
1

CS557: Cyber-Physical Systems
Wireless Sensor Networks
Technologies, Systems, and Applications

Based on lectures by

Prabal Dutta, WenZhan Song, and many others

BACKGROUND

2

3

Bell’s Law of Computer Classes:

A new computing class roughly every decade

year

lo
g

 (
p

e
o

p
le

 p
e

r
c

o
m

p
u

te
r)

streaming

information

to/from physical

world

Number Crunching

Data Storage

productivity

interactive

Mainframe

Minicomputer

Workstation

PC

Laptop

CPSD

“Roughly every decade a new, lower priced computer

class forms based on a new programming platform,

network, and interface resulting in new usage and

the establishment of a new industry.”
Adapted from

D. Culler

4

Moore’s Law:

IC transistor count doubles every two years

Photo Credit: Intel

5

Flash memory scaling:

Rise of density & volumes; Fall (and rise) of prices

6

Hendy’s “Law”:

Pixels per dollar doubles annually

Credit: Barry Hendy/Wikipedia

7

MEMS Accelerometers:

Rapidly falling price and power

[Analog Devices, 2009]
ADXL345

10 µA @ 10 Hz @ 6 bits

25 µA @ 25 Hz

[ST Microelectronics, annc. 2009]

O(mA)

8

MEMS Gyroscope Chip

J. Seeger, X. Jiang, and B. Boser

9

Energy harvesting and storage:

Small doesn’t mean powerless…

Thermoelectric Ambient

Energy Harvester [PNNL]

Shock Energy Harvesting

CEDRAT Technologies

Electrostatic Energy

Harvester [ICL]

Thin-film batteries

RF [Intel]

Piezoelectric

[Holst/IMEC]

10

Perpetual operation:

Living off the land (or air)

[Sample09]

Harvest 60 µW

From 4.1 km away

Using 5 dBi antenna

From a 960 kW TV station

On channel 48

[Powercast09]

Harvest milliwatts

From centimeters away

Using a ~ 0 dBi antenna

From your iPhone

11

Bell’s Law, Take 2:

Corollary to the Laws of Scale

UMich Phoenix Processor
Introduced 2008

Initial clock speed

106 kHz @ 0.5V Vdd
Number of transistors

92,499
Manufacturing technology

0.18 µ
Photo credits: Intel, U. Michigan

12

Outline

Fundamental Technology Trends

Emerging Application Drivers

Hardware/Software Systems

13

[Ganti06]

A decade of sensor network applications

Mobility High Low

Low

High

Power

[Liu04]

[Tolle05]

[Werner-Allen06]

[Szewczyk04]

[Jiang09]

[Hull06]

[Malinowski07]

[Wark07]

[Abdelzaher07]

[Thiele08]

[Lifton07]

[Lorincz08]

[Aoki09]

SOLVED

ACTIVE ACTIVE

EMERGING

http://www.zigbee.org/Default.aspx
http://www.ipso-alliance.org/

14

Monitoring trees, cars, people, watersheds, and tires

PicoCube[Chee08] Shimmer[Intel06]

Radar [Dutta06] PEG [Sharp05]

HydroWatch [Taneja07]

Redwoods[Tolle05]

http://www.cs.berkeley.edu/~prabal/projects/lites_radar_enclosure.jpg
http://www.eecs.harvard.edu/~mdw/proj/codeblue/pics/shimmer-crop-annotate-small.jpg

15

Mobiscopes

Common

Sense

Sleep

Tracker

Auto

Witness

High Mobility

Lower

Higher

Power

16

AutoWitness

• “LoJack” for everyday things

– You: Tag your things

– City

• Deploy a network of detectors

• Track stolen objects

• Cost and convenience dictates

– $10/tag

– 10 years of lifetime

– Small size

• Tags must run on 2 uA average current

– Sleep for years normally

– Active for days after theft

[Mitra09]

