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Abstract—Localization is a fundamental issue of wireless sensor
networks that has been extensively studied in the literature. Our
real-world experience from GreenOrbs, a sensor network system
deployed in a forest, shows that localization in the wild remains
very challenging due to various interfering factors. In this paper,
we propose CDL, a Combined and Differentiated Localization
approach for localization that exploits the strength of range-free
approaches and range-based approaches using received signal
strength indicator (RSSI). A critical observation is that ranging
quality greatly impacts the overall localization accuracy. To
achieve a better ranging quality, our method CDL incorporates
virtual-hop localization, local filtration, and ranging-quality
aware calibration. We have implemented and evaluated CDL by
extensive real-world experiments in GreenOrbs and large-scale
simulations. Our experimental and simulation results demon-
strate that CDL outperforms current state-of-art localization
approaches with a more accurate and consistent performance.
For example, the average location error using CDL in GreenOrbs
system is 2.9 m, while the previous best method SISR has an
average error of 4.6 m.

Index Terms—Localization, ranging quality, received signal
strength indicator (RSSI), wireless sensor network (WSN).

I. INTRODUCTION

L OCALIZATION is crucial for many services provided by
wireless sensor networks (WSNs) [22], which have re-

ceived substantive attention in recent years. The Global Posi-
tioning System (GPS) consists of popular localization schemes,
but usually fails to function indoors [11], under the ground [10],
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or in forests with dense canopies [14]. Range-based approaches
measure the Euclidean distances among the nodes with various
ranging techniques [16], [20], [25]. They are either expensive
with respect to hardware cost, or susceptible to environmental
noises and dynamics [23]. Range-free approaches perform lo-
calization by relying only on network connectivity measure-
ments. However, localization results by range-free approaches
are typically imprecise and easily affected by node density.
This work is motivated by the need for accurate location

information in GreenOrbs [14], a large-scale sensor network
system deployed in a forest. An indispensable element in
various GreenOrbs applications is the location information of
sensor nodes for purposes such as fire risk evaluation, canopy
closure estimates, microclimate observation, and search and
rescue in the wild. Our real-world experiences of GreenOrbs
reveal that localization in the wild remains very challenging,
in spite of great efforts and results developed in the literature.
The challenges come from various aspects. First, nonuniform
deployment of sensor nodes could affect the effectiveness of
range-free localization. On the other hand, for range-based
localization, the received signal strength indicators (RSSIs)
used for estimating distances are highly irregular, dynamic, and
asymmetric between pairs of nodes. To make it even worse,
the complex terrain and obstacles in the forest easily affect
RSSI-based range measurements, thus incurring undesired but
ubiquitous errors.
Ranging-based localization techniques often produce better

localization than range-free techniques. Ranging quality deter-
mines the overall localization accuracy. Bearing this in mind,
recently proposed approaches focused more on error control
and management. Some of those methods enhance the localiza-
tion accuracy by deliberately reducing the contribution of error-
prone nodes to the localization process [13]. Other schemes are
to identify large ranging errors and outliers relying on topolog-
ical or geometric properties of a network [7], [28].
Ranging quality indeed includes two aspects. One of them

refers to the location accuracy of the reference nodes. The other
concerns the accuracy of range measurements. Both aspects
play important roles on the accuracy of localization. Most of
the recently proposed techniques address only one aspect, thus
failing to achieve satisfactory accuracy.
To address these challenges and limitations, we propose

CDL, a Combined and Differentiated Localization approach.
CDL inherits the advantages of both range-free and range-based
methods. It starts from a coarse-grained localization achieved
by method such as DV-hop, and then it keeps improving the
ranging quality and localization accuracy iteratively throughout
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the localization process. The contributions of this work are
summarized as follows.
1) We propose a range-free scheme called virtual-hop local-
ization, which makes full use of local information to miti-
gate the nonuniform node distribution problem. Using vir-
tual-hop, the initial estimated locations are more accurate
than those output by other range-free schemes.

2) To improve the ranging quality, we design two local
filtration techniques, namely neighborhood hop-count
matching and neighborhood sequence matching, to find
nodes with better location accuracy. The filtered good
nodes can be used to improve the location accuracy of
neighboring nodes.

3) Using the good nodes to calibrate the bad ones, we employ
the weighted robust estimation to emphasize contributions
of the best range measurements, eliminate the interfering
outliers, and suppress the impact of ranges in between.

4) We implement CDL in GreenOrbs system with more than
300 sensor nodes deployed in a forest and evaluate it with
extensive experiments and large-scale simulations. Our ex-
perimental and simulation results demonstrate that CDL
outperforms existing approaches with high accuracy, effi-
ciency, and consistent performance. For example, the av-
erage location error using CDL in GreenOrbs system is
2.9 m, while the previous best method SISR has an average
error of 4.6 m.

The rest of this paper is organized as follows. Section II
briefly reviews the related work. Section III presents real-world
observations on GreenOrbs. The design of CDL is elaborated in
Section IV, followed by performance evaluation in Section V.
We conclude the paper in Section VI.

