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Abstract—The use of wireless sensor networks (WSNs) for closing the loops between the cyberspace and the physical
processes is more attractive and promising for future control systems. For some real-time control applications, controllers need
to accurately estimate the process state within rigid delay constraints. In this paper, we propose a novel in-network estimation
approach for state estimation with delay constraints in multihop WSNs. For accurately estimating a process state as well as
satisfying rigid delay constraints, we address the problem through jointly designing in-network estimation operations and an
aggregation scheduling algorithm. Our in-network estimation operation performed at relays not only optimally fuses the estimates
obtained from the different sensors but also predicts the upper stream sensors’ estimates which cannot be aggregated to the
sink before deadlines. Our estimate aggregation scheduling algorithm, which is interference-free, is able to aggregate as much
estimate information as possible from the network to the sink within delay constraints. We proved the unbiasedness of in-
network estimation, and theoretically analyzed the optimality of our approach. Our simulation results corroborate our theoretical
results and show that our in-network estimation approach can obtain significant estimation accuracy gain under different network
settings.
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worked control systems.
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Yber Physical Systems (CPSs) are a promising
Cnew class of systems characterizing seamless,
fully synergistic integration of cyber capabilities and
physical processes, and can find application in a broad
range of areas [1] [2]. Unlike traditional cyber systems
which are usually the passive information receptors
in the physical world, CPSs make cyber resources
interact with the physical world automatically and
intelligently. Because of the advantages of low cost
and easy deployment, WSNs are regarded as a more
promising means of observing physical world for
CPSs [3], e.g., smart building applications [4] [5]
[6], waste water processing systems [7], and disaster
monitoring systems [8] [9].

In these WSN-based CPSs whose architecture is
depicted in Fig. 1, a set of sensor nodes distributed
in a surveillance area perform the state sampling of
dynamical processes, and the spatio-temporal sam-
pling data are collected from the sensor nodes to
one or more control centers (or sinks which we use
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wireless network. Then, based on the collected sensor
information, controllers make appropriate control de-
cisions which drive actuators to change the physical
processes. In these networked systems, on the one
hand, before making correct control design, the con-
troller residing in the control center needs to know
the process state to be controlled as accurately as pos-
sible. However, the process state cannot be obtained
directly due to the presence of the process noise and
the measurement noise [10]. Therefore, the system
must estimate the process state based on the sensor
measurements, and use the estimates as the input of
the controller. On the other hand, the presence of the
wireless network in the feedback control loop means
that the data packets can be randomly dropped and
delayed. From the viewpoint of networked control
systems (NCSs), the significant transmission delay
is equivalent to the data loss, which leads to the
performance degradation or even loss of the stability
of the systems. Thus, the sensor information must be
gathered at the control center within very stringent
time constraints. A key challenge in these systems
is then to design efficient and effective transmission
protocols to satisfy the rigid delay requirement of
the control applications under wireless interference
constraints.

Currently, in the field of WSN-based CPSs, the
researches of the state estimation and the protocol
design have remained largely separate. In the as-
pect of the state estimation, a method for compen-
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Fig. 1. Architecture of WSN-based CPS.

sating for the data loss caused by communication
is to improve the estimators so that they can esti-
mate the dynamic process states with intermittent
observations as accurately as possible. The estima-
tion problem based on single sensor information
over lossy networks has been extensively studied
recently [11] [12] [13] [14] [15]. But these estima-
tion techniques only view the network as a sin-
gle end-to-end communication channel characterizing
some data loss model and adapt to the underly-
ing communication protocols passively. In addition,
multi-sensor information fusion is usually adopted
in WSNs to deal with the sensing uncertainty, and
many distributed estimation algorithms have been
proposed [16] [17] [18] [19] [20]. However, the current
distributed estimation methods are restricted to either
single-hop networks or multihop networks without
a center, and are thus not suitable for the multihop
networks with one fixed sink. In the aspect of the
protocol design in WSNs, aggregation scheduling has
attracted much attention recently. In WSNs, compared
with transmitting raw data, in-network data aggrega-
tion (whose operation is depicted in Fig. 1) is effective
in improving delay performance as well as reducing
energy consumption [21] [22] [23]. Several protocols
have been proposed in the literature for delay-efficient
data aggregation in WSNs, e.g., [24] [25] [27] [26] [28].
All these work focus on minimizing the total delay
of aggregating the whole sensor data from the net-
work to the sink under various interference models.
However, these scheduling schemes cannot be applied
to some large-scale networked real-time systems in
which aggregating all the sensor information cannot
satisfy the rigid delay constraints.

In this paper, we consider a state estimation prob-
lem with stringent delay constraints in large-scale
WSNs, and this is an important issue for real-time
networked control applications. Our objective is to ob-
tain an optimal state estimate at the sink within rigid
delay constraints through the collaboration of a set
of distributed sensors and the sink. Compared with

prior work, we jointly design an estimation method
and a scheduling algorithm in multihop WSNs, and
propose a novel in-network estimation approach for
accurately estimating the state as well as satisfying
delay constraints. Our in-network estimation is a
progressive estimate fusion technique in which every
intermediate node on the route calculates an optimal
fusion estimate based on the information received
from its child nodes in the aggregation tree and its
own measurements. Unlike the minimum delay ag-
gregation scheduling, the objective of our aggregation
scheduling is to gather maximum sensor information
at the sink within stringent delay constraints, and
this is because that we can reduce the estimation
error through collecting the more information from
the sensor networks.

The main contributions of our work are as follows.
First, to the best of our knowledge, this is the first
work to use co-design of the estimate fusion opera-
tion and the aggregation scheduling to address the
estimate aggregation problem with delay constraint
in WSNs. Second, we propose an in-network esti-
mate fusion method to optimally fuse the different
estimates. Our in-network estimation operation can-
not only optimally fuse the estimates received from
different sensors but also predict the upper stream
sensors’ estimates which cannot be aggregated to the
sink before deadlines. Third, under the protocol inter-
ference model, we design an aggregation scheduling
algorithm for optimally estimating a process state
and satisfying delay constraints, and we theoreti-
cally prove that the proposed scheduling algorithm is
interference-free. Fourth, we prove the unbiasedness
of our in-network estimation, and analyze its optimal-
ity.

The rest of the paper is organized as follows. Sec-
tion 2 formulates an in-network estimation problem.
The distributed in-network estimation operations are
presented in Section 3. We propose an estimate aggre-
gation scheduling algorithm in Section 4. Section 5 an-
alyzes the performance of our in-network estimation
approach. Section 6 presents the simulation results.
Section 7 reviews the related work. We conclude the
paper in Section 8.

