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Abstract—As a large scale real sensor network system,
GreenOrbs reveals that locating sensor nodes in the forest still
faces great challenges because of volatile and fluctuating envi-
ronmental factors. In this paper, we present a novel localization
scheme, EARL, which provides accurate reference nodes and
good ranging quality. We exam the range quality along routing
paths by taking complex environmental factors into account,
such as forest density, temperature and humidity. To improve
localization accuracy, we use power scanning technique to judge
the accuracy reference nodes and further calibrate the bad nodes
through reverse-localization. To overcome the error propagation,
we assign different weights to the range measurement accord-
ing to the ranging quality. We implemented our localization
scheme in GreenOrbs testbed, and evaluate through extensive
experiments. The results demonstrate that EARL outperforms
the current localization approaches with better accuracy. The
localization accuracy achieved by our method is around 20%
higher than best existing methods.

I. INTRODUCTION

Localization, as a fundamental service in WSNs, has at-
tracted more attention in recent years. Although the Global
Positioning System (GPS) is widely used in outdoor local-
ization, it still works poorly in indoor [1], underground [2]
and the forest [3]. Our work is motivated by the project of
GreenOrbs [4], one of the world’s largest wireless sensor
networks. In order to monitor the forest condition and carbon
emission, thousands of sensor nodes are deployed to collect
various data including temperature, humidity, illumination,
and carbon dioxide. The potential applications of canopy
closure [4] calculation, climate change observation, and search
and rescue in the forest need the location information of sensor
nodes in the wild to make the data useful and meaningful.
And the experiences of GreenOrbs indicate that locating sensor
nodes in the forest still faces difficulties. Especially, environ-
mental noises, such as illustrates, temperature, humidity and
canopy closure, affect the accuracy of the location results. For
traditional range-based localization, RSSI is used as the main
method to estimate the distance between two sensor nodes.
However, the interfering factors, as well as the complex terrain
and obstacles (shrubs and tree trunks)in the forest badly affect
the signal propagation.

The accuracy of localization is determined by the ranging
quality. Most methods focus on the accuracy of either range
measurements or reference nodes, neglecting the relationship
between two sensor nodes, environmental influence, and the
nodes density in extent area. Some range-free approaches are

more likely to bring about large errors. Sensor nodes may
locate on the midperpendicular of two anchors when it has
the same hop-counts to two anchors. Nevertheless, such node
could be closer to one anchor because the obstacle between
them hinder the wireless communication quality.

In this paper, we propose an environmental aware local-
ization approach, EARL, which inherits the advantages of
range-free localization methods, and obtains better metric in
the localization process. Meanwhile, environmental noises in
the forest are comprehensively investigated to gain the good
ranging quality and the influence caused by the obstacles, such
as trees and shrubs. We implement our method in GreenOrbs
testbed, and compare the performance with DV-Hop and
CDL [3]. The result shows that our scheme outperforms
existing approaches. The main contributions of this work are
as follows.

(1) We propose a novel localization metric called Joint
Neighbor Distance (JND), which measure the distance be-
tween nodes while taking environmental noises and factors
into account. Using JND, the preliminary estimated node
locations are more accurate than other localization methods.

(2) In order to obtain better ranging quality, we design a
neighbor node relation verification technology through power
scanning and neighboring node comparison. Such process
identifies nodes with good location accuracy (called good
nodes) from existing nodes with high accuracy.

(3) We present a two-phases location calibration to rectify
node locations. We first calibrate the nodes on the boundary of
deployment region, and verify the good nodes through mutual
node relation technology. Then, we improve the location
accuracy by good nodes.

(4) We implement EARL in GreenOrbs, and evaluate its
performance with extensive experiments. The results demon-
strate that our method outperforms other existing schemes, and
the mean error is roughly 20% better than that of CDL which
is one of the best scheme proposed very recently.