II. RELATED WORK

The existing work on localization falls into two main cate-
gories: range-based and range-free localization.
Range-free approaches, such as Centroid [2], APIT [5], and

DV-HOP [17], mainly rely on connectivity measurements (for
example, hop count) from landmarks to the other nodes. Since
the quality of localization is easily affected by node density
and network conditions, range-free approaches typically pro-
vide imprecise estimation of node locations. Range-based ap-
proachesmeasure the Euclidean distances among the nodes with
certain ranging techniques and locate the nodes using geometric
methods, such as TOA [1], TDOA [18], [20], and AOA [16]. All
those approaches require extra hardware support.
RSSI-based range measurements are easy to implement and

are popular in practice. Empirical models of signal propagation
are constructed to convert RSSI to distance [21]. The accuracy
of such conversions, however, is sensitive to channel noise, in-
terference, and multipath effects. Moreover, when there are a
limited number of landmarks, range-based approaches have to
undergo iterative calculation processes to locate all the nodes,
suffering significant accumulative errors [13].
More recent proposals mainly focus on the issue of error con-

trol and management [12], [27]. Liu et al. [13] propose iterative
localization with error management. Only a portion of nodes

are selected into localization, based on their relative contribu-
tion to the localization accuracy, so as to avoid error accumula-
tion during the iterations. Similarly, Kung et al. [8] propose to
assign different weights to range measurements with different
nodes and adopt a robust statistical technique to tolerate out-
liers of range measurements [7].
A range-free approach beyond connectivity is proposed

in [28]. The signature distance is proposed as a measure of
the Euclidean distance between a pair of nodes. In order to
address the issue of nonuniform deployment, the authors further
propose regulated signature distance (RSD), which takes node
density into account. Based on the comparison among nodes’
neighbor sequences, RSD is quantified. This approach needs to
be integrated with a certain existing localization approach to
function.
Differing with most of the existing approaches, CDL is

a combination of range-free and range-based schemes. It
can independently localize a WSN. CDL addresses the issue
of nonuniform deployment with virtual-hop localization
(Section IV-A). Utilizing the information of estimated node
locations, RSSI readings, and network connectivity, CDL filters
good nodes from bad ones with two techniques (Section IV-B),
namely neighborhood hop-count matching and neighbor-
hood sequence matching. CDL pursues better ranging quality
(namely more accurate reference locations and more accurate
ranging) throughout the localization process. This is the most
significant characteristic of CDL that distinguishes it from
existing approaches.
For ease of presentation, we use the terms “ranging” and

“range measurement,” and “location” and “coordinates,” inter-
changeably throughout the rest of this paper.

III. PRELIMINARY AND DESIGN MOTIVATION

A. GreenOrbs

GreenOrbs is an ongoing research project that aims at
building long-term large-scale WSN systems in the forest. It
adopts TelosB motes with MSP430 processor and CC2420
radio. The software running on the nodes is developed based
on TinyOS 2.1. There are 330 nodes in a deployment area of
about 40 000 m . The majority of Greenorbs nodes should
be deployed where environmental information is required by
forestry applications. The rest are used to improve network
connectivity.
The collected data can be utilized to support a wide va-

riety of applications, e.g., distance-dependent competition
measurement for predicting growth of individual trees, light
detection and ranging to characterize forest stand condition,
and percentage estimation of ground area vertically shaded by
overhead foliage. These applications generally require accurate
coordinates of sensor nodes’ locations to provide high-quality
information of the forest [9], [14], [26].
This work is carried out in GreenOrbs. The ground-truth co-

ordinates of the nodes are measured using an electronic dis-
tance measuring device (EDM) [3]. The measurement process
is hence laborious and time-consuming. So far, we have suc-
ceeded in measuring the coordinates of 100 nodes, as shown in
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Fig. 1. GreenOrbs deployment in the campus woodland.

Fig. 2. RSSI of different node pairs.

Fig. 1. The observations and experiments in this paper are then
mainly conducted using those 100 nodes.

B. Observations

As shown in Fig. 1, most sensor nodes are under dense tree
cover, where GPS usually does not work [1]. Even in areas with
less dense tree cover, our experience shows that the errors pro-
duced by a portable GPS device (compared to an EDM) are
often about 15 m. Thus, locating nodes basically comes down to
in-network localization. This section presents real-world obser-
vations on GreenOrbs, which illustrate that a single approach,
whether it is range-based or range-free, has limitations in lo-
cating a number of nodes in the wild.
1) Nonuniform Deployment: Driven by forestry applica-

tions, GreenOrbs deploys more sensor nodes in regions with
diverse or uneven vegetation to provide fine-grained informa-
tion of the monitored area. Such a rule leads to nonuniform
deployment of sensor nodes, as we can see from Fig. 1. Specif-
ically, some nodes have more than 20 neighbors, while some
nodes have less than 5 neighbors. The shortest distance is 5 m,
and the longest is around 108 m. Range-free localization in a
nonuniform deployment often incurs large errors.
2) Irregularity of RSSI: Besides the nonuniform deployment

problem, complex terrain and obstacles (e.g., shrubs and tree
trunks) also affect signal propagation in the forest. Fig. 2 plots
the RSSI between node pairs in GreenOrbs at a certain time. It
also includes a curve, which shows the mapping between RSSI
and the distance based on the log-normal shadowing model

(1)

where denotes the reduction in received signal strength
after propagating through a distance , stands for the
path loss at a short reference distance , is the path loss factor
(also named signal propagation constant), and is a random
environment noise following reported in [19].

Fig. 3. RSSI between nodes and over time.

Fig. 4. Workflow of CDL.

We can see that the real distances between node pairs differ
greatly from the model-based estimations. Though the mapping
between the RSSI and the distance is actually very uncertain,
RSSI still offers useful information. In most cases, a stronger
RSSI corresponds to a shorter distance, as is also observed in [4]
and [28].
3) Asymmetry and Dynamics of RSSI: Fig. 3 shows the RSSI

of two directed links and between two nodes and
in GreenOrbs over time. The distance between and is

41.27 m. We can see that the RSSI between two nodes is asym-
metric. Two pairwise links often have unequal RSSI. Moreover,
RSSI is often susceptible to environmental factors, such as hu-
midity and temperature. The RSSI over a directed link also fluc-
tuates over time.
In summary, we have the following important observations

on GreenOrbs. First, the sensor nodes are deployed with diverse
densities in different regions, causing the nonuniform distribu-
tion problem. Second, RSSI is very unstable and sensitive to
various environmental factors. The uncertainty of RSSI is hard
to model in practice, therefore RSSI-based range measurements
exhibit quite diverse errors. To make matters even worse, typ-
ically only large ranging errors can be detected or tolerated by
the existing approaches.