17

Periodic Limb Movements

• Affects 30% of those over 65

• PLM = limb muscle jerks mostly while asleep

– Not Restless Legs Syndrome

– Formerly called noctural myoclonus

– Not hypnic jerks (they’re lower freq)

• Diagnosing the symptoms

– Most are unaware of their kicking

– Must link movements to poor sleep

– Requires nights in sleep study lab

• Treatment depends on whether motion

– Disturbs only the bed partner

– Disturbs the patient

[Buchfurher06]

18

Outline

Fundamental Technology Trends

Emerging Application Drivers

Hardware/Software Systems

19

The System Challenge

applications

service

network

system

architecture

data
mgmt

Monitoring & Managing Spaces and Things

technology

MEMS

sensing
Power

Comm. uRobots

actuate

Miniature, low-power connections to the physical world

Proc

Store

20

Despite the tight application-platform coupling,

modular platform decompositions remained in focus

WINSng [Pottie00]

Mica [Hill01]
Rene [Hill99] Mica2 [Xbow03] MicaZ [Xbow05] Iris [Xbow07]

PC/104 [Cerpa01] PASTA [Bajura05]

mPlatform[Lymberopoulos07]

WeC [Hill98]

WINS [Rockwell]

21

Hardware Platforms:

Addressing the application-specific challenge

OS

Hardware

Application

Signal Proc.

Detection

Power Supply

Storage Networking
Classification Tracking

Routing Filtering Transport

Link Layer

Timers Time Sync

Sensors
MCU

Radio Storage

Scheduler

Storage

OTAP

Query Processing

Heap Files Indices Dissemination

Interrupts

Arbiters Queues

Epic Modules

ExScal Trio

Radar

http://www.cs.berkeley.edu/~prabal/projects/epic/ar-epic-mote.jpg
http://www.cs.berkeley.edu/~prabal/projects/epic/powernet.jpg
http://www.cs.berkeley.edu/~prabal/projects/epic/ar-epic-devboard.jpg
http://www.cs.berkeley.edu/~prabal/research/energy/trio-inside.jpg
http://www.cs.berkeley.edu/~prabal/projects/epic/epic-devboard.jpg
http://www.cs.berkeley.edu/~prabal/projects/epic/epic-open-mesh.jpg
http://www.cs.berkeley.edu/~prabal/projects/epic/sucam.jpg

22

Low-Power, Duty-Cycle Operation is Critical

TX packet at 1% duty cycle (20 ms / 2 s)

4,000 ms

640,000 ms

86,400,000 ms

[Farkas00]

30 ms

http://www.made-in-china.com/image/2f0j00ZBSTKeRPYaVQM/Desktop-Computer-DT755-.jpg

23

Dynamic range in power draw exceeds 10,000:1

< 1 µW

> 50 mW

24

Energy-efficiency affects all layers of system design

25

Energy-efficiency pervades the sensornet research agenda

* Directly: Energy is part of the title, abstract, or central argument

** Indirectly: Energy is part of the motivation, evaluation, or key tradeoff

Papers Directly* or Indirectly** Related to Energy

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2002 2003 2004 2005 2006 2007 2008 2009

Year

F
ra

c
ti

o
n

Sensys IPSN SPOTS

 Mobisys

 NSDI

 SIGCOMM
 OSDI

 HotPower

 ASPLOS

26

Radio idle listening dominates the power budget,

even at radio duty cycles of just 1 to 2%

Low-Power Listening

(idle listening)

DC=2.2%

R. Szewczyk, A. Mainwaring, J. Polastre, D. Culler,

“An Analysis of a Large Scale Habitat Monitoring Application”,

ACM SenSys’ 04, November, 2004, Baltimore, MD

Therefore, the radio is kept mostly off

27

Low-Power Listening

Preamble D TX

RX D

Tlisten Noise

Overhearing adds significant unpredictability to node lifetime

28

Mobility makes energy and communication challenges

fundamentally harder in low-power systems

• Energy
– Must carry it along

– Or harvest it from the
ambient environment

– And deal with inherent
uncertainty of harvesting

– Implies dynamic duty cycles

– How to measure usage?