2 PROBLEM FORMULATION

2.1 Network Model

Consider a multihop WSN G = (V, E) where V is the
set of n nodes in the network and E is the set of com-
munication links. Assume a node cannot send and
receive data simultaneously. To let two links transmit
simultaneously, we must ensure they are interference-
free. In the protocol interference model [29] on which
our work is based, each node has an interference
range r7. A receiver v of a link wv is interfered by
the signal from another sender p if || p — v ||< ry.
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We assume that there is an aggregation tree @
rooted at a sink node v, € V. There are many ways
to construct an aggregation tree. One example is the
distributed approach presented by Wan et al. [30].
But this aggregation tree may not be optimal for the
purpose of in-network estimation. Finding the best
tree for state estimation remains an open research
topic.

2.2 Data Model

In this paper, we consider a common discrete-time
data model which characterizes the linear process
state and observation and can be motivated by many
practical applications. We assume sufficient bits per
data packet so that the quantization error is negligible.
This assumption makes sense if the communication
packet provides enough bits for transmitting data
so that the effect of quantization error is dominated
by the effect of the process and the measurement
noises [31].

The discrete-time linear dynamical process consid-
ered in this paper is modeled by [11] [15]

x(k+q) = Ax(k) +w(k) 1)

where z(k) € R? is the process state vector at time
k, A is the state-transition matrix of the process, ¢ is
the sampling period, and w(k) € R” is the zero-mean
white Gaussian process noise with covariance matrix
R, > 0 and uncorrelated across time. The initial
state 2(0) is assumed to be independent of w(k) and
to have mean zero and covariance matrix R(0). The
process state to be estimated has the different physical
interpretation in different systems, e.g., the tempera-
ture vector whose component is the local temperature
at different locations, and the position vector of a
target to be tracked [10]. The state-transition matrix
A characterizes the temporal correlation between the
states of two consecutive sampling time slots. The
observations about the common state are collected
by the physically distributed sensors according to the
measurement model

where y;(k) € R?" is the measurement output vector
generated by the sensor v; at time k, B; is the obser-
vation matrix of the sensor v;, and w; € RP? is the
measurement noise of the sensor v; which is assumed
to be white, zero-mean, Gaussian with covariance
matrix R; > 0 (1 < i < n —1) and is uncorrelated
across time and sensors and independent of process
noise w(k).

2.3 Problem Formulation

For accurately estimating state x(k), the sink needs to
gather the sensing information as much as possible.
Moreover, the sensing information collected at time

k should be received by the sink before a given
deadline. Therefore, we address the problem from two
coupled aspects. The first aspect is an effective ag-
gregation scheduling which can gather much sensing
information as possible from the network to the sink
within every scheduling period (which will be defined
later). The other aspect is the estimation operation
which is performed by each node and is responsible
for processing the sensor information aggregated from
the upper stream sensors.

In our in-network estimation approach, we transmit
the estimates of the state instead of the measurements.
In the network G, when the sensor v; (1 < i <
n — 1) samples a new measurement y;(k) at time k,
it computes a state estimate Z;(k) based on its local
measurements and the estimates received from its
upper stream sensors, and then forwards the estimate
Z;(k) to the next hop node along the aggregation tree.
The estimate error covariance matrix of the node v; is
expressed as

Pi(k) = E{[a(k) - &:(R)] (k) - ::(R)]"} )

where E is the expectation, and T denotes the trans-
pose. Finally, based on the acquired estimates from
the network, the sink performs an unbiased fusion
estimation.

Let A,B C V and AN B = (. We say that data
are aggregated from A to B in one time-slot if all
the nodes in A transmit data simultaneously in one
time-slot and all the data are received by some nodes
in B without interference, and A is called a sender
set. In this paper, the delay constraint is set to the
sampling period ¢. This is reasonable because the
sensor information sensed at time & is outdated when
there is the new sensing information obtained right
after time k + ¢. For simplicity, we assume that ¢
is an integer multiple of one time-slot assigned to
each scheduled sensor, the networked system starts
running at time 0, and the clocks of all nodes are
synchronized. Within every sampling period ¢, since
there is no new sensing information, the object of the
scheduling is unchanged and ¢ can also be termed as
a scheduling period.

Then, we divide the time of the each round of
scheduling period into ¢ time-slots. In one scheduling
period, S; is defined as the sensor node set all the
member nodes of which synchronously send packets
to their corresponding parent nodes in the i-th time-
slot (¢ € {1,2,...,¢}). The work of scheduling is to
assign the time-slot to each node in the network.
In other words, the scheduling problem is how to
determine the node set S for each time-slot during
which all the member nodes of S synchronously send
packets to their corresponding parent nodes.

Thus, in the I-th round of schedule (I = 0,1,...),
an aggregation schedule for in-network estimation
can be defined as a sequence of sender node sets
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S1,82,...,5; satisfying the following conditions:

1) SinS;=0,Vi#jandi,je{1,2,...,q}

2) The estimates are aggregated from Sj; to V —
Ule S; at time-slot k, for all £ = 1,2,...,q,
and the estimates of the state of the time [q are
aggregated to the sink v,, before time (I + 1)g.

Notice that we discard the condition J}_, S, =
V —wvg required in the other delay-efficient aggregation
scheduling problems [27] [28]. This is because we
cannot gather all the estimates from the network to the
sink before the deadline when ¢ is so small relative to
the network size. Condition 1 is to ensure that a node
participates in the data aggregation at most once in
one scheduling period.

Given the multihop WSN G, the in-network esti-
mation problem with delay constraints is to jointly
design the estimation operation Z;(k) (1 < ¢ < n) of
each node and an aggregation schedule S, 5>,...,5;
such that the estimate Z,,(k) at the sink v,, satisfies the
following goals:

1) Unbiasedness, E[z, (k)] = E[z(k)];

2) Optimality, minimizing the trace of fusion es-

timate error covariance, min{tr[P,(k)]}, where
tr[-] denotes the trace of matrix.

3 DISTRIBUTED IN-NETWORK ESTIMATION

In this section, we present the estimation operation
Z;(t) (1 <14 < n) of every node in the network. Before
giving the details, we outline the overall process of
our distributed in-network estimation approach in
every scheduling period. A flow-chart version of the
in-network estimation approach is provided in Fig. 2.
As shown in the figure, in an aggregation tree, every
node takes the following actions:

1) The leaf node samples the dynamical process
state at time /- ¢ and performs a local estimation
based on its own measurements obtained before
time [ - ¢ (I = 0,1,2,...). Then, it waits for
being scheduled. If a leaf node is scheduled, it
transmits the local estimate to its parent directly.