IV. CDL DESIGN

We consider locating a network of wireless nodes on a two-
dimensional plane by using the connectivity information and
RSSI readings. A few nodes, which know their own coordinates
once they are deployed, are used as landmarks. The design of
CDL mainly consists of virtual-hop localization, local filtra-
tion, and ranging-quality aware calibration. Fig. 4 illustrates
the CDL workflow.
Virtual-hop localization initially estimates node locations

using a range-free method. In order to approximate the dis-
tances from each node to the landmarks, we let each node count
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Fig. 5. Intuition of virtual-hop distance: (a) cumulative distribution of node
distances; (b) relationship among neighbors with different hop counts.

the virtual hops instead of DV-hops, compensating particularly
for the errors caused by the nonuniform deployment problem.
Subsequently, CDL executes an iterative process of filtration

and calibration. In each filtration step, CDL uses two filtering
methods to identify good nodes whose location accuracy is al-
ready satisfactory.Neighborhood hop-count matching filters the
bad nodes by verifying a node’s hop counts to its neighbors. Fur-
thermore, neighborhood sequence matching distinguishes good
nodes from bad ones by contrasting two sequences on each
node. Each sequence sorts a node’s neighbors using a partic-
ular metric, such as RSSI and estimated distance.
Those identified good nodes are regarded as references and

used to calibrate the location of bad ones. Links with different
ranging quality are given different weights. Outliers in range
measurements are tolerated using robust estimation.
In Sections IV-A–IV-C, we elaborate on the design of the

above three phases respectively.

A. Virtual-Hop Localization

For the first phase of CDL, virtual-hop localization initially
computes node locations. This is an enhanced version of hop-
count-based localization. Compared to the DV-hop scheme, vir-
tual-hop particularly addresses the issue of nonuniform deploy-
ment. Based on the output of virtual-hop localization, the sub-
sequent localization processes in CDL (filtration and calibra-
tion) are expected to achieve higher accuracy and efficiency of
iteration.
1) Weakness of Range-Free Localization Algorithm: As an-

alyzed in [15], there is a theoretical limitation on range-free lo-
calization algorithm that is based only on connectivity. Suppose
sensor nodes are randomly distributed in the monitoring area.
Each sensor can be regarded as a node in a graph, so that two
nodes are connected by an edge if and only if they can com-
municate with each other in one hop, i.e., they are less than
the distance from each other. It is possible to move a sensor
node over nonzero distance without changing the set of its 1-hop
neighbors. The original and moved locations of nodes are in-
distinguishable from the point of view of the network connec-
tivity. The average Euclidean distance between its original lo-
cation and a moved location that does not change the network
connectivity gives a lower bound on the expected resolution
achievable.
As shown in Fig. 5(a), a sensor node can be moved distance

without changing the connectivity if there is no sensor in the
shaded area.

Fig. 6. Same hop counts have different distances.

TABLE I
SYMBOLS AND NOTATIONS

Nagpal et al. [15] have claimed that is the ex-
pected lower bound for the error in any range-free localization
algorithm in static sensor networks, where is the connec-
tivity degree, and the nodes only use the connectivity informa-
tion of the seeds within their first-hop neighborhoods.
DV-hop is one of the common range-free localization ap-

proaches that utilize connectivity information to estimate node
locations. Every node counts its hop counts to landmarks. The
distance between a node and a landmark is calculated as the
product of the hop count between them and the per-hop dis-
tance, which is a predetermined constant for all the nodes. The
location of a node is calculated by using Least Squares Estima-
tion. However, nodes with the same hop often have quite dif-
ferent distances to landmarks. Fig. 6 shows some nodes that are
within three hops away from the landmark. For example, nodes
and are both two hops away from landmark , while

is closer to landmark than . A constant value of per-hop dis-
tance for every node often causes errors on distance calculation
from a node to landmarks. As a result, the localization accuracy
of DV-hop is far from satisfactory.
2) Virtual-Hop: Since traditional hop-count-based tech-

nology does not differentiate two distances with the same hop
counts, we propose a metric virtual-hop-count, , to represent
the distance between an ordinary node and a landmark .
Among the nodes with the same hop count to , nodes closer
to should have a smaller . For ease of presentation,
Table I lists the symbols and notations used in this paper. Each
node computes its by

(2)

where
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consists of two parts. The first part is the average virtual-
hop-count of node ’s previous-hop neighbors. The second
part is the last virtual-hop-count—that is, the incremental vir-
tual-hop-count from ’s previous-hop neighbors to , denoted
by . Here, a node ’s previous-hop neighbor is defined as
a neighboring node whose hop count to landmark is just
one hop less than , (denoted by in Table I). ’s next-hop
neighbor is defined as a neighboring node whose hop count is
just one hop more than (denoted by in Table I).
We now explain the intuition behind our definition of vir-

tual-hop-count using probability analysis. Fig. 5(b) shows the
relationship among neighbors with different hop counts. The
concentric circles separately denote the location boundary of
1-hop, 2-hop, and 3-hop neighbors of landmark . The dashed
circle denotes the communication range of who is a 2-hop
neighbor of . The intersection, denoted as , of the
dashed circle and the small circle (centered at ) is the region
where ’s previous-hop neighbors locate. The intersection, de-
noted as , of the dashed circle and the big circle centered
at is the region where ’s next-hop neighbors could locate.
For any node , as long as the distance between it and

landmark (denoted by ) satisfies , it has
two hops to . In this case, the maximum residual of two
distances with the same hop count is close to . For virtual-hop,
such two nodes have different virtual-hop-counts. For ease
of explanation, we assume connectivity degree is and
calculate the residual of node ’s last virtual-hop-count to

denoted by defined in (2). The closer is to , the
larger the area of , and smaller is, while DV-hop
has a constant hop count. The maximum value of is close
to 1. The minimum value of is close to