• Link
– Topological turmoil

– Link. What link?

– Never before seen link

– What radio channel?

– When, where to look?

– Can’t just probe during
deployment

– History is a poor/no guide

• Network
– Stability of routing peers?

– Routers, hosts, both?

• Transport
– Disruption-tolerant

– Store-and-forward

“Weather + mobility = uncertain energy budget”

- Jacob Sorber, Sensys 2007

J. Sorber et al., “Eon: A Language and Runtime for
Perpetual Systems”, Sensys’07, Sydney, Australia

29

Mobility constrains the platform design

• Limited energy source

– Fraction of 2 “AA” batteries

• Wider lifetime (average power)

– Sleep Tracker: Weeks (50 uA)

– AutoWitness: Decade (2 uA)

• Wider dynamic range

– O(10 mA) active current

– O(1 uA) sleep current

– O(0.001 - 1%) duty cycle

• CPU O(10 MIPS)

• RAM O(10 KB)

• ROM O(100 KB)

• Radio O(100 kbps)

• Flash O(1 MB – 1 GB)

200 mA-Hr

Irene [Dutta09]

2000 mA-Hr

[Dutta05]

200 mA-Hr

RatPack [Thiele08]

30

Mobility drives new communication patterns

Talking Docking Flocking

[Liu04]

[Choudury04,07]

[Wark07]

[Malinowski07]

[Borriello04]

[Huang05] [Huang05] [Huang05]

[UP08]

[Eisenman08]

31

Signal Processing without

Floating Point Operations?

OS

Hardware

Application

Signal Proc.

Detection

Power Supply

Storage Networking
Classification Tracking

Routing Filtering Transport

Link Layer

Timers Time Sync

Sensors
MCU

Radio Storage

Scheduler

Storage

OTAP

Query Processing

Heap Files Indices Dissemination

Interrupts

Arbiters Queues

Dutta, et al., “Radar” [IPSN’06]

Dutta, et al., “ExScal” [IPSN’05]*

Arora, Dutta, et al. [ComNet’04]*

32

Networking and Middleware

OS

Hardware

Application

Signal Proc.

Detection

Power Supply

Storage Networking
Classification Tracking

Routing Filtering Transport

Link Layer

Timers Time Sync

Sensors
MCU

Radio Storage

Scheduler

Storage

OTAP

Query Processing

Heap Files Indices Dissemination

Interrupts

Arbiters Queues

Flush Bulk Transport Protocol

Secure Deluge

Time Sync

IPv6/6lowpan

router

33

Programming Sensor Nodes

• Tutorials to familiarize you with tools, software

– csl.stanford.edu/~pal/pubs/tos-programming-web.pdf

– csl.stanford.edu/~pal/pubs/tinyos-programming.pdf

• Should be fun

– Monitor your own sleeping patterns

– Measure you personal energy consumption

– Visualize real-world social networks

• Should be instructive

– Learn to use the TinyOS toolchain

– Program sensor nodes in C and nesC

– Deploy and IPv6 low-power wireless network

34

Research Project

• Goal of this course is to do graduate research

– Work in group of 3, or alone

– Pick a research problem of your own

– or

– Meet with instructor to discuss other ideas

• Ideally, the project dovetails with thesis topic

• Should be related to one of the themes

– Technologies

– Systems

– Applications

WSN INTRO

35

Outline

• Infrastructure for wireless?

• (Mobile) ad hoc networks

• Wireless sensor networks

• Comparison

Infrastructure-based wireless networks

• Typical wireless network: Based on infrastructure
– E.g., GSM, UMTS, …

– Base stations connected to a wired backbone network

– Mobile entities communicate wirelessly to these base stations

– Traffic between different mobile entities is relayed by base stations and

wired backbone

– Mobility is supported by switching from one base station to another

– Backbone infrastructure required for administrative tasks

IP backbone

Server
Router

Gateways

Infrastructure-based wireless networks – Limits?

