Public Key Encryption

- Two difficult problems
 - Key distribution under conventional encryption
 - Digital signature
- Diffie and Hellman, 1976
 - Astonishing breakthrough
 - One key for encryption and the other related key for decryption
 - It is computationally infeasible to determine the decryption key using only the encryption key and the algorithm

Public Key Cryptosystem

- Essential steps of public key cryptosystem
 - Each end generates a pair of keys
 - One for encryption and one for decryption
 - Each system publishes one key, called public key, and the companion key is kept secret
 - If A wants to send message to B
 - Encrypt it using B’s public key
 - When B receives the encrypted message
 - Decrypt it using its own private key

Applications of PKC

- Encryption/Decryption
 - The sender encrypts the message using the receiver’s public key
 - Q: Why not use the sender’s secret key?
- Digital signature
 - The sender signs a message by encrypt the message or a transformation of the message using its own private key
- Key exchange
 - Two sides cooperate to exchange a session key, typically for conventional encryption

Conditions of PKC

- Computationally easy
 - To generate public and private key pair
 - To encrypt the message using encryption key
 - To decrypt the message using decryption key
- Computational infeasible
 - To compute the private key using public key
 - To recover the plaintext using ciphertext and public key
 - The encryption and decryption can be applied in either order

One Way Function

- PKC boils down to one way function
 - Maps a domain into a range with unique inverse
 - The calculation of the function is easy
 - The calculation of the inverse is infeasible
- Easy
 - The problem can be solved in polynomial time
- Infeasible
 - The effort to solve it grows faster than polynomial time
 - For example: 2^n
 - It requires infeasible for all inputs, not just worst case
Trapdoor One-way Function

- Trapdoor one way function
- Maps a domain into a range with unique inverse
- $Y = f_k(X)$
- The calculation of the function is easy
- The calculation of the inverse is infeasible if the key is not known
- The calculation of the inverse is easy if the key is known

Possible Attacks

- Brute force
 - Use large keys
 - Trade-off: speed (not linearly depend on key size)
 - Confined to small data encryption: signature, key management
- Compute the private key from public key
 - Not proven that is not feasible for most protocols!
- Probable message attack
 - Encrypt all possible messages using encryption key
 - Compare with the ciphertext to find the matched one!
 - If data is small, feasible, regardless of key size of PKC

RSA Algorithm

- R. Rivest, A. Shamir, L. Adleman (1977)
- Block cipher using integers $0 \cdots n-1$
- Thus block size k is less than $\log_2 n$
- Algorithm:
 - Encryption: $C = M^e \mod n$
 - Decryption: $M = C^d \mod n$
 - Both sender and the receiver know n

Requirements

- Possible to find e and d such that
 - $M = M^{ed} \mod n$ for all message M
- Easy to conduct encryption and decryption
- Infeasible to compute d
 - Given n and e

Key Generation

- Recall Euler Theorem
 - $a^{\phi(n)} \equiv 1 \mod n$ for all a
 - Then $ed \equiv 1 \mod \phi(n)$ is sufficient to make algorithm correct
- RSA chooses the following
 - Integer $n = pq$ for two primes p and q
 - Select e, such that $\gcd(e, \phi(n)) = 1$
 - Compute the inverse of $e \mod \phi(n)$
 - The result is set as d

Key Generation

- The prime numbers p and q must be sufficiently large
 - They are chosen by applying primality testing of randomly chosen large numbers
 - About $\ln n$ prime numbers less than n implies needs to check about $2\ln n$ random numbers to find 2 primes numbers around n
 - Compute $n = pq$, keep p and q secret!
- Select random number e
 - Test $\gcd(e, \phi(n)) = 1$, and get d if equation holds
Security of RSA
- Brute force: try all possible private keys
- Factoring integer n, then know $\phi(n)$
- Not proven to be NPC
- Determine $\phi(n)$ directly without factoring
 - Equivalent to factoring! (1996)
- Determine d directly without knowing $\phi(n)$
 - Currently appears as hard as factoring
 - But not proven, so it may be easier!