. The
upper bound for expected ranging error of DV-hop is ,
while the bound for virtual-hop is . . Therefore,
virtual-hop can reduce both the upper bound and average of
localization error when is greater than 3.
Let be the set of landmarks in the sensor network whose

exact positions are known in advance. Let be the Euclidean
distance between landmarks and . The per-virtual-hop
distance, denoted as , regarding landmark is calculated
by

(3)

Each node without known location then estimates its dis-
tance, denoted as , to each landmark by

(4)

After calculating the distances to landmarks, each node com-
putes its coordinates based on trilateration using Least Square
Estimation (LSE), which is similar to DV-hop.
3) Localization Accuracy of Virtual-Hop: We carry out

an experiment using the data from GreenOrbs to compare
virtual-hop localization with DV-hop, which includes 100
ordinary nodes and four landmarks. The experimental result is
shown in Fig. 7. We can see virtual-hop outperforms DV-hop

Fig. 7. Virtual-hop versus DV-hop.

remarkably. The performance gain of using virtual-hop varies
much among different nodes.
By fully exploiting the connectivity information of the

local neighborhood, virtual-hop-counts finely characterize
the nonuniform distribution properties with more reasonable
hop counting. Nevertheless, it is worth noticing that there are
still sizable errors m at many nodes. Those nodes with
sizable location errors should be identified and calibrated. We
will present the solutions in Sections IV-B and IV-C. Without
causing confusion, hereafter we use “estimated coordinates” to
denote the node coordinates before filtration.
Given the estimated coordinates, the iterative process of fil-

tration and calibration further enhances localization accuracy.
This involves the following two design criteria. First, filtration
must identify as many good nodes with high localization accu-
racy as possible to facilitate calibration. Second, a good node is
likely to have both good and bad links. Only the good links (with
small ranging errors) should dominate calibration, while the im-
pact of the bad linksmust be restrained. Filtration addresses the
first criterion, while calibration resolves the second.

B. Local Filtration

Filtration consists of two steps: neighborhood hop-count
matching and neighborhood sequence matching. Neighborhood
hop-count matching identifies the bad nodes with apparently
wrong coordinates according to the residual between the real
hop counts and estimated hop counts. Neighborhood sequence
matching distinguishes good nodes from bad ones according
to the matching degree between RSSI sequence and distance
sequence.
1) Large Error of Model-Based Filtration: Filtration is very

important in CDL. In order to illustrate its significance, we
carry out an experiment to examine the efficacy of location
calibration without differentiating good nodes and bad nodes.
We call this straightforward model-based calibration indis-
criminate calibration. Using such calibration, every node’s
location is adjusted directly based on the distances to neighbors
converted from RSSI, using the log-normal shadowing model.
Fig. 8 compares the localization errors of nodes before and

after indiscriminate calibration. In this experiment, we set the
parameters as , . Surprisingly, we find the output
to be even worse than before. Model-based filtration is infea-
sible, considering the estimated localization error and irregu-
larity of RSSI.
Based on the information available, there are two ways to es-

timate the distances between two nodes, for example and its
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Fig. 8. Indiscriminate calibration.

Fig. 9. ADM reflects the localization error of a node. (a) Good node with a bad
neighbor. (b) Bad node with good neighbors.

neighbor . One way is to calculate the distance based on their
estimated coordinates, denoted by . The other converts the
RSSI from to into a distance (tentatively named RSSI-dis-
tance) based on the log-normal shadowing model, denoted by
. Ideally, we expect . Due to the errors of esti-

mated coordinates and the error from the log-normal shadowing
model, however, there is often some difference between them.
By summing up corresponding to every neighbor ,
we can measure the Aggregated Degree of Mismatches (ADM)
of .
ADM actually reflects the error of a node’s estimated loca-

tion. For example in Fig. 9(a), is a good node (whose esti-
mated location is close to its real location) with six neighbors.
Among them, only is a bad node. Let denote its estimated
location. Clearly, the ADM of is mainly caused by . In
Fig. 9(b), is a bad node with six good neighbors. The link
to every neighbor contributes to the ADM of . By comparing
these two figures, we can see the ADM of a bad node is typi-
cally higher than that of a good one. Thus, we may distinguish
good nodes from bad ones by contrasting their ADMs.
2) Neighborhood Hop-Count Matching: To quantify ADM,

each node takes neighborhood hop-count matching as the first
step to identify whether it is a good node based on local connec-
tivity information. Note that hop count is indeed a rough estima-
tion of the distance between two nodes. If a node’s hop counts to
its neighbors greatly mismatches the distances calculated using
the nodes’ estimated coordinates, w.h.p. the local node’s coor-
dinates will have a large error. We use as an example to illus-
trate the matching procedure.
First, every node exchanges the estimated coordinates with its

2-hop neighborhood. Second, after received the estimated coor-
dinates of , estimates the distance between them, denoted
by . Third, for each node within its 2-hop neighborhood,
estimates the hop count to as , where is the

Fig. 10. Neighborhood sequence matching. (a) Good note with a bad neighbor.
(b) Bad node with good neighbors.

communication range. Fourth, computes its ratio of matched
hop counts within its 2-hop neighborhood as follows:

(5)

(6)