• What if …
– No infrastructure is available? – E.g., in disaster areas

– It is too expensive/inconvenient to set up? – E.g., in remote,

large construction sites

– There is no time to set it up? – E.g., in military operations

Possible applications for infrastructure-free

networks

• Factory floor

automation

 Disaster recovery Car-to-car
communication

 Military networking: Tanks, soldiers, …

 Finding out empty parking lots in a city, without asking a server

 Search-and-rescue in an avalanche

 Personal area networking (watch, glasses, PDA, medical appliance, …)

 …

Outline

• Infrastructure for wireless?

• (Mobile) ad hoc networks

• Wireless sensor networks

• Comparison

Solution: (Wireless) ad hoc networks

• Try to construct a network without

infrastructure, using networking abilities of the

participants
– This is an ad hoc network – a network constructed “for a

special purpose”

• Simplest example: Laptops in a conference room

–

a single-hop ad hoc network

Problems/challenges for ad hoc networks

• Without a central infrastructure, things become

much more difficult

• Problems are due to
– Lack of central entity for organization available

– Limited range of wireless communication

– Mobility of participants

– Battery-operated entities

No central entity -> self-organization

• Without a central entity (like a base station),

participants must organize themselves into a

network (self-organization)

• Pertains to (among others):
– Medium access control – no base station can assign

transmission resources, must be decided in a distributed

fashion

– Finding a route from one participant to another

Limited range -> multi-hopping

• For many scenarios, communication with peers

outside immediate communication range is

required
– Direct communication limited because of distance, obstacles,

…

– Solution: multi-hop network

?

Mobility -> Suitable, adaptive protocols

• In many (not all!) ad hoc network applications,

participants move around
– In cellular network: simply hand over to another base station

 In mobile ad hoc

networks (MANET):
 Mobility changes

neighborhood relationship

 Must be compensated for

 E.g., routes in the network
have to be changed

 Complicated by scale
 Large number of such nodes

difficult to support

Battery-operated devices ->

energy-efficient operation
• Often (not always!), participants in an ad hoc network

draw energy from batteries

• Desirable: long run time for
– Individual devices

– Network as a whole

 ! Energy-efficient networking protocols
– E.g., use multi-hop routes with low energy consumption (energy/bit)

– E.g., take available battery capacity of devices into account

– How to resolve conflicts between different optimizations?

Outline

• Infrastructure for wireless?

• (Mobile) ad hoc networks

• Wireless sensor networks
– Applications

– Requirements & mechanisms

• Comparison

Wireless sensor networks

• Participants in the previous examples were

devices close to a human user, interacting with

humans

• Alternative concept:

 Instead of focusing interaction on humans, focus

on interacting with environment
– Network is embedded in environment

– Nodes in the network are equipped with sensing and

actuation to measure/influence environment

– Nodes process information and communicate it wirelessly

 ! Wireless sensor networks (WSN)
– Or: Wireless sensor & actuator networks (WSAN)

WSN application examples

• Disaster relief operations
– Drop sensor nodes from an aircraft over a wildfire

– Each node measures temperature

– Derive a “temperature map”

• Biodiversity mapping
– Use sensor nodes to observe wildlife

• Intelligent buildings (or bridges)
– Reduce energy wastage by proper humidity, ventilation,

air conditioning (HVAC) control

– Needs measurements about room occupancy,

temperature, air flow, …

– Monitor mechanical stress after earthquakes

WSN application scenarios

• Facility management
– Intrusion detection into industrial sites

– Control of leakages in chemical plants, …

• Machine surveillance and preventive

maintenance
– Embed sensing/control functions into places no cable has

gone before

– E.g., tire pressure monitoring

• Precision agriculture
– Bring out fertilizer/pesticides/irrigation only where needed