II. RELATED WORKS

Many approaches have been proposed to determine the
location of sensors in WSNs. Existing work mainly falls
into two categories: range-based and range-free localization.
Range-based approaches measure the distance and/or the an-
gles of neighbor sensor nodes which are randomly deployed
in the field through multiple skills. Although Time of Arrival
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(ToA) [5], Time Difference of Arrival (TDoA) [6] [7]and
Angle of Arrival (AOA) [1] [8], being the main techniques
in range-based localization, could lead to accuracy results,
the costs of them would be high, and such methods could
not be spread to large-scale system. An alternative range-
based approach is RSSI-based ranging measurement, which
is popular in practical deployment. Researchers have tried to
convert RSSI value to relative distance in reality. However,
empirical studies have demonstrated that RSSI is sensitive
to environmental noises as well as the hardware difference
of sensor nodes. Although RSSI could indeed reflect the
communication quality to some extent, it is still not a good
choice for accuracy ranging measurement in the outdoor.
Range-free approaches mainly depend on simple sensing, such
as network connectivity, anchor proximity or event detection.
Centroid [9], APIT [10], DV-Hop [11], MDS-MAP [12],
RPA [13] which depend on connectivity measurements are
proposed with low system cost in recent years. One of the
advantages is that only small amount of anchors are needed
to establish global coordinates. To achieve high accuracy,
however, more anchors are necessary, which is proved imprac-
tical in large-scale networks, especially in the wild. Another
range-free approach is beyond connectivity [14].Based on the
experimental observation, the radio signal strength weakens
approximately monotonically with the physical distance, a
neighbor sequence acquired through RSSI is used to capture
the relative distance between 1-hop neighboring nodes. Then,
the rough relationship between sensor nodes is gained through
comparing the neighbor sequence. CDL [3] is proposed very
recently. It is motivated by the need for accurate localization in
GreenOrbs, a large-scale forest based sensor network system,
is a combination of range-based and range-free scheme. It
pursues better ranging quality through the localization pro-
cess.It designs the virtual-hop algorithm according to their
observation to address the non-uniform deployment problem.
Furthermore, the local filtration and ranging-quality aware
calibration are used to gain better ranging quality. However,
this work does not mention the influence brought about by the
natural vegetation and environmental obstacles.

III. PRELIMINARY RESULTS AND MOTIVATION

This work is motivated by the project of GreenOrbs, one
of the largest wireless sensor networks in the world, aiming
at establishing a long-term monitoring system in the forest.
One of GreenOrbs systems locates in a campus forest in
Zhejiang Foresty University. As shown in Figure 1. It consists
of more than 200 TelosB sensor nodes having MSP430 MCU
and CC2420 RFIC integrated on board. The running software
is based on TinyOS 2.1.1. The purpose of this system is to
monitor the forest by collecting forest factors.

A. Preliminary Experiments

Our statistical experimental data shows that RSSI is quite
susceptible to environment. Figure 2 shows the RSSI sensing
results from TelosB nodes in outdoor experiments conducted
in 24 hours. The transmission power is set to be 31. We

Fig. 4. RSSI value in two different environments

collect the temperature, humidity and illumination information
as well. Generally, environmental factors such as temperature
and humidity do affect the wireless transmission in some
extent. We calculate the Correlation Coefficients according to
Equation 1 to present the linear relationship between environ-
mental factors and RSSI value. In this Equation, Cov(RSSI,
P) means the Correlation Coefficients between RSSI value and
the Parameter (temperature, humidity and illumination). The
rssi and p in the equation stands for the RSSI value and its
relative parameter in temperature, humidity and illumination
in every sample points. The correlation score is 0.0613 in
temperature to RSSI value. The same results are 0.0907 and
0.1325 respectively in humidity to RSSI value, and illumina-
tion to RSSI value. In addition, we exam the RSSI value in
different temperature, humidity and illumination respectively.
Figure 3 illustrates the relationship between RSSI value and
other three parameters separately. The blue square, cross and
circle in all three figures indicate the raw RSSI value (taken
in 24 hours) according to different temperature, humidity and
illumination. We wire the value of every RSSI value with
red line, and formulate the curve with green lines to fit the
original value. Empirically, the relationship between RSSI
value and three main parameters in the forest is quite hard to
capture. Therefore, taking temperature, humidity, illumination
and RSSI into account, it is quite difficult to estimate the
distance between nodes.