2) For the relay node, first, it also samples the
dynamical process state at time [-¢ and performs
a local estimation based on its own measure-
ments obtained before time [ - ¢ (I =0,1,2,...).
Then, it performs an optimal information fusion
based on the estimates received from its child
nodes and its own local estimate. If the esti-
mates cannot be received from its child nodes
in the current scheduling period, the relay node
predicts the estimates based on the previously
received estimates from its child nodes, and use
the predicted estimates to calculate the fused
one. Third, when a relay node is scheduled,
it transmits the fused estimate to the next-hop
node.

3) The sink node continuously collects the esti-
mates from its child nodes. At the deadline of

New measurement
arrives «
A,

Leaf node

Update Kalman filter Transmit the filter
with new local » estimate according to
measurement the scheduling

New measurement
arrives Relay node

A,
Update Kalman filter
with new local obtained from children —w estimate according to |—»

Fuse the estimates Transmit the fused
measurement and local measurements the scheduling

Predict the delayed
estimates if needed

Collect estimates
from children

Sink node

Collect estimates
from children

Predict the delayed
estimates if needed

Fuse the estimates
obtained from children

Fig. 2. Summary of in-network estimation.

every scheduling period, the sink predicts the
estimates based on the previously received esti-
mates from its child nodes, and then calculates
an optimal estimate based on the previously re-
ceived information and the predicted estimates.
Note that we consider a large-scale multihop net-
work scenario in which only part of the state es-
timates of time [ - ¢ can be aggregated to the sink
before time (I + 1) - gq. Therefore, we need to design
an optimal estimate fusion method which is capable
of dealing with the two cases: the complete upper
stream information and the incomplete upper stream
information. In addition, the selection of the estimate
fusion scheme depends on the scheduling, and this
will be discussed in Section 4. The details of the
estimation operation performed at each sensor node
are present in the following subsections.

3.1

The local estimator at the leaf node adopts the stan-
dard Kalman filter. The Kalman filter estimates a
process by using a form of feedback control: the filter
estimates the process state at some time and then
obtains feedback in the form of (noisy) measurements
[32]. As such, the equations for the Kalman filter fall
into two groups: predictor equations and corrector
equations. The predictor equations are responsible for
projecting forward (in time) the current state and error
covariance estimates to obtain the a priori estimates
for the next time step. The corrector equations are
responsible for incorporating a new measurement into
the a priori estimate to obtain an improved a posteri-
ori estimate.

We respectively define 2;(k) £ E[z(k)|Y;(k)] and
Pi(k) = B[(x(k) — &i(k))(x(k) — 2:(k))"[Yi(k)] as the
local filtering estimate and the estimate error co-
variance of the node v; at time k where Y;(k) =
{yi(0),...,y:(k)} (kK = 1-q). The predictor equations

Estimation at the Leaf
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of the filter estimation, which project the state and
covariance estimates forward from time step k£ — ¢ to
step k, are given by

Zi(k|k — q) £ AZi(k — q) (4)

P;(klk — q) £ AP;(k — q¢)A" + R,,. (5)

The corrector equations are given by

Ki(k) 2 P(klk — )BT (B;P(k|k — )BT + R;) ™ (6)

2i(k) = 2i(k|k — q) + Ki(k) [yi(k) — Bizi(k|k — q)] (7)

Pi(k) = Pi(klk — q) — Ki(k)BiPi(k[k — q). ®)

The first task during the correction step is to compute
the Kalman gain, K;(k). The next step is to actually
measure the process to obtain y;(k), and then to gen-
erate an a posteriori state estimate by incorporating
the measurement as in (7). The final step is to obtain
an a posteriori error covariance estimate via (8). After
each prediction and correction step pair, the process
is repeated with the previous a posteriori estimates
used to project or predict the new a priori estimates.

After the local filter estimation, the leaf node 7 uses
message msg; (k) = (Z;(k), P;(k), k) as the scheduling
unit of the /-th scheduling period, and waits for being
scheduled.

3.2 Estimation at the Relay and the sink

For the relay sensor node v;, once it obtains a new
measurement at sampling time k, it first performs
the Kalman filtering based on its own measurements
according to the equations (4)-(8), and the local esti-
mate #!(k) and the local error covariance P/(k) are
acquired consequently. We define C'S; as the children
set of the node v; and define C; = C'S; U {i}. During
the [-th scheduling period, the relay v; may receive
messages msg;(k) (j € CS;) from its children before
being scheduled. Now we will give an estimate fu-
sion method which combines the previously received
estimation information and its local estimation results.
The fusion method is based on the optimal fusion al-
gorithm weighted by matrices in the linear minimum
variance sense. Based on our variable definitions,
we represent the following optimal fusion theorem
introduced in [33] and [34].

Theorem 1: Let fcz(k) (j € C;) be unbiased estimates
of a p-dimensional stochastic vector x(k). Let the
estimate errors be 7%(k) = x(k) — (k). Assume
that 7% (k) and #f,(k) (ji # Jj2) are uncorrelated,
and the estimate error variance matrix is denoted by
Pj (k). Then, the optimal fusion estimator with matrix
weights is given by

Bi(k) = Y w;(k)F5(k) ©)

JjeC;

where the optimal matrix weights w; (k) are computed
by

—1
1

(Pik) ™", (10)

wy (k) = [Z (PL (k)

meC;

and the corresponding minimal fusion error variance
matrix is

Pi(k) = [ > (Pf,,<k>)‘1] : (11)

meC;

Theorem 1 gives an optimal fusion criterion in the
linear minimum variance sense, and we use the equa-
tions (9)-(11) as the estimate fusion method executed
at the relays. However, at some relays, not all the
children state estimates of time k can be aggregated
to them at the [-th scheduling period due to the rigid
delay constraint. For example, if relay ¢ does not re-
ceive the message from its child j before i is scheduled
at the [-th scheduling period, i can predict the child
j’s estimate and the covariance of time & based on the
previously obtained information from the child. Then,
at relay 4, the fused estimate and the corresponding
covariance of the child j are respectively computed

by

25(k) = (1=~ (k) 25 (k[k — q) + v (k)25 (k),  (12)
and
Pi(k) = (1 = ~;(k)) P} (k|k — q) + v; (k) P;i(k), (13)

where 7 (k|k — ¢) and P} (k|k — q) are respectively the
predicted estimate and the corresponding predicted
covariance of time k£ and they are both initialized to
0, and v;(k) € {0,1} is a binary parameter. In the
prediction process, we respectively use the prediction
equations (4) and (5) for computing :E;(k|k —q) and
P} (k|k—q). In the I-th scheduling period, if node i can
receive msg; (k) before being scheduled, v; (k) is set to
1, else v, (k) is set to 0. v;(k) is jointly determined by
the scheduling, the network topology and ¢, and it
will be further discussed in Section 4.

At the sink, we also adopt the above estimate fusion
method expressed by (9)-(13) except that we use C'S,,
instead of (), in the fusion equations (9)-(11).

