give the overall upper-bound on the number of

the nodes that can send their updated estimation information

to the sink within delay constraints. Here the overall upper-

bound refers to maximum number of the nodes whose

estimates for the state of time k can be aggregated to the

sink by any method before time k + q.

Theorem 5: Suppose that ni is number of nodes at the

i-th level of the aggregation tree Q. Under any interference

model, the overall upper-bound of the number of the nodes

whose estimates for the state of time k can be aggregated

to the sink by any method before time k + q is
∑q

i=1 ni.

Proof: The upper-bound
∑q

i=1 ni immediately follows

from the fact that no matter what algorithm is implemented

and no matter what interference model we will use, the sink

can gather at most all the estimates of the nodes whose level

is less than or equal to q within the delay constraint q.

Theorem 6: Under the protocol interference model, there

is a placement of nodes such that the number of nodes whose

estimates for the state of time k are aggregated to the sink

before time k + q by using our estimate aggregation can

achieve the upper-bound
∑q

i=1 ni provided in Theorem 5.

Theorem 6 can be proved by using the construction

method, and the detail is omitted due to space limitation.

Theorem 7: Under the protocol interference model, the

number of the nodes whose estimates for the state of time

k are aggregated to the sink before time k+ q by using our

estimate aggregation is at least min{q, n}.
Theorem 7 is obvious according to our scheduling algo-

rithm EASDE.

VII. SIMULATION RESULTS

In our simulation, we randomly deploy sensors into a re-

gion of 200m×200m. The number of nodes is fixed to 500.

All sensors have the same transmission radius which is fixed

to 25m. An aggregation tree rooted at the sink is constructed

by using the BFS method. In fact, other aggregation tree

construction methods, like the method proposed in [17], are

also suitable. We consider the discrete-time linear dynamical

system (1) and (2) with A =

[
1 0
0.5 1

]
and Rw = I2.

The measurement matrix Bi is chosen from the following

matrices:

B1 =

[
1 0
0 0

]
, B2 =

[
1 0
0 1

]
, and B3 =

[
0 0
0 1

]
.

Assume the maximum level number of the aggregation is

H . If the level number of node vi is less than 1
3 ·H , Bi is

set to B1, else if the level number of node vi is more than
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2
3 ·H , Bi is set to B3, else Bi is set to B2. The covariance

matrix Ri of the measurement noise is chosen from 10 · I2,

20 · I2 and 30 · I2 randomly. The initial state x0 and error

covariance matrix R(0) are respectively set to [10 1 ]T

and 10 · I2.
For the performance comparison with our in-network

estimation approach, we implement a non-aggregation es-

timation approach named NAE. In NAE, each sensor node

first performs a filter estimation based on its own measure-

ments, and then sends the estimates to the sink along the

aggregation tree without data fusion at relays. For satisfying

the delay constraint, the estimates are gathered by the sink

level by level starting from the lowest level.
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Figure 2. Covariance matrix trace at the sink for three methods.

In Fig. 2, the delay constraint q is fixed to 100. The

figure compares the traces of the estimate error covariance

matrix of the sink with every estimation time step using

the three methods. Here the optimal method is the fusion-

based estimation method that performs the optimal estimate

fusion given in Theorem 1 on the estimates of the whole

network. On the one hand, it can be seen that our in-network

estimation approach has a similar estimation performance to

the optimal method. This is because that though the sink can

not gather all the real-time estimates from the whole network

due the delay constraint, our in-network estimation approach

has the ability to compensate for the estimates loss of the

remote sensors by exploiting the temporal correlation of the

state. On the other hand, our in-network estimation approach

can gather more estimate information than NAE within

the delay constraint that the estimation performance of our

method is better than that of NAE in the most of the time.

More importantly, the stability of the estimation accuracy of

our approach outperforms that of NAE observably, and this

performance criteria is critical to control applications.
Fig. 3 and Fig. 4 show the traces of the estimate error

covariance matrix of the sink with every estimation time

step for our in-network estimation approach and NAE,

respectively. From Fig. 3, if the delay constraint is reduced,

the estimation accuracy of our approach will degrade, and

the degradation rate is slow. However, as illustrated in Fig.

4, we can see the estimation accuracy of NAE is influenced

by the delay constraints greatly. Once the delay constraint is

reduced, the estimation accuracy will degrade dramatically.

Therefore, our in-network estimation approach can achieve

a better tradeoff between estimation accuracy and delay

constraints.
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Figure 3. Covariance matrix trace at the sink for our in-network estimation
approach.
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Figure 4. Covariance matrix trace at the sink for NAE.

VIII. CONCLUSIONS

For WSNs-based control applications, a novel in-network

estimation approach was proposed for state estimation with

delay constraints in multihop WSNs. For accurately esti-

mating a process state as well as satisfying rigid delay

constraints, we addressed the problem through jointly de-

signing in-network estimation operations and an aggregation

scheduling algorithm. Our in-network estimation operation

performed at relays not only optimally fuses the estimates

obtained from different sensors but also predicts the upper

stream sensors’ estimates which can not be aggregated to the

sink before deadlines. Our estimate aggregation scheduling

algorithm, which is interference-free, is able to aggregate

as much estimate information as possible from a network

to a sink within delay constraints. The unbiasedness of our
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in-network estimation has been proved, and the theoretical

analysis about the estimation optimality and the simulation

results show that our approach can achieve a considerably

high estimation accuracy.
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