Cov(RSSI, P ) =

∑
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∑
p
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∑
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N )(
∑
p2 − (

∑
p)2

N )
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On the other hand, the monotonic RSSI-distance relation-
ship of sensor node indeed present the location information
to some extent. In [14], the authors indicate that any single
node’s RSSI sensing results for its neighboring nodes can be
used as an indicator for the relative “near-far” relationship
among neighbors. However, such view can only be accepted
under one constraint, which is that sensor nodes deployed
evenly in open environment without any obstacles. Figure 4
illustrates the RSSI result of two sensor nodes. Those two
sensor nodes are deployed in different distances apart with
and without any obstacles between them. As expected, we find
that the obstacles in between those two nodes play important
roles in affecting wireless transmission. Wireless signal could
be absorbed and reflected by obstacles, and under the effect
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(a) Deployment sensor nodes in the forest (b) Connectivity in the forest

Fig. 1. GreenOrbs deployment in the campus forest

(a) Temperature and Humidity (b) Light (c) RSSI

Fig. 2. RSSI in different RF output power level

(a) Temperature VS. RSSI (b) Humidity VS. RSSI (c) Illumination VS. RSSI

Fig. 3. RSSI in different RF output power level

of multipath effect, the signal strength will be attenuated
dramatically. In the presence of obstacles, the RSSI value
increase from distance 45 to 50 because of experiment error,
and we demonstrate it to be normal. Open area will lead to
better wireless communication quality.

B. Experiments In The Wild

We then conducted a large scale outdoor experiment under
three different environments to reveal the relationship between
distance, power level and RSSI. The first experiment is con-
ducted in campus forest, woods with thin tree density and
grass with few trees. We put two TelosB sensor nodes in
these three environment, the distance between them is 10
meters. Figure 5 displays the empirical data obtained from
the three priori experiments. The horizontal axis presents the
RF output power level, and the vertical axis is the RSSI value.
We evaluate the RSSI value in different RF power level in ten

times, and the blue dots in the figures refer to the value in
different power level (neglecting the repeat value). According
to the blue dots, the RSSI value may vary dramatically for
identical RF output power level. For example, as shown in
Figure 5(a), RSSI value ranges from -40dBm to -35dBm when
the power level is 4. On the other hand, a single RSSI value
may correspond to a wide range of RF output power level. For
instance, in the same figure, -29dBm could range from the 9th
to 14th RF power level. Even worse, -21dBm covers 17th to
26th RF power level. Hence, we wire the mean value of RSSI
in every RF power level in red line, and we formulate the
curve (green lines) to fit the original value. Hence we utilize
this kind of curve to present the changing situation of RSSI
in different RF output power level.

In the second experiment, we deploy 11 sensor nodes in
the same three areas to measure the changing pattern of RSSI
according to different RF power level and pairwise distance.
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(a) Grass (b) Woods (c) Forest

Fig. 5. RSSI in different RF output power level

(a) Forest (b) Woods (c) Grass

Fig. 6. RSSI value according to RF power level in three environments

The anchor node is placed in the center of an area, and the
rest 10 nodes are deployed around the anchor. The distance
between the sensor node the anchor is in every 5 meters,
ranging from 5 meters to 50 meters. The anchor node transmits
a beacon packet in every second, and the 10 nodes record the
RSSI value when they receive the beacon packet. The initial
RF power level is set to 1, and the power level increases 1 at
a time with every beacon until 31. We fit the recorded RSSI
values into corresponding curves, and plot them in Figure 6.

From this experiment, first of all, it is quite clear that when
the RF power level increases, anchor node could reach more
neighboring nodes. In the open area, all the neighboring sensor
nodes could be reached in the third or the fourth RF power
level. When it comes to the woods with thin tree density,
although there are some trees in the woods, the space between
many sensor nodes and the sink is quite clear, having no trees
in the line. Hence the effect of trees is greatly reduced. In the
figure, we could see that most of the nodes could be reached
in less than the fifth RF power level. While in the forest,
with the same distance between two nodes, packet should be
transmitted in a much higher transmission power level than
that of in the woods and open area. Assume that trees are
planted randomly but evenly in the campus forest, the ”near-
far” relationship between neighboring nodes could be obtained
according to the sequence of the sensor reached with the RF
power level increasing.