Remark 1: The state estimates obtained from dif-
ferent sensors are not conditionally independent in
general due to the common process noise. Therefore,
the proposed estimate fusion algorithm is suboptimal.
However, it is more computation-efficient than the
complicated fusion method that takes the correlation
of the state estimates into account, and is a more at-
tractive in-network computation scheme for resource-
constraint WSN.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, JANUARY 2000 6

4 DECENTRALIZED AGGREGATION
SCHEDULING WITH DELAY CONSTRAINTS

In this section, we design an effective interference-free
estimate aggregation scheduling algorithm EASDC
for satisfying delay constraints and accurately esti-
mating the state. Our estimate aggregation scheduling
algorithm is based on an aggregation tree which
can either be a BFS (breadth-first-search) tree or that
constructed by the existing methods proposed in [30]
and [27]. In algorithm EASDC, we adopt a top-down
time-slot assignment mode. In the aggregation tree,
each node locally determines the schedules of its child
nodes based on the previously received messages. The
proposed scheduling algorithm performed in each
node does not need any global network information,
and thus it is decentralized.

For node i in the aggregation tree @, let p; be i’s
parent, let N'S; be the set of i’s one-hop neighbors ex-
cept p;. In our algorithm, every node should maintain
the following local variables.

1) Number of Children: NoC;, the number of i’s
child nodes in the aggregation tree Q.

2) Children Number of i’s Parent: CNoP;, the
number of the child nodes of i’s parent in the
aggregation tree ().

3) Time-Slot to First Transmit: T'SF'T;, the assigned
time-slot at which ¢ send its data to its parent for
the first time.

4) Node Scheduling Period: NSP;, the scheduling
period of i such that i is scheduled once every
N SP; time-slots after time T'SF'T;.

5) Children Set: C'S;, the node set of i’s children
such that the set elements are arranged accord-
ing to the descending order of the size of the
subtree rooted at j(e CS;).

6) Indicator Array of Available Time-Slot:
TAATS;[-], a binary array such that if a
child node of ¢ can transmit data without
interference in time-slot ¢, TAATS;[t] is 1, else
TAATS;[t] is 0. TAATS,.size is the size of the
array.

7) PSN; = {pj}jens,—Cs;-

9) RANK,; = (level,i) where level is the hop dis-
tance of i to the root. The ranks of nodes are
compared using lexicographic order.

For accurately estimating the state, the estimate
information should be gathered by the sink as
much as possible within delay constraints. We de-
fine PSNuNSC; = PSN;U(U;ccs, NSCilj]). The
scheduling time of the node ¢ is determined by T'SF'T;
and NSP;. To determine the schedules for all the
nodes in the sensor network, we use a top-down time-
slot assignment method: assign the time-slot to nodes
level by level starting from the root level. The node
i assigns the time-slot to its children according to the
known interference conditions expressed by IAAT'S;,

and sends message SCHDL(ts ft,nsp) to its children
and then sends message SCHDL-CMPLT(¢s ft, nsp) to
PSNj and the corresponding N SC;[-]. Upon receiving
message SCHDL(ts ft, nsp), the child j sets tsft and
nsp to TSFT; and N SP;, respectively. Upon receiving
message SCHDL-CMPLT(ts ft, nsp), a node updates
its JAATS according to the message. Once a node
finish the schedule assignment task for its children, it
sends message FINISHED-SCHDL to its PSNuNSC.
Upon receiving message FINISHED-SCHDL from v, a
node delete v from its PSNuNSC, and if its RANK
is smaller than that of every node in its PSNuNSC, it
begins to assign time-slots to its children. The details
of our scheduling algorithm EASDC are shown in
Algorithm 1.

Algorithm 1 Estimate Aggregation Scheduling with
Delay Constraints EASDC.

Input: A network G, the aggregation tree @) rooted at the
node n, and the delay constraint g;
Output: TSFT; and NSP; for every node i (1 < ¢ <
n)
1: Every node i initializes NoC;, CNoP; (CNoP, <+ 1),
RANK;, CS;, PSN;, and NSC;[-] based on the tree Q;
2: Allocates space for the binary array IAATS;[-] whose
size is ¢ - max{NoC;, CNoP;} and each element of the
array is initialized to 1;
3: TSFT; < 0; NSP; < q; DONE; < FALSE;
4: Root n calls TAAC(CS,,, NoC,,, IAATS,,q+ 1, NSP,,
PSN,,NSCy);
5: for Each node ¢, upon receiving a message
SCHDL(ts ft, nsp) do
6 TSFT; < tsft; NSP; < nsp; DONE; <+ TRUE;
7. m<«0;
8 while tsft+m-nsp < TAAT'S,;.size do
9;
0

TAATS;[tsft +m -nsp] + 0; m + m+1;
if There is available time-slot based on IAAT'S;,
tsft + nsp and nsp then
11: if RANK; < RANK; for each j € PSNuNSC;
then
12: Call TAAC(CSi, NoC;, TAATS;, TSFT;, NSP;,
PSN;, NSC)).
13: for Each node i, upon receiving a message
SCHDL-CMPLT(tsft, nsp) do
14: m<«+0;
15:  while tsft +m - nsp < TAATS;.size do
16: TAATS;[tsft +m -nsp] < 0; m < m+ 1;
17: for Each node i, upon receiving a message
FINISHED-SCHDL from node &k do
18: if k € PSNuNSC; then

19: PSNuNSC; + PSNuNSC; — {k};

20: if DONE; = TRUE then

21: if There is available time-slot based on IAATS;,

tsft + nsp and nsp then

22: if RANK; < RANK; for each j € PSNuNSC;
then

23: Call TAAC(C'S;, NoC;, IAATS;, TSFT;, NSP;,
PSN;, NSC,).

TAAC (shown in Algorithm 2) is the time allocation
procedure for children. The time-slot assignment prin-
ciple of our algorithm is as follows. Consider the node
i with the assigned T'SFT; and NSFP;, we assume
NACS is the set of i’s children to which the time-slot
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has not been assigned and noc is the size of NACS.
If the child j(€¢ NACS) has the maximum size of
subtree rooted at j compared to the other children in
NACS, it may aggregate more estimate information
before time T'SF'T;. Therefore, we should set the max-
imum available time-slot ¢ before TSFT; to T'SFTj,
and NSP; is equal to NSP;. Based on IAATS, TSFT
and NSP, the available time-slot ¢ is a time-slot such
that t < TSFT and TAATS[t +m - NSP] = 1 where
m e {m'|0 <m' < (TAATS.size — TSFT)/NSP,m’ €
Z}. If there is only one available time-slot ¢ before
time TSFT; and noc > 1, we cannot schedule all
the children in NACS within one node scheduling
period NSP;. Then, in every scheduling period, we
choose one child j in NACS in turn to be scheduled
and NSP; is set to NSP; - noc. If there is no one
available time-slot and noc > 0, the node ¢ cannot
gather any information from its children in the current
scheduling period. However, by exploiting the tempo-
ral correlation of the process state, we can predict the
estimates based on the previously obtained estimate
information from NACS, and the predicted estimate
information can contribute to the estimation accuracy.
Therefore, if the estimate information of NACS can
be scheduled before time T'SFT; + NSP;, it is also
useful for estimation accuracy.

