### Large Scale Wireless Network Systems: Experience, Observations, and Theories

# **Xiang-Yang Li**

Department of Computer Science Illinois Institute of Technology www.cs.iit.edu/~xli xli@cs.iit.edu Tsinghua University, EMC Visiting Chair Professor

### Wireless Sensor/Actuator Networks

Bridging the digital world and physical world



## Wide Applications: CPS, IOT



#### Environment



#### Transportation



#### Smart Grid



#### Security



#### Green Building



#### Industry Monitoring



#### Health Care



#### Agriculture



Logistic and Supply Chain



### Why large scale wireless network?

```
Scalability
Diversity (spatial, temporal)
 Asymptotical Behavior
   Application Requirement
```

### **Presentation Outline**



## **Real World Systems**

- 1. OceanSense (2007)
- 2. GreenOrbs (2009-)
- 3. CitySee (2011-)

# OceanSense









7

## Motivation

### Silt Deposition problem of Qingdao Port:

- Qingdao port :
  - ➤ one of the ten busiest ports in the world
- Silt Deposition:
  - ≻ Affect the water depth
  - > High uncertainty and high instant uncertainty (tide, wind, etc. )





### OceanSense

### Monitor the sea!

- The first sea environment monitoring sensor network system in China
- More than 120 sensor nodes
- Temperature, Light, Sea depth



# Deployment

• Deployed in the Yellow sea near Qingdao, China



# GreenOrbs

### http://www.greenorbs.org/















### Motivation





Canopy closure estimates





## GreenOrbs

### ✤ Go to the wild!

- Supporting forestry research and applications
- Multiple deployments, each>330 sensor nodes
- Temperature, Light, CO2



# **Deployment: Overview**

| Place                               | Area                      | Duration               | Battery        | Scale | Network<br>Diameter | Duty<br>Cycle | Data<br>Volume |
|-------------------------------------|---------------------------|------------------------|----------------|-------|---------------------|---------------|----------------|
| University<br>woodland #1           | 20,000 m <sup>2</sup>     | 1 month (2008)         | 800 mAh 1.5V   | 50    | 6 hops              | No            | 15 Mbytes      |
| University<br>woodland #2           | 20,000 m <sup>2</sup>     | 10 months (2009)       | 2200 mAh 1.2V  | 120   | 10 hops             | 5%            | 272 Mbytes     |
| University<br>woodland #2 and<br>#3 | 40,000 m <sup>2</sup>     | 1 year (2009.12~)      | ~8000mAh, 1.5V | 330   | 12 hops             | 8% or No      | 140 Mbytes     |
| Tianmu Mountain                     | 200,000<br>m <sup>2</sup> | 1.5 months (2009)      | ~8000mAh, 1.5V | 50    | 10 hops             | 5%            | 3 Mbytes       |
| Tianmu Mountain                     | 200,000<br>m <sup>2</sup> | 1.5 year<br>(2009.10~) | ~8000mAh, 1.5V | 200   | ~ 20 hops           | 5%            | 10 Mbytes      |

TianMu

14

#### Campus



# Deployment: Nodes in the Wild









# **CitySee** City-Wide Urban Sensing













# **Motivation: Global Warming**

- Starting from Global Climate Changes
  - Emission of large volume of greenhouse gases is the main reason for global warming
    - ≻CO2, N2O, CH4, HFCs, PFCs, SF6
  - The most greenhouse gases is CO2
  - CO2 generation of human activities: in the city



## CitySee

- ✤ Back in the city!
  - Large scale indoor/outdoor environment monitoring
  - More than 1200 sensor nodes
  - Temperature, Light, CO2
  - Mesh routers