Secondly, when the RF power level increases, anchor n-
odes could reach more neighboring nodes. In Figure 7, 10
sensor nodes are located around the anchor nodes in each
environment, with the same deployment. In the forest, only one

Fig. 7. The Neighboring Nodes Count when RF Power Level Increase

neighbor node could be reached in the third RF power level,
because of the thick tree density. In comparison, three and
six neighboring nodes are reached under the same RF power
level in the woods and grass respectively. The furthest node is
deployed in 50 meters away to the anchor node, when the RF
power level turns to 4, all the neighboring nodes around the
anchor in the grass are reached, and eight nodes are sensed
in the woods. However, only two report their existence. In
this experiment, the minimum RF power level to reach all the
nodes is 15 in the woods and 22 in the forest. Therefore, it
is undoubtedly that in wireless sensor network, where sensor
nodes are deployed evenly, the more neighboring nodes being
reached in maximum RF power level, the better wireless
signal transmission quality, which consequently leads to the
conclusion that the density in this area is much lower.

Moreover, in the forest, many curves share the similar RSSI
according to the different power level, hence the curves can
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be categorized into many clusters. After we check the location
of these sensor nodes in the forest, however, we discover that
nodes, sharing the similar RSSI curves, are located in the same
area, these wireless signals are all blocked by the same trees or
obstacles. Besides, if the two nodes are located with the same
distance to the anchor node, whether or not there are trees or
obstacles between them, both of these two nodes still share
the similar RSSI changing situation curves. Consequently, the
final calibration of localization system is required after the
initial localization result.

IV. EARL SYSTEM DESIGN

This section presents the main idea of a range-free localiza-
tion scheme. Traditionally, average hop distance is calculated
in the network to measure the real distance between the nodes
and the landmarks. In the project of GreenOrbs, sensor nodes
are randomly deployed, we consider EARL in this network
by three steps: neighboring node relation estimation, JND-hop
localization and error aware calibration.

In neighboring node relation estimation phase, each node
initially senses their neighbor nodes’ absolute near-far relation.
Sorting the neighbor sequence of one node through RF power
scanning will compensate particularly for the error of RSSI
value alone.

Subsequently, EARL locates the nodes’ location using a
range-free approach. In order to calculate the distance between
nodes and landmarks, it counts the JND-hops (Joint Neighbor
Distance hops) instead of DV-hops, taking the transmission in
the forest when facing obstacles and trees into account.

EARL executes the calibration in the next process. We
verify the nodes which are located on the boundary, and
calibrate them in the first place. The nodes with reasonable
localization accuracy (called good nodes) are selected through
reverse-localization, and neighbor sequence is used as a metric
to calibrate the bad nodes (with large localization error) with
help of good nodes. After carefully calibration, the mean error
would decline greatly.

In the next subsections, we will elaborate on the design of
these three phases respectively.

A. Neighbor Relationship

In previous range-free localization works, a node can obtain
their neighboring nodes according to sensed RSSI results.
The near-far relationship of neighboring nodes are sorted
according to the RSSI value in decreasing order. A curve is
concluded by observing the relationship between RSSI and
distance as PL(d) = PL(d0)− 10× η× log( dd0 )+Xσ where
PL(d) represents the reduction in received signal strength
after propagating through a distance d. PL(d0) denotes the
path loss at a short reference distance d0, and η is the path
loss factor or signal propagation constant. In addition, Xσ is
a random environment noise, which follows X ∼ N (0,σX2 ).

However, the mapping of RSSI distance is in fact not
reliable enough. We collect the RSSI values from 10 sensor
nodes in the above experiment in one time-instance, and
obtain a decreasing order of neighboring nodes sequence. We

Fig. 8. Nodes Sensed by Different RF Power Level

discover that in real scenario, the RSSI value changes a lot,
and cannot be used as a reliable metric to estimate the distance.