More Constraints
- Primes p and q should be in similar scale
- Both $p-1$ and $q-1$ should have large prime factor
- The gcd($p-1,q-1$) should be small
- The decryption key d should larger then $n^{1/4}$

Timing Attacks
- Keep track of how long a computer takes to decrypt a message!
 - Paul Kocher, 1996
 - Stunning attack strategy and cipher only attack!
- Guessing the key bit by bit
- Countermeasures
 - Constant exponentiation time
 - Random delay
 - Blinding

Other Public Key Systems
- Rabin Cryptosystem
 - Decryption is not unique
- Elgamal Cryptosystem
 - Expansion of the plaintext (double)
- Knapsack System
 - Already broken
- Elliptic Curve System
 - If directly implement Elgamal on elliptic curve
 - Expansion of plaintext by 4, Restricted plaintext
 - Menezes-Vanston system is more efficient

Rabin Cryptosystem
- Procedure
 - Let $n=pq$ and $p=3 \text{ mod } 4, q=3 \text{ mod } 4$
 - Publish n, and a number $b<n$
 - For message m
 - $C=m(m+b) \text{ mod } n$
 - The receiver decrypt ciphertext C
 - $(b^{(n/4)}C)^{(1/2)-b/2}$

Analysis
- For receiver, need solve equation
 - $x^2+bx=C \text{ mod } n$
 - $x_1=x+b/2, c=b^{(n/4)}+C$, then need
 - Solve $x_1^2=c \text{ mod } n$
 - Chinese Remainder Theorem implies that
 - $x_1^2 \equiv x \text{ mod } p$
 - $x_1^2 \equiv x \text{ mod } q$
 - When $p=3$ and $q=3 \text{ mod } 4$
 - Solution $x_1 \equiv m^{(n/4)} \text{ mod } p$ and $x_2 \equiv m^{(n/4)} \text{ mod } q$
 - Then Chinese Remainder Theorem again to combine solution
Security

- Secure against
- Chosen plaintext attack

- Not secure against
- Chosen ciphertext attack

ElGamal Cryptosystem

- Based on Discrete Logarithm
 - Find unique integer \(a \) such that \(a^a \mod p \)
 - Here \(a \) is a primitive element in \(\mathbb{Z}_p \) \(p \) is prime

- Procedure
 - Make \(p, ?, \) ? public, keep \(a \) secret
 - Encryption:
 - \(E_k(x) = (x^k \mod p, x^k \mod p) \)
 - Decryption
 - \(D_k(y_1, y_2) = (y_1^a)^{-1} \mod p \)

Knapsack Cryptosystem

- Based on subset sum problem
- Given a set, find a subset with half summation value
- It is NPC problem generally
- Superincreasing set if \(s_i > ? j<i s_j \)
- The subset problem over superincreasing set can be solved in polynomial time!
- Been broken by Shamir, 1984
- Using integer programming tech by Lenstra

Knapsack System

- Procedure
 - Select a superincreasing set \(s \)
 - Let \(p \) be prime larger than set summation of \(s \)
 - Select integer \(a \), keep \(s, a, p \) secret
 - Make \(t = (as_1, as_2, ..., as_n) \mod p \) public
 - Encryption
 - \(E(x_1, x_2, ..., x_n) = x_i t_i \mod p \)
 - Decryption
 - Solve the subset summation problem \(s, a^C \mod p \)

Solve Subset Problem

- Let \(T \) be the half summation, \(t=T \)
- For \(i=n \) downto \(1 \) do
 - If \(s_i \) then
 - Set \(x_i = 1 \)
 - Else \(x_i = 0 \)
 - If \(\sum x_i = T \) then \((x_1, x_2, ..., x_n) \) is the solution
 - Else, there is no solution