Algorithm 2 Time Allocation Algorithm for Children
TAAC(CS,noc, [AATS tsft,nsp, PSN, NSC).

1: for Select a node j from C'S according to the descending
order of the size of the subtree rooted at j.

2:  if There is no available time-slot based on TAAT'S,
tsft and nsp, and noc > 0 then

3: tsft < tsft+ nsp;

4:  if There is only one available time-slot ¢ based on
TAATS, tsft and nsp, and noc > 1 then

5: Send the message SCHDL(¢, nsp - noc) to j;

6: Send the message SCHDL-CMPLT(¢, nsp - noc) to
PSN|JNSCj);
7: CS+ CS—{j};
8: 14+ 1;
9: for Select a node k from CS do
10: Send the message SCHDL(t + nsp - ¢, nsp - noc)
to k;
11: Send the message SCHDL-CMPLT(t +nsp-1i, nsp-
noc) to PSN |JNSCIk];
12: 141+ 1;
13: CS + CS —{k}.
14:  else
15: Find the maximum available time-slot ¢ based on
TAATS, tsft and nsp;
16: m < 0;
17: while ¢t + m - nsp < TAAT S.size do
18: TAATS[t +m - nsp] < 0; m < m+1;
19: Send the message SCHDL(t, nsp) to j;
20: Send the message SCHDL-CMPLT(t, nsp) to
PSN|JNSC[j];
21: CS«+CS—{j}
22: noc < noc — 1.

23: Send the message FINISHED-SCHDL to PSNuNSC.

In our aggregation scheduling algorithm, every

,,,,,,,,,,,,,,, level 1

4(3,4)

level 2

3(4.4) level 3

;

/

/

/ / //
988)  10(7.8) /

15(7,8! 16(9.8)  17(48)

21(8,8

Fig. 3. An example of the result of our scheduling
algorithm.

14(638)

22(6.,8) level 5

node allocates the transmission schedule to its chil-
dren by calling Algorithm 2 TAAC. Algorithm 2
TAAC assigns the time-slots to the nodes based on
the previously received messages and the local topol-
ogy information. The time-slot assignment operations
begin to be performed at the root node. The root
node also calls TAAC to determine the schedule of
its children. So the proposed scheduling algorithm
performed in each node does not need any global
network information.

Figure 3 illustrates the scheduling results of our
algorithm for a small sensor network. There is a label
2(y,2) beside a node where = is the node’s ID, y
and z are respectively T'SFT and NSP of the node.
The solid lines represent the edges in the aggregation
tree and the dotted lines represent the other edges in
the graph. Node n is the sink. The delay constraint
q is set to 4. At first, the nodes at the level 1 are
assigned the scheduling time. Because the subtree
of node 2 has a maximal size than the subtrees of
node 1, 3 and 4 (the size of the subtree of a leaf
node is 0), node n sends message SCHDL(4,4) to
node 2, and sends message SCHDL-CMPLT(4,4) to
nodes 1 and 3. Then, node n respectively sends the
messages SCHDL(3, 4), SCHDL(2, 4) and SCHDL(1, 4)
to nodes 4, 3 and 1 in sequence, and respectively
sends the corresponding SCHDL-CMPLT messages
to its PSN and the corresponding N.SCs. Upon
receiving message SCHDL(4, 4), node 2 respectively
sets 4 and 4 to its TSFT and NSP, and waits for
the FINISHED-SCHDL message from 1. Upon receiv-
ing the messages, node 2 calls TAAC to assign the
scheduling time to its children. Since there is only one
available time-slot 3 and two nodes 5 and 6 need to
be assigned time, node 2 respectively sends message
SCHDL(3, 4 x 2) and message SCHDL(3 +4 x 1,4 x 2)
to node 5 and node 6. In this way, all the nodes are
assigned the scheduling time.

Remark 2: The sink estimates the state every ¢ time-
slots. However, when the size of the network is so
large that not all the estimates can be aggregated from
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the network to the sink within ¢ time-slots. In the
above example (shown in Fig. 3), the estimate of node
12 cannot be aggregated to the sink before the dead-
line. Node 12 still sends its estimate to its parent node
7 because node 7 can predict the estimate of node 12
in the next scheduling period based on the estimate
sent in the current scheduling period. Therefore, the
parameter v;2(lg) of node 7is 0 ({ = 0,1, .. .). Similarly,
the parameters 75(2lq) and ~5((2/+ 1)¢) of node 2 are
1, and v5((21+1)gq) and ~6(2lq) are 0. In summary, the
parameters -, (t) are determined by the schedule, the
network topology and the delay constraints, and thus
the in-network estimation is not stochastic.

Theorem 2: Algorithm  EASDC  generates an
interference-free aggregation schedule.

Proof: We prove that the resulting schedule is
interference-free by contradiction. For each node
i in the aggregation tree, we define ColN; =
Ujens,—cs, CSj- Suppose there is an interference in
time-slot kg, then there must exist two nodes v; and
vy both have ky as their schedules, and v;’s parent
or ve's parent hears two messages in k. There are
four cases in this situation. The first case is p; = po.
In EASDC, the schedules of node i is assigned by p;
according to JAAT'S;[-| by calling TAAC. If p; (or ps)
sets v1’s schedule to kg, it cannot set v5’s schedule to
ko. Here comes the contradiction. The second case is
vy € CoNj, and this means p; € PSN,, and p; €
NSC,, [1]. If RANK,, < RANK,,, ps cannot assign
time-slots to v, until it receives a FINISHED-SCHDL
message from p;, else p; receives a FINISHED-SCHDL
message from v, before assigning time-slots to vj.
Therefore, v; and v, cannot obtain the same schedule
anyway. The three case, which is v; € CoN(vz), can
be proved by the same way as the second case. The
fourth case is vy € Uuecsl CS, (orwv; € UuECSQ CS,).
This means p; € NSC),,[1] (or p1 € NSC,,[2]), and
p2 (or pi) can receive the SCHDL-CMPLT message
from p; (or p2) before setting schedule to vy (or 7).
Therefore, if the schedule kg is set to vy (or vs), vs (or
v1) cannot obtain the schedule kq. Till now we have
completed the proof of Theorem 2. O]

Remark 3: In this work, we assume the aggregation
tree is given, and the local topology information
for each node is known because it can be obtained
in the routing construction process. In the schedule
construction process, we adopt a top-down time-slot
assignment scheme. The scheduling algorithm begins
from the root node, and then is performed by the
nodes level by level in the aggregation tree. Each
node determines the schedule of its children based
on the previously received messages and its local
topology information. The information only needs to
propagate from the upper level to the lower level
without information feedback. In the aggregation tree,
since all the nodes make schedules for its child nodes
one by one in the worst case, the time complexity of
our aggregation scheduling algorithm EASDC is O(n)

where n is the number of nodes in the network.