The preliminary experiment records the RSSI value in
different RF power level. In the forest, trees are somehow
evenly distributed. With the RF power level increases, more
neighboring nodes can be reached. Therefore, a neighborhood
ordering of a node can be obtained with the sequence of
appearance of neighboring nodes according to the increasing
RF power level. A simple example is shown in Figure 8. In this
figure, when the RF power level is 3, only node G is reached
by a packet broadcast by the anchor node A. When the power
level increases to 4, node C, E and B is reached. Similarly,
node F and D are reached when the power level turn to 5.
Therefore, a near-far relationship information of neighboring
sensor nodes around a certain node can be obtained as {G, C,
E, B, F, D}.

B. Testbed In The Woods

In order to confirm the observation from previous sec-
tion, we construct a 2-dimensional random-deployed network
testbed in the woods to evaluate the neighboring nodes infor-
mation.

Fig. 9. Testbed in the woods

1) Experiment Setup: Figure 9 shows the experiments s-
cenario of a large woods with low tree density in a campus
of Zhejiang Agriculture and Forestry University. We deployed
50 TelosB sensor nodes randomly and the network covers an
area of roughly 100 × 100 square meters. Each sensor node,
with antennas pointing to the sky, is placed 1.3 meters above
the earth by a stainless steel frame.

In the woods scenario, the difference in the density of trees
will lead to the attenuation of wireless signal strength, and
obstacles in the wild heavily affect the wireless transmission
radius. Therefore, under the same RF power level, different
numbers of neighboring nodes could be reached. Suppose
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sensors A, B and C are the anchor nodes in the testbed, all
the packets in other nodes could be transmitted to the anchor
nodes through multi-hop transmission, and the hop distance in
each hop is unequal.

Fig. 10. Neighbor Count of nodes in the testbed

2) Performance: Figure 10 plots the neighborhood size of
each node. X-axis lists ID of each node and Y -axis indicates
the count of neighboring nodes in one-hop distance at that
position. This figure verifies that nodes located in open area
have more 1-hop neighbors than those which are blocked by
the trees, and the boundary nodes have smaller neighbor nodes
size.

C. Mutual Neighbor Information

In the previous test, we find that sensor node could reach
more neighboring nodes if they are deployed in a an open
environment, such as low tree densities and less obstacles in
the area. As a result, the transmission radius and the one-hop
distance are both increased. In GreenOrbs, the sensor nodes
are deployed randomly at uniform. The trees therefore play
an important role in affecting wireless transmission among
sensor nodes. In the subarea with high tree densities, the
transmission radius is much smaller, therefore, the neighbor
count will be relatively low. We find that the neighbor count
of nodes, in some extent, reflects the transmit radius. Many
interesting approaches have been proposed for localization
with mere connectivity information. Considering the limited
communication range of each sensor node, it only knows
which nodes are nearby under its local communication range.
Unfortunately, according to the irregular RSSI value alone,
it does not know how far and which direction its neighbors
are. Here, we use the proximity distances and connectivity
information to estimate the location of sensor nodes in the
forest. First, a few nodes with known position deployed in the
network, are used as landmarks. Then, in order to estimate the
distance from the nodes to the landmarks, we propose Joint
Neighbor Distance (JND) to estimate the distance of each pair
of nodes. JND calculates the neighboring nodes count in one-
hop transmission radius along this path, by taking environ-
mental factors, such as tree density, obstacles, canopy closure,
into account. We use JND, which is defined in Equation 2,
to quantify the impact from surrounding enviorment on the
distance measures.

JND(Xi, Xj) = NC(Xi, Xj)
⋃
NC(Xj , Xi) (2)

Fig. 11. Example of Joint Neighbor Count

Where NC(Xi, Xj) is the Neighbor Count (the number of
neighbors) of Xj with respect to Xi, when the transmission
radius of sensor Xi just touches sensor Xj . The JND between
any pair of 1-hop neighbors is the sum of the mutual neighbor
count of these two nodes.