• Medicine and health care
– Post-operative or intensive care

– Long-term surveillance of chronically ill patients or the

elderly

• Environmental monitoring
– Volcano monitoring

WSN application scenarios

• Logistics
– Equip goods (parcels, containers) with a sensor node

– Track their whereabouts – total asset management

– Note: passive readout might suffice – compare RF IDs

• Telematics
– Provide better traffic control by obtaining finer-grained

information about traffic conditions

– Intelligent roadside

– Cars as the sensor nodes

Roles of participants in WSN

• Sources of data: Measure data, report them

“somewhere”
– Typically equip with different kinds of actual sensors

• Sinks of data: Interested in receiving data from

WSN
– May be part of the WSN or external entity, PDA, gateway, …

• Actuators: Control some device based on data,

usually also a sink

Structuring WSN application types

• Interaction patterns between sources and sinks

classify application types
– Event detection: Nodes locally detect events (maybe jointly

with nearby neighbors), report these events to interested

sinks

• Event classification additional option

– Periodic measurement

– Function approximation: Use sensor network to approximate

a function of space and/or time (e.g., temperature map)

– Edge detection: Find edges (or other structures) in such a

function (e.g., where is the zero degree border line?)

– Tracking: Report (or at least, know) position of an observed

intruder (“pink elephant”)

Deployment options for WSN

• How are sensor nodes deployed in their

environment?
– Dropped from aircraft ! Random deployment

• Usually uniform random distribution for nodes over finite

area is assumed

• Is that a likely proposition?

– Well planned, fixed ! Regular deployment

• E.g., in preventive maintenance or similar

• Not necessarily geometric structure, but that is often a

convenient assumption

– Mobile sensor nodes

• Can move to compensate for deployment shortcomings

• Can be passively moved around by some external force

(wind, water)

• Can actively seek out “interesting” areas

Maintenance options

• Feasible and/or practical to maintain sensor

nodes?
– E.g., to replace batteries?

– Or: unattended operation?

– Impossible but not relevant? Mission lifetime might be very

small

• Energy supply?
– Limited from point of deployment?

– Some form of recharging, energy scavenging from

environment?

• E.g., solar cells

Outline

• Infrastructure for wireless?

• (Mobile) ad hoc networks

• Wireless sensor networks
– Applications

– Requirements & mechanisms

• Comparison

Characteristic requirements for WSNs

• Type of service of WSN

– Not simply moving bits like another network

– Rather: provide answers (not just numbers)

– Issues like geographic scoping are natural requirements, absent from
other networks

• Quality of service

– Traditional QoS metrics do not apply

– Still, service of WSN must be “good”: Right answers at the right time

• Fault tolerance

– Be robust against node failure (running out of energy, physical
destruction, …)

• Lifetime

– The network should fulfill its task as long as possible – definition
depends on application

– Lifetime of individual nodes relatively unimportant

– But often treated equivalently

Characteristic requirements for WSNs

• Scalability
– Support large number of nodes

• Wide range of densities
– Vast or small number of nodes per unit area, very

application-dependent

• Programmability
– Re-programming of nodes in the field might be necessary,

improve flexibility

• Maintainability
– WSN has to adapt to changes, self-monitoring, adapt

operation

– Incorporate possible additional resources, e.g., newly

deployed nodes

Required mechanisms to meet requirements

• Multi-hop wireless communication

• Energy-efficient operation
– Both for communication and computation, sensing, actuating

• Auto-configuration
– Manual configuration just not an option

• Collaboration & in-network processing
– Nodes in the network collaborate towards a joint goal

– Pre-processing data in network (as opposed to at the edge)

can greatly improve efficiency

Required mechanisms to meet requirements

• Data centric networking
– Focusing network design on data, not on node identifies (id-

centric networking)

– To improve efficiency

• Locality
– Do things locally (on node or among nearby neighbors) as far

as possible

• Exploit tradeoffs
– E.g., between invested energy and accuracy

Outline

• Infrastructure for wireless?