(7)

where denotes the hop count from to and is the
number of its 2-hop neighbors of . denotes the mean
matched ratio in the neighborhood of . If , regards
itself as a bad node, which has an apparent error in its estimated
coordinates. Otherwise, the role of node is left undetermined
for further filtration.
Hop counts actually offer relatively limited information to

filtration. As a result, neighborhood hop-count matching only
identifies a small portion of bad nodes with apparently wrong
coordinates. In order to ensure that all the sifted good nodes do
have satisfactory location accuracy, we need to further filter bad
nodes. In Section IV-B.3, we illustrate our scheme of neighbor-
hood sequence matching.
3) Neighborhood Sequence Matching: Though model-based

straightforward filtration is infeasible, RSSI still offers useful
information. Generally, the RSSI between two nodes decreases
monotonically as the distance increases observed from the RSSI
readings in Fig. 2. Based on this observation, we propose a fil-
tration scheme called neighborhood sequence matching.
First, sorts its neighbors in descending order with regard

to the RSSI from them, generating a sequence number for each
neighbor. By mapping the sequence numbers into , we get
the first sequence called RSSI sequence. Let denote it, as
illustrated in Fig. 10.
Second, according to the estimated coordinates, sorts its

neighbors in the ascending order with regard to the estimated
distance to them, generating the second sequence called dis-
tance sequence. Let denote it.
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In an environment without noises, and should be iden-
tical. If there is significant mismatch between them, it indicates
a large error in the node’s estimated coordinates. We use the
same examples as that in Fig. 9 to illustrate the above idea. As
shown in Fig. 10(a), there is not a significant mismatch between
and in this case. Comparatively in Fig. 10(b), there ap-

pears to be significant mismatch between and .
Now the difference between and is caused by the fol-

lowing categories of reasons: the location estimation errors, the
irregularity of RSSI between and its neighbors, and the log-
normal shadowing model for estimating distance using RSSI.
Since the location estimation error is analyzed before, we

discuss the influence of the irregularity of RSSI. From Fig. 2,
we can think that RSSI still satisfies the property that it de-
creases with the increase of the distance between two neigh-
boring nodes.
The next step is to quantify the distance between RSSI se-

quence and distance sequence to distinguish good nodes from
bad ones. In order to improve the filtration performance, we
need to suppress the influence of the irregularity of RSSI first.
The cosine distance is a measure of similarity between two

vectors by finding the cosine of the angle between them. It is
considered to be used to measure the similarity between se-
quences and . Given two vectors of attributes, the cosine
distance is represented using a dot product and magnitude as
follows:

(8)

In (8), are the sequence numbers in , while
are the sequence numbers in . These two se-

quences are actually two different permutations of .
Thus, they are two equal sets. The cosine distance filtration
reduces the influence of RSSI irregularity. For example, RSSI
sequence is , and distance sequence is

as shown in Fig. 10(a) is equal to
0.967. As the irregularity, occurs local flips in the nodes
with similar distance such as and , or and . It may
become , then becomes 0.978, which
is close to the theoretical value. The cosine filtration distance
has good fault tolerance to suppress the influence of RSSI
irregularity. Upper bound of is 1, lower bound is

, which is not less than 0.5.
However, when a good node has some bad neighbors with

large location errors, the cosine distance between two sequences
of a good node does not apparently differ from that of a bad
node. To deal with this issue, we introduce the longest common
subsequence (LCS) length ratio . Let denote the number of
’s neighbors. Then, denotes the ratio of the length of the

LCS between and to . It is easy to see that the LCS
length ratio of a good node is higher than that of a bad node.
The LCS length ratio is error-tolerant to interference of bad

neighboring nodes with large location estimation errors. The
boundary of is between 0 and 1.

Fig. 11. Filtration result of virtual-hop.

We define the matching degree between the RSSI se-
quence and distance sequence as follows.

(9)

Clearly is a better metric to distinguish good nodes from
bad nodes.When a small portion of RSSI readings has relatively
large errors, or a good node has some bad neighbors with large
location errors, the matching degree cannot be influenced too
much.
We use the same trace as that in Fig. 7 to calculate the

matching degree of all the nodes after initial localization. The
results are plotted in Fig. 11. Nodes of a matching degree over
0.6 have location errors of less than 4 m. We regard them as
good nodes. Nodes of less than 0.4 degree have location errors
over 5 m. We regard them as bad nodes. The other nodes have
matching degrees between 0.4 and 0.6, but their location errors
vary from 0.1 to 12 m. The excessive number of bad neighbors
with large location estimation errors or bad RSSI measurements
causes some good nodes with relatively low matching degree.
It is by far too hard to decide whether they are good or bad.
Thus, we tentatively set them as undetermined nodes.
For ease of expression later, we use as a mark of node .

, , and mean is a bad node, an
undetermined node, and a good node

(10)

Here, and are two empirical parame-
ters, called the lowermatching threshold and the uppermatching
threshold. One can increase both thresholds to execute stricter
filtration. One can also decrease both thresholds to allow more
nodes to contribute as good nodes in the calibration process. The
tradeoff in the threshold settings could be an interesting issue to
study. We leave it for future work.

C. Ranging-Quality Aware Calibration

1) Motivation of Range-Quality Aware Calibration (RQAC)
Approach: Given the range measurements between bad node
and its good neighbors, the estimation of ’s location usually
works by minimizing an objective function, denoted by , over
node pairs , which is denoted by

(11)
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where takes different forms with different approaches.
We use RSSI for calibration, which adjusts the node locations
so as to minimize (9).
When LSE is used

(12)

where denotes the distance estimated by LSE and denotes
the RSSI range measurement between and its neighbor
based on the log-normal shadowing model. The problem with
LSE is that it does not differentiate between nodes and links.
LSE leads to error diffusion where a bad link will seriously af-
fect good links. It suffers great errors when outliers are present
in locations or range measurements.
Snap-Inducing Shaped Residuals (SISR) [8] outperforms