Take an example in Figure 11. With the power level
growing, the sequence of neighboring nodes being sensed can
be obtained. Ideally, if a node can reach a farther node with
larger RF power level, it can also cover the nearer ones. The
transmission radius could reach sensor B, it could cover sensor
F, G and H as well. Similarly, sensor B could cover sensor D,
E, G and H when the transmission radius is DAB , which is the
Euclidean distance between A and B. Therefore, NC(A,B)=4,
and covers {B, F, G, H}, while NC(B,A)=5, covering {A, H,
G, E, D}. Therefore,

JND(A,B) = NC(A,B)
⋃
NC(B,A) = 4 + 5− 2 = 7

(3)
The reason of subtracting 2 is because sensor G and H both
appear in NC(A,B) and NC(B,A). The environmental-
aware localization initially estimates nodes locations using a
range-free method. Instead of DV-hops, it utilizes the JND to
calculate the estimated distances along the path between a pair
of sensor nodes. Similar to DV-hop, the relative distance turns
to the smallest accumulated JND instead of shortest path-hops.
With the help of the accurate location information from beacon
nodes, the expected physical distance for 1 unit JDN is given
by Equation 4:

JNDunit =

∑
i6=j Distance(Rk, Rj)∑

i6=j JND(Rk, Rj)

=

∑√
(Xk −Xj)2 + (Yk − Yj)2∑

i 6=j JND(Rk, Rj)
(4)

Where Distance(Rk, Rj) is the Euclidean distance be-
tween landmarks Rk and Rj . Then, each node computes its
distance to the landmarks as: Di,k = JNDunit•JND(vi, Rk)
where Di,k is the distance from node vi to the landmark Rk.
After estimating the distances to the beacon nodes, similar
to DV-hop, each node computes its coordinates based on
trilateration using Least Square Estimation.

D. Calibration

After calculating the initial estimated locations of sensor n-
odes, calibrations should be processed. The calibration process
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consists of three steps: boundary nodes detection, good nodes
verification and bad nodes calibration.

In the localization process, the neighbor nodes information
is utilized as a metric to measure the distance between
landmarks and nodes. Empirically, boundary nodes have small
neighbor count, which will lead to the great error of locations
of these nodes. In order to verify the boundary nodes, we select
one node as a root from the located nodes to establish a tree,
and record all the leaf node of this tree. These leaf nodes could
be regarded as possible boundary nodes. Every located nodes
should be chosen as root node to form a tree, and we could
compute a weight for each node: Pi = Ni

Nnode−Nlandmark
. Pi

represents the possibility for that node to be a boundary node.
Ni is the number of sensor i being estimated to be a boundary
node. Nnode and Nlandmark represent the amount sensors in
the filed and the landmarks respectively.

Those nodes which are located in the center have low
weight, thus we select a threshold to filter these absolute
none-boundary nodes. Then, we compute the Virtual Neigh-
bor Count (VNC) by V NC(i, j) = NC(j, i) × Pi where
V NC(i, j) stands for the virtual neighbor count of sensor i
according to sensor j and j is the nearest neighbor of sensor
i. The NC(j, i) denotes as sensed neighbor count of sensor
j according to sensor i. The maximum of V NC(i, j) and
NC(i, j) will be selected as the Calibrated Neighbor Count
(CNC). CNC will replace the original NC to re-locate these
possible boundary node again through CNC. In this case, the
error of boundary nodes will decrease.

In addition, according to the JND scheme, we could obtain
the set of nodes which are located on the boundary of the area
by the coordinate of each nodes. Empirically, the JND of these
nodes will be different from the ground truth, experiencing
great errors, because of the small neighbor count. We firstly
calibrate the nodes located on the boundary of the area. We
check the neighbor sequence of every boundary node, and
choose the neighbor count of nearest neighbor nodes to be the
neighbor count of related boundary node.