### System Architecture



## **Deployment: Locations**

#### Cover more than 1.2 KM<sup>2</sup> urban area of the Wuxi City



#### **Thermal Power Plant**





#### **High emission Factories**



#### **Development Zone**



#### **Residential Area**



#### **Railway Station**



**Water Source** 

## System Deployment



# Deployment: Nodes Deployed

|                                           | Normal node                    | Carbon node                    | Mesh node                      |  |
|-------------------------------------------|--------------------------------|--------------------------------|--------------------------------|--|
| Microcontroller                           | MSP430f1611                    | MSP430f1611                    | ARM7                           |  |
| Type of sensor reading                    | Temperature, humidity, light.  | CO <sub>2</sub>                | N/A                            |  |
| Radio module                              | IEEE 802.15.4<br>CC2420 2.4GHz | IEEE 802.15.4<br>CC2420 2.4GHz | IEEE 802.11b<br>NetCard 5.8GHz |  |
| Communication range (m)                   | 150~200                        | 150~200                        | 5000~6000                      |  |
| Power                                     | 2 AA batteries (3V)            | 12V Rechargeable battery       | 110V~220V AC                   |  |
| Power consumption -<br>sleeping (mW)      | 0.6~1.2                        | 2.4~4.8                        | N/A                            |  |
| Power consumption -<br>sensing (mW)       | 60~90                          | ~2160                          | N/A                            |  |
| Power consumption -<br>communication (mW) | 60~90                          | 60~90                          | 3000~25000                     |  |
| Manufactory cost (USD)                    | ~80                            | ~260                           | ~800                           |  |



### **Presentation Outline**



# LESSONS

System that work in labs fails horribly in practice

- OceanSense:
  - System run out of battery in a week (labs run in months)
  - $\succ$  Nodes destroyed by water
  - > Devices stolen by people: they are interested in the sticks!
- GreenOrbs:
  - ≻ Nodes destroyed by flooding
- CitySee:
  - Installation needs the coordination of various government departments
  - ➢ Require nice encapsulation

- Encapsulation? Encapsulation!
  - Solutions to many of the previously mentioned problems
  - OceanSense:
    - ➤ Waterproof, considering factors such as tide, wind, etc.
  - GreenOrbs:
    - > Waterproof, allow accurate collection of humidity and luminosity
  - CitySee:
    - ➤ Made the nodes nice-looking!









### Need good visualization tools

- Allow diagnostics
- Easy to interpret the data and locate the problems



### Deployment

- Balance between accuracy, coverage, sustainability and cost
- Regions that doesn't allow deployment
  - > Not allowed by the nature (physically infeasible)
  - ≻ Not allowed due to bad signal (interference, obstruction, etc)
  - ➢ Forbidden by the government
- Deployment challenges: bamboo, large trees





### Control the cost!

- Cost reduction is a must when you need so many nodes
  - $\succ$  Node cost
  - $\succ$  Labor cost



# NETWORK OBSERVATIONS: GREENORBS

# Traffic distribution : balanced in CTP?





The traffic distribution is relatively stable over time

### **Causes of Packet Losses**

- Packet Delivery Ratio (PDR) about 85%
  - Link loss (61%) vs. Node drops (39%)
- Faulty behavior on forwarding nodes



Cumulative distribution of packet loss Causes of packet drops on sensor nodes

# Packet Loss Diagnosis



- The green nodes with PRR > 90%.
- The red nodes with PRR < 90%,
- The radius indicates the number of lost packets

### Packet Losses: Non-ACK

### ✤ 84,030 packet loss due to non-ack

- 46.2% of total losses
- 68,444 caused by physical environment (bad links)



### Packet Losses: Non-ACK

### ✤ 84,030 packet loss due to non-ack

- 46.2% of total losses
- 4,361 caused by interferences (contention <--reboot, loop)



### **Packet Losses: Corrupted Packets**

### ✤ 9,511 corrupted packets

- 9037 real losses (after consider retransmission)
- $\sim 5\%$  of total loss


# Packet Losses: Routing Loop

# \$5,178 packet loss due to overflow from routing loop - 2.9% of total losses

– 93% of overflow events did not result in packet loss



## Packets Loss Summary

| Root cause                        | %         |
|-----------------------------------|-----------|
| 1. sink-side failure              | 12.5%     |
| 1.1 vertical banding              | 12.45%    |
| 2. corruption                     | 5%        |
| 3. overflow drops                 | 2.87%     |
| 3.1 loop overflow drops           | 2.85%     |
| 3.2 non-loop overflow drops       | 0.02%     |
| 4. no-ack drops                   | 46.2%     |
| 4.1 env-no-ack drops              | 37.6%     |
| 4.2 interference-no-ack drops     | 2.4%      |
| 5. reboot (direct impact on loss) | ${\sim}0$ |

About 35% packet losses are unidentified now.