LSE by assigning different weights to the range measurements
with different neighbors

otherwise
(13)

where , , , and are constant parameters. Once a node is
identified as either a good or bad node, its contribution to the
calibration is fixed.
SISR actually prefers the uneven situations where the ma-

jority of range measurements are accurate. It is proposed to
cope with the presence that small amounts of ranging mea-
surements have large non-Gaussian errors. It is inefficient in
GreenOrbs System where ranging errors are not uneven, as
shown in Section IV-A.
To address the limitations of LSE and SISR, our scheme,

called RQAC, adopts the weighted robust estimation technique.
2) RQAC Estimator: As the set of undetermined nodes in-

cludes both good and bad, we only use good nodes as references
and do not include any undetermined nodes in the calibration.
From the viewpoint of , the ranging quality of its neighbor
is simultaneously determined by two factors: the location accu-
racy of , and the ranging error over the link from to .
RQAC estimates the ranging quality of a good node with its
good neighbors as follows:

(14)

otherwise
(15)

where is a preconfigured parameter, and ensures that
each good node only communicates with its good neighbors to
estimates its ranging quality. The weight of good node in
calibrating bad nodes is defined as a normalized value of

(16)

We can see that good nodes of different ranging quality have
different weights. A good node has a relatively high weight if its
estimated location is highly accurate and the ranging quality of
all its links is good. Otherwise, the weight of the good node will

Fig. 12. Localization performance.

be relatively low. The objective function of RQAC is defined as
follows:

(17)

Note that and thus jointly denote the ranging quality
from to , and is a constant parameter.
As we can see from (17), range measurements to are di-

vided into two classes according to their ranging quality. The
range measurements with errors less than contribute more to
the calibration process by taking the quadratic form of .
For a range measurement with an error not less than , its contri-
bution is suppressed by taking the logarithmic form of .
Moreover, range measurements in the same class are also dif-
ferentiated from each other by taking the weights of reference
nodes into account. In this way, RQAC respects the con-
tributions of the best range measurements, eliminates the inter-
ference of outliers, and suppresses the contributions from the
ranges in between.
3) Analysis of RQAC: An Illustrative Simulation: As for the

parameter setting in RQAC, a small expresses a conservative
calibration strategy. Only a small fraction of the best range mea-
surements receives enough respect, which results in highly ac-
curate calibration but likely more rounds of iterations. A large
expresses an optimistic calibration strategy. Many good range
measurements make contributions, such as increasing the effi-
ciency of iterations but likely introducing new errors. Getting an
appropriate is also important to RQAC. Basically, a smaller
results in more accurate calibration and also increases the pos-
sibility of falling into the local minimum. In contrast, a lager
may cause RQAC to degrade to ordinary LSE. In our work, we
get and from the empirical results of our experiments.
In the simulation, we placed 30 nodes on a plot of ,

where and . Fig. 12 is an illustrative experiment
comparing localization performance of least-squares, SISR, and
RQAC under exactly erroneous link of one node. The mean
error of least-squares grows along with the input error, while the
results of SISR and RQAC go up a little and then decrease into
place. That is because the influence of bad link is weakened by
the estimator when measurement error exceeds a certain level.
Furthermore, the suppression result of SISR is not as significant
as RQAC. For RQAC, if the link errors are less than the certain
level, their contributions may also be different from each other.
The introduction of can treat distinctively for different nodes
with different location accuracy and link quality.
The RQAC estimator is based on robust statistics. Robust

statistics methods [6] is tools for statistics problems in which
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Fig. 13. Error at different PRR.

underlying assumptions are inexact. It is well known that the
LS error estimates can be arbitrarily wrong when outliers are
present in the data. The estimation can be altered without bound
by an extremely noisy outlier. In contrast, the median estimator
is not as susceptible to such polluting data, and is considered a
robust estimator.
The RQAC is a weighted method. Each node has different

ranging quality with different weight values. The ranging
quality of node is decreased with the increasing of link
errors. For SISR estimator, the function will sustain quadratic
growth when link error is below a threshold. For RQAC es-
timator, the growth trend is restrained by decreasing ranging
quality .

V. PERFORMANCE EVALUATION

We have implemented CDL with GreenOrbs. The per-
formance of CDL and other three existing localization ap-
proaches—namely DV-hop [17], MDS-MAP(C,R) , and SISR
[8]—is evaluated through real experiments and large-scale
simulations.

A. Experiments on Real Outdoor System

Corresponding to the deployment map in Fig. 1, Fig. 15 plots
the 100 GreenOrbs nodes in a rectangular region. Four nodes
positioned near the border of the deployment area are selected as
landmarks. In our experiments, we use a globally synchronized
duty-cycling mechanism and the CTP protocol to collect data
from the nodes. There are two kinds of data: one is sensing data
(i.e., temperature, humidity, illumination, etc), and the other is
networking data (i.e., neighbor node IDs, RSSI, routing path,
etc).
The localization experiments are implemented based on

the collected data traces in an offline manner. According to
the list of neighbor node IDs, the hop counts from landmarks
to each node can be calculated. Then, localization result of
DV-hop algorithm is obtained. According to connectivity
information and RSSI readings, the localization performance
of MDS-MAP(C,R), SISR, and CDL can be worked out. In
Sections V-A.1 and V-A.2, experiments of CDL and SISR are
executed for six iterations.
1) Impact of Unreliable Wireless Links: Fig. 13 compares the

RSSI-ranging error and localization performance of CDL and
SISR using one month’s data of GreenOrbs. During that month,
the environmental factors, such as temperature, humidity, and
wind power, changed frequently. As a result, the system expe-
rienced fluctuating packet reception rate (PRR). We use PRR as

Fig. 14. Overall localization results.

