
CS595-Cryptography and Network Security

- Authentication
 - Authentication requirements
 - Authentication functions
- 🖉 Mechanisms

 - \varkappa Hash functions, security in hash functions
- ≠ MD5, SHA, RIPEMD-160, HMAC
- Z Digital signatures

CS595-Cryptography and Network Security

Message Encryption

« Conventional Encryption

- Authentication provided due to the secret key
- ✓ But the message need to be meaningful
- ∠ What happened it message is not readable?
- How to determine intelligible automatically?
- Z Approach
 - Checksum or frame check sequence(FCS) to message

 - « Computes FCS of message, compare with received one

CS595-Cryptography and Network Security

Public Key Encryption

- Direct encryption by receiver's public key
- For authentication
 - ≤ Encrypt using sender's private key
 - Assume the message is intelligible
- Confidentiality and authentication
 - ∠ Encrypt by sender's, then receiver's public key
 - & But too time -consuming: 4 rounds RSA on large data

Message Authentication Code

- ✓ Assume both uses share secret key k
- Z Procedure

 - ✓ Sent M and MAC of it to receiver
 - ${\ensuremath{\it \varkappa}}$ Receiver computes the MAC on received M
- MAC is similar to encryption, but not need be reversible!

CS595-Cryptography and Network Security

MAC with Confidentiality

\varkappa Two options

- & Using another key to encrypt M and MAC
- ✓ Using another key to encrypt M only
- ✓ Requirements of MAC
 - ≤ Size of MAC: n
 - ≤ Size of key: k
- ${\ensuremath{\, \ensuremath{ \ensuremath{ \ensuremath{\, \ensuremath{ \ensuremath{ \ensuremath{\, \ensuremath{ \ensuremath{\, \ensuremath{\, \ensuremath{ \ensuremath{\, \ensuremath{\, \ensuremath{\, \ensuremath{\, \ensuremath{ \ensuremath{\, \ensuremath{ \ensuremath{\, \ensuremath{\,\ensuremath{\, \ensuremath{\, \ensuremath{\, \ensurem$
 - M_i and MAC_i

CS595-Cryptography and Network Security

Why not Conventional Encrypt

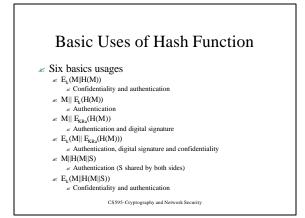
Possible situations

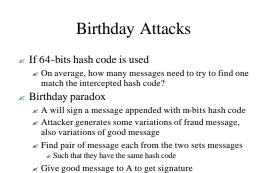
- \varkappa Authentication is done selectively
- \varkappa Authentication of computer program
- \varkappa Authentication may be important than secrecy
- « Architecture flexibility
- Z Authentication lasts longer than secret protection

CS595-Cryptography and Network Security

MAC Requirements

- Computationally infeasible to construct M' such that $C_k(M')=C_k(M)$
- $\ll C_k(M)$ uniformly distributed


CS595-Cryptography and Network Security


Data Authentication Algorithm

- ✓ ANSI standard X9.17
- ✓ Based on DES
- ✓ Using Cipher Block Chaining mode
 - Z Data is grouped into 64 bits blocks
 - ✓ Padding 0's if necessary
 - \ll Output_i=E_k(D_i? Output_{i-1})
 - ⊯ 0<i, and Output₀=0's
 - The data authentication code DAC consists of the leftmost m bits of the last output, m?16

CS595-Cryptography and Network Security

Hash Function ✓ Map a message to a smaller value ✓ Requirements ✓ Be applied to a block of data of any size ✓ Produced a fixed length output ✓ H(x) is easy to compute (by hardware, software) ✓ One-way: given code h, it is computationally infeasible to find x: H(x)=h ✓ Weak collision resistance: given x, computationally infeasible to find y so H(x)=H(y)

- ✓ Replace good message to A to get signature
 ✓ Replace good message with fraud message
 - CS595-Cryptography and Network Security

Analysis

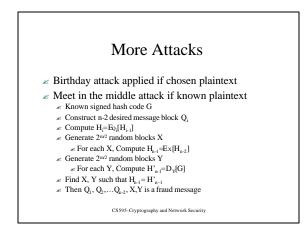
Using birthday attack, given 64-bits hash
code

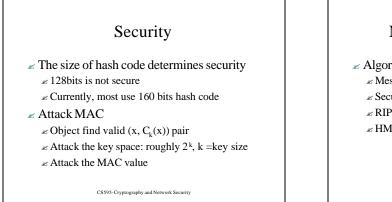
How many message variations needed so the
success probability is large, say 90%?