# NETWORK OBSERVATIONS: CITYSEE

### Where Packets are Lost ?



### **Traffic Distribution**

- Small portion of "critical nodes", verifies the same finding observed from GreenOrbs
- Traffic dynamics exhibits different pattern, e.g. burstness on some nodes



Traffic

volume

Time

41

Sink

### Network Topology



Nodes closer to the sink have a more stable topology than nodes that are far away.

# Summary

# Many challenges to make it

- **1. Sustainable** --- energy efficiency and fault diagnosis?
- **2. Robust** --- co-existence?
- **3.Scalable** ---large scale performance?
- **4. Predictable** ---- under varying environment?

# **Presentation Outline**





#### ZIMO: CROSS-TECHNOLOGY MIMO TO HARMONIZE COEXISTENCE OF ZIGBEE WITH WIFI

# **Coexistence in ISM Band**

ISM band interferences are pervasive and crowded WiFi signal is the primary and first class passenger



Existing Works mainly protect WiFi signal and mitigate cross technology interference [TIMO]
 Some ZigBee signal protection works need modifications or degrade WiFi [Sensys10, Liang]

# **Experiment Setup**

- Two ZigBee Nodes (TX&RX)
- ✤ WiFi APs are in IIT campus
- ZigBee nodes are configured to receive full spectrum interference in full time scale
- Adding controllable AP for tunable interference



### Effect of WiFi interference on ZigBee



✓ Short and frequent WiFi data transmission (i.e., flash) play the main role of WiFi interference on ZigBee.

✓ Power-law like distribution indicates the shorter flashes interfere ZigBee signal with exponentially increasing probability, which is a drastic threat for ZigBee signal.

arabite arread for 215000 biginar.

# Effect of WiFi interference on ZigBee



#### (a) Length statistics

(b) Interval statistics

✓ The WiFi interference is distributed across ZigBee symbols, rather than concentrated on particular positions.
 ✓ We need to resort to the signal processing techniques for fundamental solutions.

fundamental solutions

The weed to report to the Sten broads and reason the

## ZIMO: Sink Based Design



Cons No.1: ZIMO has more antennas than WiFi AP (N+1) Cons No.2: ZIMO needs at least one preamble is clear Cons No.3: Can work with one ZigBee and multiple WiFi

Cons No.3: Can work with one ZigBee and multiple WiFi

# How ZIMO works?



### Channel Coefficient Recovery

- Interference in frequency domain
- Sufficient for decoding, insufficient for accurate signal recovery
- CFO Compensation
  - Well done for preamble, insufficient for whole data scale
  - Extremely large with the increasing packet length

# Where are opportunities?

Frequency domain is partially overlapped
Time domain also partially overlapped
Power domain shows significant difference



# Where are opportunities?



For channel coefficient: Interpolation is simple, effective

interputation is simple, encouve

### Where are opportunities?



Linear regression is accurate enough for CFO

# Implementation





- Implement using USRP2 N200
  - IEEE STD 802.15.4, 2 MHz Bandwidth
  - OFDM is 20 MHz Bandwidth
- Real trace driven ZIMO decoding
- No carrier sense and MAC timing control

### **Experimental Results: Macro Benchmark**

Recovery ratio



### Experimental Results: Macro Benchmark

#### Throughput



Zigbee Baseline

WiFi Baseline

Interference patterns

# **Asymptotical Capacity**

### Two Capacity metrics - channel

### \*Channel capacity

– achievable single-hop data rate

**EK** 

 $C = \log(1 + SINR)$ 

**Shannon channel theory** 

### Two Capacity metrics - transport

#### \* transport capacity

– end-to-end multi-hop throughput



# Impact factors :

- Network Size
- Networking Models
- **\* Inference Models**
- \* Traffic Models



a meters

# Various Models

#### \* deployment models

- arbitrary networks
- random networks



#### \* network scaling models

- dense networks
- extended networks

#### \* Communication (Interference) models

- the protocol model (PrIM)
- Fixed Range Protocol Model (fPrIM)
- physical model (PhIM)
- generalized physical model (GphM, also called GCM)
- Others