5 PERFORMANCE ANALYSIS
5.1

Theorem 3: By using the in-network estimation ap-
proach given in Section 3 and Section 4, the estimate
obtained by the sink is unbiased for every scheduling
period, namely E[Z, (k)] = E[z(k)].

Proof: First, we consider the relay nodes whose
children are just the leaves in the aggregation tree
@, and we define these relays as 1-relay nodes. If 1-
relay node i can receive all the estimates &;(k) of its
children within the /-th scheduling period by using
the algorithm EASDC (k = [ - ¢), the estimates to be
fused at node 7 are all the Kalman filtering estimates of
time k, and thus the fused estimate &;(k) obtained by
using the equations (9) and (10) is unbiased according
to Theorem 1. If some children cannot send their
estimates to node ¢ within the /-th scheduling period,
their estimates can be predicted based on previously
received estimates by using equation (4), and the
predicted estimates are unbiased obviously. Then, the
fused estimate based on these partially predicted esti-
mates is still unbiased according to Theorem 1. There-
fore, 1-relay nodes perform an unbiased estimation.

Next, we consider the relay nodes whose children
are the leaves or 1-relay nodes, and these relays are
defined as 2-relay nodes. The estimates of 2-relay’s
children are unbiased. Therefore, no matter whether
a 2-relay node can receive all the estimates from its
children within one scheduling period, the 2-relay
node performs an unbiased estimation according to
the above unbiasedness proof about 1-relay nodes.

Third, we consider the relay nodes whose children
are the leaves, 1-relay nodes or 2-relay nodes, and
these relays are defined as 3-relay nodes. Similarly, we
can conclude the estimate of a 3-relay node for every
scheduling period is unbiased. Obviously, the sink is
a 3-relay node, and the theorem has been proved till
now. |

Estimation Unbiasedness

5.2 Optimality Analysis

Now we analyze the optimality of our in-network
estimation approach.

Definition 1: Given a tree consisting of a node set,
the root centered set (RCS) is a connected node subset
which contains the root of the tree.

Lemma 1: Suppose that V; is a RCS of the aggrega-
tion tree ). Let P/ (k) be the estimate error covariance
matrix of the node v;’s filtering estimation for the I-
th scheduling period (v; € Vi and k =1 ¢). If all
the estimation information of the nodes in V; can
be aggregated to the sink v, within one scheduling
period by using our in-network estimation approach
presented in Section 3 and Section 4, we have P, (k) =

[Zievl(Pf(k))_l]_l-
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Proof: Because V; is a RCS of the aggregation tree
Q, it is also a tree obviously. Given relay node j in V;,
we assume 7} is a V;’s subtree rooted at node j. In the
following proof, we use the 1-relay, 2-relay and 3-relay
definitions which are given in the proof of Theorem
3. Because the sink does not sample the process state,
we assume P! (k) = co. We will prove that whether
relay node j is a 1-relay, 2-relay or 3-relay, we always
have P (k) = [S,cp, (P/(R) 7] .

First, we consider the node j is a l-relay node.
Since the children of node j are just the leaves and
all the estimates of j’s descendants can be aggregated
in node j within one scheduling period, we have
Pj(k) = [ ;er, (P{(k))~'] 7" according to Theorem 1.

Second, we consider the node j is a 2-relay node.
We assume le is the j’s children set in which the ele-
ments are all the 1-relay nodes and the j’s children set
V]leaf consists of the leaf nodes. Similarly, according

(&

to Theorem 1 and the above proof, we have

= |(P{) T+ Y (PR + D (BH(R) !

leviess levy,
= |(PIR) "+ > (PR)™ + > > (Pl(k
zevj{ﬁ;f eV} i€l

€T

Third, we consider the node j is a 3-relay node.
We assume V2 is the j’s children set in which the
elements are all the 2-relay nodes. Similarly, according
to Theorem 1 and the above proof, we have

Py(k)
=[(PI) ™+ D Bk D (PR
tev; eVl
+ > (PR
evz,
=[(PIR) ™+ Y Bk + Yo D (PR
levies eV} i€T
+ > D (PR
leVvy, €Ty

-1

€Ty

Since the sink is a 3-relay node obviously, we obtain
P (k) = [Yier, (Pf(k))~"~". In addition, T}, is actu-
ally V1. Therefore, the theorem has been proved.

L

Theorem 4: Suppose that the node subsets V; and
V5 are two RCSs of the aggregation tree () and satisfy
Vi C Va. By using our in-network estimation approach
presented in Section 3 and Section 4, P)1(k) and
PY2(k) are the estimate error covariance matrices of
the sink v,, for the I-th scheduling period based on
the estimates obtained from V; and V5, respectively
(k = lg). Then, we have tr[PY! (k)] > tr[P)2(k)].

Proof: Since V; C V3, there exists a node vy that
satisfy v; € Vo — Vi. We define Vi* & Vi (J{v1}. Let
P!(k) (> 0) be the error covariance of the v;’s filtering
estimate for the [-th scheduling period. By using our
estimate aggregation approach, if the estimation infor-
mation can be aggregated to v,, within one scheduling
period, we have PYi(k) = [}, oy, (PI(K)7']7! >
[ eve (P (k)™ -1 = P,‘l/ll(k) according to Lemma
1, else there exists a v;’s ancestor node v{ whose
estimation information can be aggregated to v,, within
one scheduling period and v{ may obtain a predicted
estimation information PP (k) (> 0) of v; based on
the previously received information, and thus we
also have PYi(k) > Py 11(lc) according to Lemma 1.
If V! = Vi, we have tr[PYV1(k)] > tr[PY2(k)], else
there exists a node vy that satisfy va € Vo — Vi,
and then we define V2 £ V' J{v2}. Based on the

_j1above set Construction method, we can obtain a set

sequence Vi c V2 - Cc V[ (r = |Vo = V| and
Vi = Vo). Accordmg to the above proof, we have
PYVi(k) > PV (k) > -+ > Py (k) = PY2(k). Therefore,
we have tr[PV (k)] 2 tr[PY2 (k)] O

Theorem 4 shows that the estimation accuracy of
the sink can be improved by aggregating the more
estimation information of the nodes from the network.
In addition, the new estimation information is more
useful for improving the estimation accuracy than the
old one obviously. Therefore, we can evaluate opti-
mality of our in-network estimation approach through
measuring how many nodes can send their updated
estimation information to the sink within delay con-
straints. Next, we will give the overall upper-bound
on the number of the nodes that can send their up-
dated estimation information to the sink within delay
constraints. Here the overall upper-bound refers to
maximum number of the nodes whose state estimates
of time k can be aggregated to the sink by any method
before time k + q.