CS595-Cryptography and Network Security

✓ Simple hash functions

 $\ll H(M) = X_1? X_2? ...? X_{m-1}? X_m$

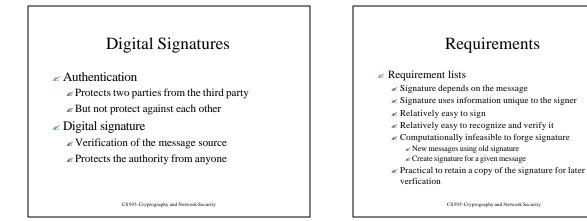

 $\ll Y_m = H(M)$? Y_1 ? Y_2 ? ...? Y_{m-1} has same hash value as $(X_1X_2 \dots X_{m-1} X_m)$, where Y_i is any value

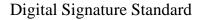

CS595-Cryptography and Network Security

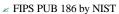
Cont.

Based on DES, block chaining technique Rabin, 1978

- ∠ Divide message M into fix-sized blocks M_i
- ∉ Assume total n data blocks
- ∠ H₀=initial value
- $\ll H_i = E_{m_i}[H_{i-1}]$
- ✓ Birthday attack still applies
 - ≤ If still 64 -bits code used

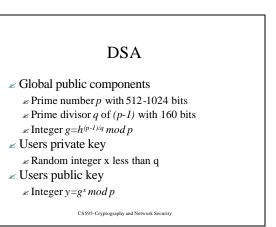

More Hash Algorithms

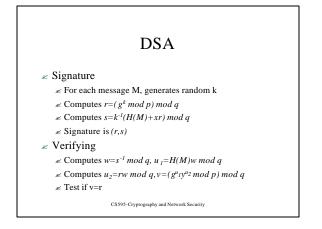

Algorithms

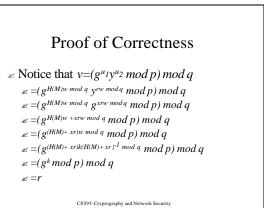

- ≤ Secure Hash Algorithm: SHA-1 (from MD4)

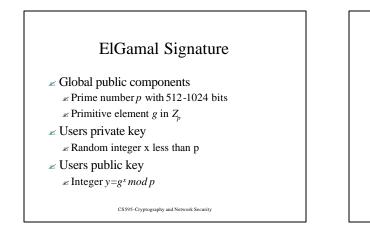
CS595-Cryptography and Network Security

- ≈ RIPEMD-160
- ≈ HMAC




🛛 It uses


- Z Digital Signature Algorithm (DSA) for signature
- Z The signature consists of two numbers


🖉 DSA

- ∠ Based on the difficulty of discrete logarithm
- ≤ Based on Elgamal and Schnorr system

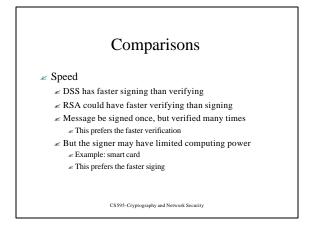
- ∠ Signature

 - \ll Computes $s=k^{-1}(H(M)-xr) \mod (p-1)$
 - ≤ Signature is (r,s)
- 🖉 Verifying
 - $\not \simeq \text{Computes v}_1 = g^{H(M)} \ mod \ p$
 - Computes v₂=y^rr^s mod p
 - \swarrow Test if $v_1 = v_2$

CS595-Cryptography and Network Security

Proof of Correctness

\ll Computes v₂=y^rr^s mod q

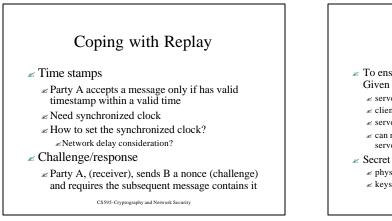

- \leq So v₂=y^rr^s mod q = g^{xr} g^{ks} mod p
- $\ll = g^{xr+k \ k^{-1}(H(M)-xr) \ mod \ (p-1)} \ mod \ p$
- $\ll = g^{H(M)} \mod p = v_1$
- \ll Notice that here it uses Fermat theorem to show \ll That $g^{(H(M):xr) \mod (p-1)} \mod p = g^{(H(M):xr)} \mod p$

CS595-Cryptography and Network Security

Non-deterministic

✓ Non-determined signatures

- \varkappa For each message, many valid signatures exist
- ∉ DSA, Elgamal
- ✓ Deterministic signatures
 - ∉ For each message, one valid signature exists
 - ≈ RSA



Authentication Protocols

« Central issues

- Confidentiality: prevent masqueraded and compromised
- ☞ Timeliness: prevent replay attacks
 ∞ Simple replay, repetition within timestamp, replay arrives but not the true messages, backward replay attack to the sender
- Mutual authentication
- ✓ One-way authentication

CS595-Cryptography and Network Security

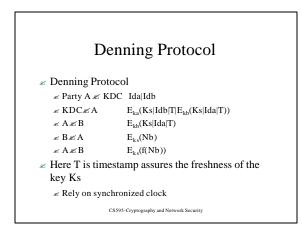
- ✓ To ensure a password is never sent in the clear. Given a client and a server share a key
 - ≤ server sends a random challenge vector
 - s client encrypts it with private key and returns this
 - ${\ensuremath{\it \varkappa}}$ server verifies response with copy of private key
 - can repeat protocol in other direction to authenticate server to client (2-way authentication)