#### \* Traffic models

- Unicast
- Broadcast
- Multicast
- Anycast
- Many-to-one







# **Results Summary**

### Milestone Results : Unicast, PrIM



### Milestone Results : Unicast, PhIM



### Milestone Results : Broadcast, PrIM



### Milestone Results : Multicast, PrIM



### Our Results : Multicast, PrIM



Li et al, MobiCom 2007, REN,  $n_s = \Theta(n)$ 

# **Brief Summary**

The aggregate multicast capacity of n sessions is

$$\Lambda_{n_d}(n) = \begin{cases} \Theta(\sqrt{\frac{n}{\log n}} \bullet \frac{W}{\sqrt{n_d}}) & \text{when} \quad n_d = O(\frac{n}{\log n}) \\ \Theta(W) & \text{when} \quad n_d = \Omega(\frac{n}{\log n}) \end{cases}$$

- Our results unify previous results
  - **1.** Unicast (when  $n_d=2$ ):  $\Theta(\sqrt{\frac{n}{\log n}} \bullet W)$  by Gupta and Kumar
  - **2. Broadcast** (when  $n_d = n$ ):  $\Theta(W)$  by Keshavarz-Haddad et al., Mobicom'06
  - **3.** Multicast  $(n_s = n^{\epsilon} \text{ and } n_d = n^{1-\epsilon})$ ,  $O(\sqrt{\frac{n}{n_d \log n}})$  by Shakkottai et al., Mobihoc'07

### Our Results : Multicast, GCM



**Multicast** Capacity for **REN**,  $n_s = \Theta(n)$ , Li et al. [MobiCom 2008]. *Wang*, Li et al. [INFOCOM 2010, 2011].

# Protocol Interference Model General Approaches
# Multicast under Protocol Model

#### \* Data Copies Argument (upper bound)

- Estimate the expected (or asymptotic lower bound) number of nodes N(b) that received (or listened) a bit b.
- Capacity at most  $n \cdot W/N(b)$

 $\succ$  since all nodes receive at rate at most  $n \cdot W$ .



## **Upper-bound Proof Flow**



## Lower-Bound: Routing and Scheduling

#### ✤ Build EMST

- Routing structure using EMST as backbone
- Need to bound the conflict and total data copies
  - ≻ The lower-bound of multicast tree length w.h.p.? EMST?
  - > Maximum number conflicting flows in the network w.h.p
    - Using VC dimension (proved to be  $O(\log n_d)$ ), and VC theorem





#### Lower-bound Proof Flow



# Gaussian Channel Model General Approaches

## Multicast under Gaussian Model

- Two kind of links
  - Inside Links
  - Outside Links



## **Relationship between links**

- $\bigstar l_c$  : max link length in giant component.
- $\bigstar l_c$  : the max distance between any node not in GC and the giant cluster



# Upper-bound Proof Techniques 1

★ There is a link *uv*, that will be used by many flows (say *f*) ⇒ the minimum data rate  $-\min \lambda_i \leq \text{rate supported by } uv / f$ 



# **Upper-bound Proof Techniques 2**

- There is an isolated cluster *C* of nodes, and *f* flows will have links going inside this cluster
  - − min  $\lambda_i$  ≤ total rate supported by links reaching *C*/*f*



## Lower Bounds Techniques





# Low Bound: Routing, Scheduling

- ✤ First build EMST of receivers
- Build highway using cell size 1
  Each highway link data rate O(1)
  - Each highway link data rate O(1)
- ✤ Build second-class highway using cell size (log n)<sup>1/2</sup>
- Node sends its data to highway (solid lines) by multi-hop second class highway (dashed line)



## **Our New Techniques**

- Parallel Arterial Road Systems
  - longer links to connect isolated nodes to highway



**\***Parallel Scheduling

## **Other Research**

## **Cyber Physical Systems**



## **Cognitive Radio Networks**



#### Our iGaze Glasses



#### TAGORAM

#### **Drawing in the Air**



#### Acknowledgments





#### Research Grants Council 研究資助局

## PhD Students (alumni 10)









UNCC



financial

Google

W. Oregon



Tsinghua financial Motorola UT Dallas Toledo

#### **Current PhD Students**









### **MS Students**



## Students in IIT



## **Domestic Students**



## **Deployment Videos**





#### **Thank you !**

Xiang-Yang Li (李向阳) Professor, IIT, USA www.cs.iit.edu/~xli xli@cs.iit.edu