Theorem 5: Suppose that n; is the number of the
nodes which are at the i-th level of the aggregation
tree ). Under any interference model, the overall
upper-bound of the number of the nodes whose esti-
mates for the state of time %k can be aggregated to the
sink by any method before time k + ¢ is >_7_; n;.

Proof: The upper-bound ¢ _, n; immediately fol-
lows from the fact that no matter what algorithm is
implemented and no matter what interference model
we will use, the sink can gather at most all the
estimates of the nodes whose level is less than or
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Fig. 4. An upper-bound example based on our esti- § ; . i
mate aggregation approach. 8 1ol

equal to ¢ within the delay constraint g. O
Theorem 6: Under the protocol interference model,
there is a placement of nodes such that the number
of the nodes whose state estimates of time k are
aggregated to the sink before time k + ¢ by using our
estimate aggregation can achieve the upper-bound

¢, n; provided in Theorem 5.

Proof: We prove by construction. In Fig. 4, we
construct a tree network example in which the root
has 4 children nodes and all the other nodes have
one child at most. There is only one node in the level
q, two nodes in the level ¢ — 1, three nodes in the
level ¢ — 2, and four nodes in the level ¢ — 3. The
distance between any pair of nodes in the network
is greater than r; except that between a child-parent
pair. By using our estimate aggregation approach,
every node obtains its own schedule time expressed
by (z,y) beside the node in Fig. 4 where z and y are
respectively the T'SFT and NSP of the node. From
the schedule, we can see that all the estimates of the
nodes whose level is less than or equal to ¢ can be
aggregated to the sink within the delay constraint q.
This finishes the proof. O]

Theorem 7: Under the protocol interference model,
the number of the nodes whose state estimates of time
k are aggregated to the sink before time k+ ¢ by using
our estimate aggregation is at least min{q,n}.

Theorem 7 is obvious according to our scheduling
algorithm EASDE.

6 SIMULATION ANALYSIS

We implemented the proposed in-network estimation
approach and conducted the simulation using MAT-
LAB 7.0. In our simulation, we randomly deploy the
sensors into a region of 200m x 200m. An aggregation
tree rooted at the sink is constructed by using the BFS
method. In fact, other aggregation tree construction
methods, like the method proposed in [27], are also
suitable. We consider the discrete-time linear djrnam-

ical system (1) and (2) with A = 10 and

0.5 1
R,, = I>. The measurement matrix B; is chosen from
the following matrices:

10 10 0 0
1 _ 2 _ 3 _
N R PR

0 20 40 60 80 100
Time (step)

Fig. 5. Covariance matrix trace at the sink for three
methods.

Assume the maximum level number of the aggrega-
tion tree is H. If the level number of node v; is less
than % - H, B; is set to B', else if the level number of
node v; is more than %H , B, is set to B3, else B, is set
to B2. The covariance matrix R; of the measurement
noise is chosen from 10- I3, 20- I3 and 30- I, randomly.
The initial state 2y and error covariance matrix R(0)
are respectively set to [10 1 ]T and 10 L.

For the performance comparison with our in-
network estimation approach, we implement a non-
aggregation estimation approach named NAE. In
NAE, each sensor node first performs a filter estima-
tion based on its own measurements, and then sends
the estimates to the sink along the aggregation tree
without data fusion at the relays. For satisfying the
delay constraint, the estimates are gathered by the
sink level by level starting from the lowest level.

First, we evaluate the overall efficiency of our in-
network estimation approach. The number of nodes
is 500. All sensors have the same transmission radius
which is fixed to 25m. The delay constraint ¢ is 100
time-slots. Fig. 5 compares the traces of the estimate
error covariance matrix of the sink with every es-
timation time step using the three methods. Here
the optimal method is the fusion-based estimation
method that performs the optimal estimate fusion
given in Theorem 1 on the estimates of the whole
network. On the one hand, it can be seen that our in-
network estimation approach has a similar estimation
performance to the optimal method. This is because
that our in-network estimation approach has the abil-
ity to compensate for the estimate loss of the remote
sensors by exploiting the temporal correlation of the
state. On the other hand, our in-network estimation
approach can gather more estimate information than
NAE within the delay constraint so that the estimation
performance of our method is better than that of NAE
in the most of the time. More importantly, the stability
of the estimation accuracy of our approach outper-
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Fig. 7. Average trace of covariance matrices at the sink
with different transmission radius.

forms that of NAE observably, and this performance
criteria is critical to control applications.

Second, we compare the estimation accuracy of our
in-network estimation approach with that of NAE
under the different network parameters. In Fig. 6,
the transmission radius of each sensor node is fixed
to 25m. The figure shows the average trace of the
covariance matrices at the sink by running the two
algorithms while the number of nodes increases. In
Fig. 7, the number of nodes is fixed to 500. The
figure compares the average trace of the covariance
matrices at the sink using the two algorithms when
the transmission radius varies. It can be seen from
the two figures that the average estimation accuracy
of our in-network estimation approach outperforms
that of NAE significantly. Moreover, the estimation
performance improvement will be larger with the
increase of the number of the nodes and the trans-
mission radius. This is because that the number of
the estimates gathered by the sink decreases when the
opportunity of the wireless interference increases.

Third, Fig. 8 and Fig. 9 show the traces of the
estimate error covariance matrix at the sink with every

35

— 5 q=100 X
—A— q=60 \

30| —%— =20

Covariance Matrix Trace at the Sink

10 20 30 40 0
Time (step)

Fig. 8. Covariance matrix trace at the sink for our in-
network estimation approach.

300

Covariance Matrix Trace at the Sink

Time (step)

Fig. 9. Covariance matrix trace at the sink for NAE.

estimation time step for our in-network estimation
approach and NAE, respectively. From Fig. 8, if the
delay constraint is reduced, the estimation accuracy of
our approach will degrade, and the degradation rate
is slow. However, as illustrated in Fig. 9, we can see
the estimation accuracy of NAE is influenced by the
delay constraints greatly. Once the delay constraint
is reduced, the estimation accuracy will degrade dra-
matically. Therefore, our in-network estimation ap-
proach can achieve a better tradeoff between estima-
tion accuracy and delay constraints.