Fig. 15. Localization results of SISR and CDL.

the indicator of wireless link quality, the change of which actu-
ally reflects the impact of environmental dynamics.
RSSI ranging error is the residual between real distance and

estimated distance by RSSI ranging based on (1), which usually
increases as the PRR shrinks. CDL outperforms SISR under all
the five PRR. The local filtration and ranging-quality aware cal-
ibration of CDL tend to select the nodes and links with good
ranging quality. This tendency appears to have more apparent
effect when the quality of wireless links becomes diverse, sup-
pressing the negative impact of unreliable wireless links on the
ranging results.
When PRR decreases to 51%, the average RSSI-ranging error

increases to more than 15 m, and the minimum error is close
to 30 m. That is because the changes of environmental factors
affect the reliability of wireless links. These outside interfer-
ences cause irregular RSSI readings and PRR degradation. A
high PRR indicates relatively regular RSSI readings and stable
environment.
In order to have a good performance, we select the data in

consecutive duty cycles with PRR above 96% for all the rest
experiments. We set the parameters as , , ac-
cording to the empirical results [19].
2) Comparison Among Approaches: Fig. 14 plots the cu-

mulative distribution of the localization errors using the four
approaches. It is easy to see that SISR performs better than
DV-hop and MDS-MAP(C,R). Thus, we only compare the re-
sults of SISR and CDL in Fig. 15.
Fig. 15 shows that for almost all the nodes, CDL achieves

higher accuracy than SISR. A detailed explanation of the results
can be found in Fig. 14.
Using CDL, 100% of the nodes have errors of less than 7 m,

while 65% of them have errors of less than 3 m. Using SISR,
at most 70% of nodes have errors of less than 7 m, and at most
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TABLE II
RSSI-RANGING ERROR AND ITS IMPACT (METERS)

Fig. 16. Impact of multipath effect.

35% of nodes have errors of less than 3 m. It is also interesting to
see that CDL achieves the most consistent performance among
the four approaches. The average localization errors of the four
techniques are 8.7, 5.9, 4.6, and 2.9 m.
From Fig. 14, we can see the performance of DV-hop is

the worst. Actually, we observe in the experimental results
that many different nodes are estimated to the same locations
by DV-hop because they have the same hop counts to the
landmarks, but their real locations are far from each other.
Another interesting finding is that SISR and MDS-MAP per-

form similarly. In other words, a node with a large error in
MDS-MAP usually has a large error in SISR as well. Moreover,
due to the “snap-in” behavior of SISR, it is able to suppress the
negative impact of noisy range measurements. SISR therefore
achieves slightly better accuracy than MDS-MAP.
3) Impact of Multipath Effect: In the forest, the complex

terrain and obstacles may cause multipath effect. As shown in
Fig. 1, there are many big trees in the left center of the deploy-
ment area, which makes surrounding nodes’ RSSI readings ir-
regular. The big tree trunks obstruct communication among the
nodes on opposite sides (e.g., nodes 65 and 73). The RSSI read-
ings among them are weakened. At the same time, the trunks
reflect signal from the same side (e.g., nodes 66 and 67). The
RSSI readings among the nodes are strengthened.
Fig. 16 compares the localization results of CDL and SISR in

this area. The numbers above the braces are the node IDs, the
numbers in the braces indicate the local filtration results in two
iterations. 0, 0.5 and 1 indicate the node judged to be a bad node,
an undetermined node, and a good node, respectively.
Intuitively judging based on the result in Fig. 16, the localiza-

tion result of CDL approaches the real location of a node step
by step, even when some of the wireless links are dominated by
multipath effect. That is because that CDL combines range-free
and RSSI-based techniques to play their respective advantages.
In order to give more insights on how CDL achieves this goal,

Fig. 17. Interaction of three phases.

we use nodes 65–67, 71, and 73 as a typical example and show
their localization process in Table II.
Table II shows the RSSI-ranging error and its impact in the

iterative process. The first row is the node ID of sender, and the
first column is the node ID of receiver. In each cell, the first
item is the RSSI-ranging error. Positive number indicates the
RSSI is weakened, and negative number indicates the RSSI is
strengthened. The second and third items respectively show the
error of each link used in the first and second calibration.
Since node 65 is always judged to be a bad node, the RSSI-

ranging from it is not used in the calibration steps. After the first
calibration, nodes 66 and 67 are judged to be good nodes. They
are used to calibrate nodes 65 and 71. Although there are large
RSSI-ranging errors between nodes 66 and 71, the ranging error
of node 66 in calibration is not big. RQAC can limit the influ-
ence of large ranging error with the weighted robust estimator.
Overall, the node with bad ranging quality will either be

judged to be a bad node during local filtration or be suppressed
with respect to its weight in calibration by RQAC. Thus, CDL
can deal with the local multipath effect well.
4) Interaction of Three Phases: CDL mainly consists of

three phases: virtual-hop localization, local filtration, and
ranging-quality aware calibration. Fig. 17 shows how these
methods interact with each other. To simplify the notations, we
use the numbers 1–3 to represent the three phases. Then, there
are four kinds of combinations: , , , and

. The different bars indicate the mean localization
errors of different combinations.
For , we use DV-hop instead of virtual-hop to initialize

locations of ordinary nodes. This combination has large local-
ization errors. That is because DV-hop initializes many nodes’
locations to be far away from their real locations. Then, good
nodes and bad nodes, and good links and bad links, cannot be
easily differentiated. It has serious impact upon the local filtra-
tion and ranging-quality aware calibration, and finally reduces
the localization accuracy. From this, we can see the great im-
portance of virtual-hop in CDL, which provides accurate initial
localization.
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For , we use Least Squares Estimate instead of RQAC
for calibration. This combination has higher accuracy than
. That is because virtual-hop localization provides accurate

localization for most nodes. In this situation, nodes can be prop-
erly distinguished as good nodes or bad ones. Meanwhile, it has
larger maximum error than . That is because the Least
Squares Estimate algorithm leads to error propagation when
there are some bad links. It indicates that it is meaningful and
beneficial to differentiate the ranging quality of different links
in the calibration phase.
For , we use RQAC to directly calibrate each node

without local filtration. This combination has larger minimum
error than . Without distinguishing good nodes from bad
nodes, it is difficult to evaluate the ranging quality due to the
interference of bad nodes. Without appropriate differentiation,
the good nodes’ locations are also calibrated by their neighbors,
and it reduces the localization accuracy of good nodes. It indi-
cates that the negative impact of bad nodes may be serious and
cannot be neglected. In order to achieve highly accurate local-
ization in the end, we need to filter the bad nodes first before
entering the calibration phase.