Generally, in open area, RSSI value between two nodes
decreases monotonically as the distance between them increas-
es. But in the wild scenarios, such as forest, RSSI value is
heavily affected by the trees and other surrounding obstacles,
which is not reliable when obtaining neighbor sequence. In
the process of the neighbor scanning, the near-far relationship
of neighboring nodes can be obtained according to the appear-
ance order when the RF power level increase. However, every
RF power level increases, the transmission radius increases
none-linearly, and more than one neighboring nodes may be
added into the neighbor sequence. In order to get more correct
neighboring node sequence, we propose a two step process.
First of all, when the RF power increases one level, we put the
nodes which appears in this level into one group. As shown in
Figure 8, when the power level is 4, sensor G appears, and put
into first group. When the power level climb to 6, sensor B, C
and E, while F and D are sensed when the power level grow to
8. Hence the neighboring nodes are divided into three groups,
((A), (G), (B, C, E), (D, F)). In the certain subarea, where the

neighboring nodes are being sensed in some specific RF power
level, the near-far relationship according to certain anchor can
be obtained through RSSI. Secondly, the RSSI value of sensor
nodes in every group are about to be measured. Therefore, we
denote the neighboring nodes sequence around sensor i to be
Si, e.g., SA can be sorted as (A, G, C, E, B, F, D).

Fig. 12. Neighbor sequence in calibration

As shown in Figure 12, sensor B is the next hop of sensor
A, the neighboring nodes sequence of sensor A is presented
as SA = (E, C, F, D, B). Similarly, SB = (H, G, F, A).
According to the JND localization scheme, node A initially
sorts its neighbors in the ascending order with respect to the
estimation distance to them, generating the second neighbor
nodes sequence, denoted as SA′ . Theoretically, the sequence
SA and SA′ should be identical if the estimation is correct.
However, if there is a significant mismatch between them,
the node’s estimated location would be wrong. We also take
Figure 12 as an example. Sensor B is the ground truth node
in real deployment, while the B’ is the estimation location
of sensor B. Then SA′ is (E, C, F, B’, D). Comparing with
SA, where there is light mismatch between SA and SA′ , the
only obvious mismatch occurs in sensor D and sensor B. The
difference between SB and SB′ is metric of localization error
of sensor B. In this case, we introduce the ratio of longest
common subsequence of neighbor nodes, denoting as ηA to
filter good nodes from bad nodes. Empirically, the ratio of
longest common subsequence of a good node is higher than
that of a bad node, hence we set a threshold to filter the good
nodes from bad nodes.

Unfortunately, some pre-selected good nodes still suffer
from relatively high localization errors. Therefore, we have
to calibrate these good nodes. In this phase, we propose
a novel calibration scheme, called reverse-localization. We
randomly select four good nodes to be reverse-landmarks,
and pretend the original four landmarks to be unknown. We
recompute the localization scheme to locate the four original
landmarks, and record the error. If the results are within an
acceptable boundaries, these four nodes can be proved to be
good nodes. After iterating reverse the four original landmarks
and recording the error, we select one set of four nodes to
be the absolute good nodes if the error of these four nodes
are minimum. To some extent, we have eight landmarks then,
and we calibrate other relative good nodes by these eight
landmarks, which will decrease the mean error of localization
dramatically. Figure 13 shows the results after selecting four
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Fig. 13. Verify good nodes

good nodes: Va, Vb, Vc and Vd. The black dots are the ground
truth of each node’s position, and the red circles are the
calculated locations of each node.

V. PERFORMANCE EVALUATION

We implement EARL in GreenOrbs to locate all the sen-
sors in the forest. The performance of EARL is evaluated
through testbed evaluation and large scale experiments. We
also implement DV-hop, and CDL [3] scheme for performance
comparison.