• (Mobile) ad hoc networks

• Wireless sensor networks

• Comparison

MANET vs. WSN

• Many commonalities: Self-organization, energy efficiency, (often)

wireless multi-hop

• Many differences

– Applications, equipment: MANETs more powerful (read: expensive)

equipment assumed, often “human in the loop”-type applications,

higher data rates, more resources

– Application-specific: WSNs depend much stronger on application

specifics; MANETs comparably uniform

– Environment interaction: core of WSN, absent in MANET

– Scale: WSN might be much larger (although contestable)

– Energy: WSN tighter requirements, maintenance issues

– Dependability/QoS: in WSN, individual node may be dispensable

(network matters), QoS different because of different applications

– Data centric vs. id-centric networking

– Mobility: different mobility patterns like (in WSN, sinks might be

mobile, usual nodes static)

Wireless fieldbuses and WSNs

• Fieldbus:
– Network type invented for real-time communication, e.g., for

factory-floor automation

– Inherent notion of sensing/measuring and controlling

– Wireless fieldbus: Real-time communication over wireless

 ! Big similarities

• Differences
– Scale – WSN often intended for larger scale

– Real-time – WSN usually not intended to provide (hard) real-

time guarantees as attempted by fieldbuses

Enabling technologies for WSN

• Cost reduction
– For wireless communication, simple microcontroller, sensing,

batteries

• Miniaturization
– Some applications demand small size

– “Smart dust” as the most extreme vision

• Energy scavenging
– Recharge batteries from ambient energy (light, vibration, …)

Conclusion

• MANETs and WSNs are challenging and promising

system concepts

• Many similarities, many differences

• Both require new types of architectures &

protocols compared to “traditional”

wired/wireless networks

• In particular, application-specificness is a new

issue

WSN NODES

67

Outline

• Sensor node architecture

• Energy supply and consumption

• Runtime environments for sensor nodes

• Case study: TinyOS

Sensor node architecture

• Main components of a WSN node
– Controller

– Communication device(s)

– Sensors/actuators

– Memory

– Power supply

Memory

Controller
Sensor(s)/

actuator(s)

Communication

device

Power supply

Ad hoc node architecture

• Core: essentially the same

• But: Much more additional equipment
– Hard disk, display, keyboard, voice interface, camera, …

• Essentially: a laptop-class device

Controller

• Main options:
– Microcontroller – general purpose processor, optimized for

embedded applications, low power consumption

– DSPs – optimized for signal processing tasks, not suitable here

– FPGAs – may be good for testing

– ASICs – only when peak performance is needed, no flexibility

• Example microcontrollers
– Texas Instruments MSP430

• 16-bit RISC core, up to 8MHz, versions with 2-10 kbytes

RAM,

several DACs, RT clock, prices start at 0.49 US$

– Atmel ATMega

• 8-bit controller, larger memory than MSP430, slower

Communication device

• Which transmission medium?
– Electromagnetic at radio frequencies?

– Electromagnetic, light?

– Ultrasound?

• Radio transceivers transmit a bit- or byte stream

as radio wave
– Receive it, convert it back into bit-/byte stream

Transceiver characteristics

• Capabilities

– Interface: bit, byte, packet level?

– Supported frequency range?

• Typically, somewhere in 433 MHz – 2.4

GHz, ISM band

– Multiple channels?

– Data rates?

– Range?

• Energy characteristics

– Power consumption to send/receive data?

– Time and energy consumption to change

between different states?

– Transmission power control?

– Power efficiency (which percentage of

consumed power is radiated?)

• Radio performance

– Modulation? (ASK, FSK, …?)