B. Simulation on Large-Scale Networks

Besides the above experiments, we further carry out extensive
simulations to evaluate the performance of CDL. We examine
the location accuracy of CDL by tuning a series of parameters
such as network topology, connectivity degree, and the relative
ranging errors. The results of DV-hop, MDS-MAP(C,R), and
SISR are presented as well. The simulations run on MATLAB,
including 1000 ordinary nodes in a square region and six land-
marks around. We run all the simulations on a Windows 7 PC
with an Intel i5 2.53-GHz processor and two core memories size
of 2 GB.
In the simulation setting of Section V-B.1, each node has

10–12 neighbors for uniform distribution and has 3–15 neigh-
bors for nonuniform distribution. In Sections V-B.2 and V-B.3,
nodes are randomly distributed in a square region. Each node’s
RSSI readings from its neighboring nodes are assigned with
values based on the log-normal shadowing model with random
noise to be closer to the real fact. Two nodes are connected with
a link in the network if the RSSI between them is greater than
87 dBm (the receiving sensitivity of CC2420 radio). In this

way, the network topology is generated.
1) Impact of Network Topology: Virtual-hop is a range-free

localization that utilizes the connectivity information to locate
sensor nodes. We examine the performance of virtual-hop in
both scenarios with uniform distribution and nonuniform distri-
bution. DV-hop algorithm takes 43 s to run in either uniform or
nonuniform distribution simulations. Virtual-hop takes 57 s to
run in uniform distribution simulation and 58 s to run in nonuni-
form distribution simulation.
Fig. 18 compares the performance of virtual-hop and DV-hop

localization approaches in both scenarios. The results indicate
that the nonuniform deployment of nodes does build up the
average localization errors for both approaches. It is worth
noticing that even virtual-hop localization in the nonuniform
deployment is more accurate than the performance of DV-hop
localization in the uniform deployment. DV-hop does not

Fig. 18. Impact of node distribution.

Fig. 19. Comparison of localization errors. (a) SISR. (b) CDL.

differentiate between two distances with the same hop count to
landmark, while virtual-hop-count assigns small values to the
near nodes.
2) Impact of Ranging Error: Considering the ubiquitous

ranging errors in the wild, the robustness of a localization
approach against such interfering factors is the last but not least
metric we want to evaluate. For this purpose, is set to 12.
We use two parameters to control the degree of ranging errors.

The first one is the percentage of bad links, which is respectively
set at 0%, 10%, 20%, 30%, 40%, and 50%. The other param-
eter is the relative ranging error. We assume in the simulations
that the links on a node are either all good or all bad. The rela-
tive ranging error of a link conforms to a Gaussian distribution

, where denotes the average of relative
ranging error and is set at 0%, 10%, 20%, 30%, 40%, and 50%,
respectively. Meanwhile, we assume the links are asymmetric.
CDL and SISR are executed for six iterations. SISR runs for 282
min, and CDL runs for 213 min.
Fig. 19 plots the mean localization errors of SISR, and CDL

under different settings. SISR is specifically well when the
percentage of bad links is less than 30%. The mean localization
errors are less than 2 m due to the “snap-in” behavior of SISR.
Its performance seriously degrades when the percentage of
bad links gets above 30%, in accordance with our analysis in
Section IV-C.
Compared to SISR, CDL has even better performance. When

all the links are good, its localization errors reach near zero.
Even when there are 50% bad links, CDL still performs robustly
enough. The mean localization error is around 5 m. This simu-
lation shows the remarkable advantages of CDL in extremely
complex environments.
3) Overhead Analysis: Though cost is not the first concern of

localization, we analyze the communication cost [24] and time
complexity in each phase of CDL. Let denote the number of
beacon nodes and denote the average node degree.
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In virtual-hop localization, landmarks flood their coordinates
to all the other nodes. The communication cost for each ordi-
nary node is . A node exchanges relevant information with
its 1-hop neighbors to estimate virtual-hop-counts. The com-
munication cost is . Finally, landmarks flood their per-vir-
tual-hop distance, and the cost is . The overall communi-
cation cost for each node in virtual-hop localization is thus to

. Node computes its virtual-hop-count to landmark
based on the average of its previous neighbors’ virtual-hop-
counts, so the time complexity is . Since a node uses
LSE to compute its coordinate, the time complexity is

.
In local filtration, the communication cost of a node is mainly

incurred by information exchange with its 1-hop/2-hop neigh-
bors. Thus, the communication cost in this phase is . The
algorithm, called Longest Common Subsequence Length, takes

time to compute, and the algorithm Cosine Distance
takes time to yield the output.
In RQAC, all cost is incurred by local computation and is

thus ignorable, compared to the communication costs in the pre-
vious two phases. Each bad node uses the robust estimator to
calibrate its location, and the running time of that procedure is

, where is the number of ’ good neighbors.

VI. CONCLUSION

Localization has been extensively studied by both practicers
and theoreticians over the past decade. Many practical chal-
lenges exist for the state-of-the-art schemes, especially when
it comes to real-world WSNs in complex environments. In this
paper, we share our real-world experience, design, and evalua-
tion of sensor nodes localization with GreenOrbs, a system de-
ployed in a forest. Our design, called CDL, applies a step-by-
step process to pursue the best possible localization quality. We
have implemented CDL and carried out extensive experiments
and simulations. The results demonstrate that CDL outperforms
existing approaches with higher accuracy, efficiency, and con-
sistent performance in the wild. Though this work may not be
generalized to every possible case, we hope that the community
could benefit from our understanding of the practical challenges
of localization in large-scale WSNs deployed in wild.
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