7 RELATED WORK
7.1 State Estimation using WSNs

Estimation over lossy networks has been well studied
in recent years. Sinopoli et al. [11] considered the
problem of performing Kalman filtering with inter-
mittent observations whose arrival is modeled as a
random process. Smith et al. [12] proposed a sub-
optimal but computationally efficient estimator that
can be applied when the arrival process is modeled
as a Markov chain. In [13] and [14], the authors
proposed to estimate the process state (or encode the
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sensor measurements) at the sensor side of the link
without assuming any statistical model for the data
loss process. Schenato et al. [15] designed the optimal
estimators over lossy networks under the TCP-like
and UDP-like communication protocols respectively.
All the methods mentioned above treat a network
of communication links as a single end-to-end link
with some data loss model. By using the memory
and processing ability of intermediate nodes, Gupta et
al. [31] proposed a recursive algorithm for information
processing at the nodes of the network so that the
estimator can calculate the optimal state estimate for
any packet-dropping process, but the strategy is only
for the single source case.

Distributed estimation is an important signal pro-
cessing problem for wireless sensor networks. If the
sensors in networks exchange and fuse their sensing
information, the resulting estimate can be better than
that based on the sensor own measurements. Roume-
liotis et al. [16] decomposed a single Kalman filter
into a number of smaller communicating filters for
the multirobot localization problem. Sun et al. [17]
proposed a multi-sensor optimal information fusion
criterion weighted by matrices in the linear minimum
variance sense. Based on this optimal fusion criterion,
a general multi-sensor optimal information fusion
decentralized Kalman filter with a two-layer fusion
structure was given for discrete time linear stochastic
control systems with multiple sensors and correlated
noises. However, all of the above referenced works are
restricted to single-hop networks. For many applica-
tions, large-scale sensor networks are needed to collect
data from a wide area. Distributed estimation for
multihop networks has also attracted strong interests
recently. Based on consensus averaging, Schizas et
al. [18] presented a distributed Kalman smoother state
estimator. Three novel distributed Kalman filtering
algorithms for sensor networks were proposed in [19].
Speranzon et al. [20] proposed a new distributed
algorithm for cooperative estimation of a slowly time-
varying signal using a wireless sensor network. How-
ever, the above mentioned algorithms for multihop
networks are all iterative in nature, and they are not
suitable for the network with one fixed sink because
their convergence cannot be guaranteed within any
given time window.

7.2 Delay-Efficient Scheduling for Data Aggrega-
tion

Data aggregation is considered to be an effective
method for improving the delay performance in mul-
tihop wireless networks. In multihop WSNs, every
intermediate node combines all received data with
its own data according to an aggregation function,
and transmits the aggregated data rather than the
raw data in the network. Consequently, the data ag-
gregation delay from the network to a distinguished

sink and the energy consumption are reduced because
the data needed to be scheduled in the network is
reduced [21] [22].

Minimum delay data aggregation in WSNs
under various interference models has been proven
to be NP-hard [24], and several approximation
algorithms have been proposed recently, e.g.,
[24] [25] [27] [26] [28]. Chen et al. [24] proposed
an algorithm to generate a collision-free schedule
with a latency bound of (A — 1)R, where A is
the maximum node degree and R is the network
radius. Huang et al. [25] proposed a centralized
aggregation scheduling algorithm with the latency
bound 23R + A — 18, and the algorithm is based on
a simple primary interference model: no node can
send and receive simultaneously. Under the protocol
interference model, Wan et al. [26] proposed three
centralized data aggregation methods for networks
when nodes have the same transmission radius
and interference radius. An efficient distributed
algorithm that produces an interference-free schedule
for data aggregation was proposed in [27], and
the delay is at most 24D + 6A + 16 time-slots
where D is the network diameter. Xu et al. [28]
proposed a distributed aggregation scheduling
method generating interference-free schedules with
an upper-bound on delay of 16R + A — 14 time-slots
where R is the radius of the network..

There have been lots of work on delay-efficient
aggregation scheduling in WSNs and the object is
to minimize the total time of aggregating the whole
sensor data from the network to the sink, but there
is no work on the estimate aggregation scheduling
for large-scale network systems in which the object
is to gather maximum sensor information at the sink
within stringent delay constraints.

In [15] and [35], the authors suggested jointly ad-
dressing estimation and communication problems in
NCSs, but they did not give any practical solutions.
In [36] and [37], the authors jointly addressed the
estimation and communication problems in CPSs, and
designed an adaptive-reliability transport protocol.
But they did not consider the real-time issue of control
systems.

8 CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we jointly addressed the state estima-
tion and scheduling problems in multihop WSNs.
For accurately estimating a process state as well as
satisfying rigid delay constraints, we proposed an
in-network estimation approach which includes two
coupled parts: the estimation operations performed
at sensor nodes and an aggregation scheduling al-
gorithm. Our in-network estimation operation per-
formed at intermediate relay nodes not only op-
timally fuses the estimates obtained from different
sensors but also predicts upper stream sensors’ esti-
mates which cannot be aggregated to the sink before
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deadlines. Our estimate-based aggregation schedul-
ing algorithm, which is interference-free, is able to
aggregate as much estimate information as possible
from a network to a sink within delay constraints.
The unbiasedness of our in-network estimation has
been proved, and the theoretical analysis about the
estimation optimality and the simulation results show
that our approach can achieve a considerably high
estimation accuracy.

CPSs have been attracting significant attention in
the past few years. Though the research of CPSs
can benefit from the related theoretical and technical
results of communication, control, embedded comput-
ing, etc, simply integrating the various techniques to
build CPSs is usually not efficient or even not feasible.
It is because that the optimization of every compo-
nent or subsystem of a system does not insure the
optimization of the whole system. A more desirable
method is to jointly design or optimize the different
parts of the networked system. This paper gives an
initial attempt to co-design the estimation and trans-
mission methods over cyber-physical networks, and
the further efforts are still required.

First, as one of the future research directions, the
duty cycle wireless networks should be considered.
For saving the limited energy of sensor nodes, the
duty cycle design of WSNs is prevalent in practice.
Therefore, how to tradeoff the energy consumption
and the control performance is an urgent issue in
CPSs. Second, the cyber-physical network usually
supports the multiple control tasks which have the
different QoS demands, and thus another problem
is how to effectively schedule the different kinds
of feedback data for meeting the different system
performance demands in the network. Third, this
paper only considers the centralized control scheme in
which the sensor data are gathered to one sink, but
the distributed control is more appropriate in some
scenarios. The cyber-physical co-design of wireless
networking and control for distributed control sys-
tems is still open.
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