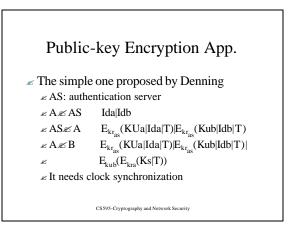
✓ Secret key management

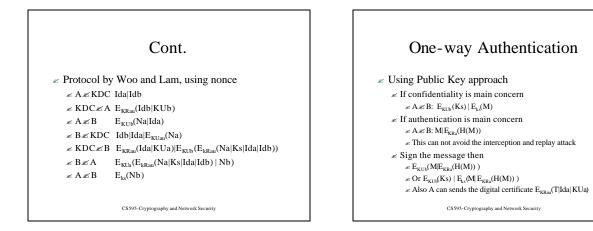
- ≤ physically distributed before secure communications
- ≤ keys are stored in a central trusted key server

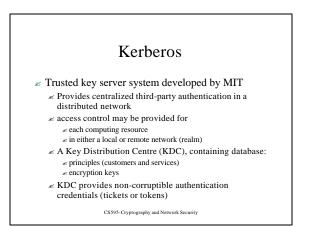
CS595-Cryptography and Network Security

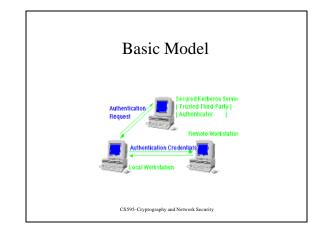
Conventional Encryption App.

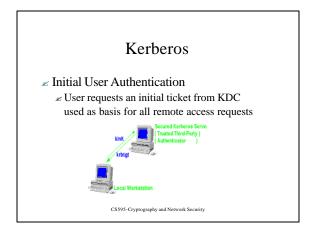

- Each user shares a secret master key with KDC (Key Distribution Center)
 - ✓ Kerberos is an example
 - ∠ Needham-Schroeder protocol
 - ∠ Party A ∠ KDC Ida|Idb|Na

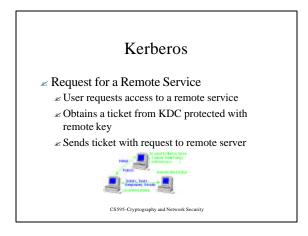

CS595-Cryptography and Network Security

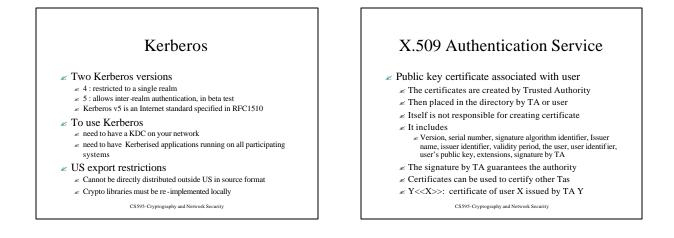

Weakness


- ✓ Step 4 and 5 prevent the replay of step 3
 ✓ Assume that Ks is not compromised
- *∠* If Ks is compromised
 - ✓ Vulnerable to replay attack


 - ✓ Unless B remembers all previous session keys with A, it can not tell that it is a replay!

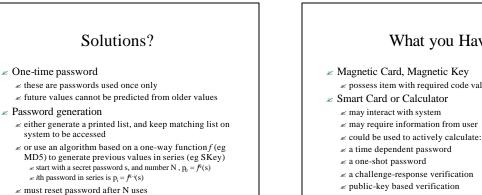




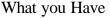


Identification

Identification: user authentication


- sometimes also require that the computer verify its identity with
- Based on three methods
- Je Validation of information supplied against a table of possible values based on users claimed identity

What you Know


✓ Passwords or Pass-phrases

- ≤ prompt user for a login name and password
- ≤ verify identity by checking that password is correct
- ≤ on some (older) systems, password was stored clear
- more often use a one-way function, whose output cannot easily be used to find the input value
- ≤ either takes a fixed sized input (eg 8 chars)
- ≤ or based on a hash function to accept a variable sized input to create the value
- s important that passwords are selected with care to reduce risk of exhaustive search
 - CS595-Cryptography and Network Security

Weakness Traditional password scheme is vulnerable to eavesdropping over an insecure network CS595-Cryptography and Network Security

CS595-Cryptography and Network Security

- ✓ Magnetic Card, Magnetic Key ≤ possess item with required code value encoded

CS595-Cryptography and Network Security

What you Are

- « Verify identity based on your physical characteristics, known as biometrics
- Characteristics used include:
 - ≤ Signature (usually dynamic)
 - ≤ Fingerprint, hand geometry
 - ≤ face or body profile
 - ≤ Speech, retina pattern
- ✓ Tradeoff between
- ≤ false rejection (type I error)
- ≤ false acceptance (type II error)
 - CS595-Cryptography and Network Security