A. Experiments on Testbed

In the first experiment, we setup our testbed in the campus
woods near the laboratory, the deployment is illustrated in
Figure 9. 50 sensor nodes are randomly deployed, among
which some nodes are located behind trees, while some are in
the open area without any obstacles. We set four sensor nodes,
which are marked by red circles, located in the corner of area
as landmarks. The result of EARL is ploted in Figure 14(a), the
black dot is the ground truth of the nodes, and the blue squares
are the estimated location of each nodes. It is quite obvious
that those located in the open area have lower error, and others
located behind trees have relatively higher error. Meanwhile,
we also localize these 50 nodes with DV-hop and CDL, and
the performance comparison are shown in Figure 14(b). The
mean error resulted from our method is no more than 5 meters,
CDL takes 9, and DV-hop’s is larger. Figure 14(c) shows the
CDF of DV-hop, CDL and EARL. From experimental results,
we could see that the performance of DV-Hop is the worst.

B. Large-scale experiment

Then, we take a large-scale experiment, with more than 200
sensor nodes are deployed randomly in the forest near the
laboratory. We record the neighbor count of each nodes, and
calculate JND of each pair of nodes. The natural vegetation in
the forest is quite unexpected and irregular. Some places are
covered by shrubs and some by trees, therefore the wireless
transmission radius is effected greatly, as shown in Figure 1.

Corresponding to the deployment, GreenOrbs consists of
near 230 sensor nodes in a rectangular coordinate. Sensor
nodes are placed roughly 1 meter high above the earth by
a stainless steel frame. Some of the nodes are covered by
shrubs, some are located behind big trees, and some are above
the open ground. Environmental data is transmitted to sink

Fig. 16. Impact of the number of landmarks

through multi-hop. Four nodes positioned near the boundary
of the deployment are chosen as landmarks. We have tested
the localization results of three approaches and the results are
shown in Figure 15. In Figure 15(a), the black dot is the
ground truth of every nodes the forest, the red circles are
the estimated location of every sensor nodes, and the blue
square is the location computed by EARL. We connect every
ground truth of nodes to its calculated location through CDL
and EARL respectively, the length of the line represents the
error of localization. It is clear that most of the nodes have less
error by EARL than by CDL. We choose 100 sensor nodes
randomly from the deployment, and compare the error between
CDL and EARL as shown in Figure 15(b). The blue cross
stands for the error of EARL while the red square means the
CDL. Generally, most of blue crosses are below red squares,
which demonstrates that the performance of EARL is better
than CDL.

Figure 15(c) shows the cumulative distribution of location
errors of three localization schemes. It is easy to see that JND
achieves high localization accuracy than DV-hop and CDL.
Owing to the complex environment in the forest, the hop
distance is quite unexpected. Hence the DV-Hop performs
the worst, it does not taking the difference of transmission
radius facing obstacles or trees, and the mean error is around
40 meters. The CDL works much better, but when facing
larger scale networks, the mean error is roughly 12 meters.
The JND undergoes approximately 9 meters error in the
forest. The results of three localization methods are plotted
in Figure 15(c). We take half of nodes in this figure.

Due to the complicated deployment environment and local-
ization schemes in the forest, the number of landmarks has
great impact on the localization accuracy, especially in the
wild. In our experiment, we tune the number of landmarks
from 4 to 16, and compare the results with CDL and DV-
Hop. Figure 16 plots that more landmarks help improve the
localization accuracy for all approaches. It is worth mentioning
that localization error of EARL reduced constantly comparing
CDL and DV-hop. Through observation, when utilizing JND,
over 90% of sensor nodes experience relatively lower local-
ization errors than DV-hop and CDL.

VI. CONCLUSION

In this work, we present environmental aware localization
scheme EARL, which takes the joint neighbor count to mea-
sure the distance between two nodes. This paper presents
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(a) Localization results of DV-hop (b) Absolute Error of Three Schemes (c) Overall Localization Results in the Woods

Fig. 14. Localization in the Woods

(a) Localization result of EARL and CDL (b) Absolute Error of Two Schemes in the Forest (c) Overall Localization Results in the Forests

Fig. 15. Localization in GreenOrbs

our experience from establishing large-scale wireless sensor
networks. We find that the network is highly affected by the
complex environment factors, which will further affect the
localization accuracy. Therefore, we propose Joint Neighbor
Distance as a metric to depict the distance between node pairs.
Our extensive experimental results demonstrate that EARL
outperforms existing approaches in terms high accuracy and
efficiency in the forest.
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