– Noise figure? NF = SNRI/SNRO

– Gain? (signal amplification)

– Receiver sensitivity? (minimum S to

achieve a given Eb/N0)

– Blocking performance (achieved BER in

presence of frequency-offset interferer)

– Out of band emissions

– Carrier sensing & RSSI characteristics

– Frequency stability (e.g., towards

temperature changes)

– Voltage range

Transceiver states

• Transceivers can be put into different

operational states, typically:
– Transmit

– Receive

– Idle – ready to receive, but not doing so

• Some functions in hardware can be switched off, reducing

energy consumption a little

– Sleep – significant parts of the transceiver are switched off

• Not able to immediately receive something

• Recovery time and startup energy to leave sleep state

can be significant

• Research issue: Wakeup receivers – can be woken via

radio when in sleep state (seeming contradiction!)

Example radio transceivers

• Almost boundless variety available

• Some examples

– RFM TR1000 family

• 916 or 868 MHz

• 400 kHz bandwidth

• Up to 115.2 kbps

• On/off keying or ASK

• Dynamically tuneable output power

• Maximum power about 1.4 mW

• Low power consumption

– Chipcon CC1000

• Range 300 to 1000 MHz, programmable

in 250 Hz steps

• FSK modulation

• Provides RSSI

– Chipcon CC 2400

• Implements 802.15.4

• 2.4 GHz, DSSS modem

• 250 kbps

• Higher power consumption than

above transceivers

– Infineon TDA 525x family

• E.g., 5250: 868 MHz

• ASK or FSK modulation

• RSSI, highly efficient power

amplifier

• Intelligent power down, “self-

polling” mechanism

• Excellent blocking performance

Example radio transceivers for ad hoc networks

• Ad hoc networks: Usually, higher data rates are

required

• Typical: IEEE 802.11 b/g/a is considered
– Up to 54 MBit/s

– Relatively long distance (100s of meters possible, typical 10s

of meters at higher data rates)

– Works reasonably well (but certainly not perfect) in mobile

environments

– Problem: expensive equipment, quite power hungry

Wakeup receivers

• Major energy problem: RECEIVING
– Idling and being ready to receive consumes considerable amounts of power

• When to switch on a receiver is not clear
– Contention-based MAC protocols: Receiver is always on

– TDMA-based MAC protocols: Synchronization overhead, inflexible

• Desirable: Receiver that can (only) check for incoming

messages
– When signal detected, wake up main receiver for actual reception

– Ideally: Wakeup receiver can already process simple addresses

– Not clear whether they can be actually built, however

Optical communication

• Optical communication can consume less energy

• Example: passive readout via corner cube

reflector
– Laser is reflected back directly to source if mirrors are at

right angles

– Mirrors can be “titled”

to stop reflecting

 ! Allows data to be

sent back to

laser source

Ultra-wideband communication

• Standard radio transceivers: Modulate a signal
onto a carrier wave
– Requires relatively small amount of bandwidth

• Alternative approach: Use a large bandwidth, do
not modulate, simply emit a “burst” of power
– Forms almost rectangular pulses

– Pulses are very short

– Information is encoded in the presence/absence of pulses

– Requires tight time synchronization of receiver

– Relatively short range (typically)

• Advantages
– Pretty resilient to multi-path propagation

– Very good ranging capabilities

– Good wall penetration

Sensors as such

• Main categories
– Any energy radiated? Passive vs. active sensors

– Sense of direction? Omidirectional?

– Passive, omnidirectional

• Examples: light, thermometer, microphones, hygrometer,

…

– Passive, narrow-beam

• Example: Camera

– Active sensors

• Example: Radar

• Important parameter: Area of coverage
– Which region is adequately covered by a given sensor?

Outline

• Sensor node architecture

• Energy supply and consumption

• Runtime environments for sensor nodes

• Case study: TinyOS

Energy supply of mobile/sensor nodes

• Goal: provide as much energy as possible at smallest

cost/volume/weight/recharge time/longevity
– In WSN, recharging may or may not be an option

• Options
– Primary batteries – not rechargeable

– Secondary batteries – rechargeable, only makes sense in combination

with some form of energy harvesting

• Requirements include
– Low self-discharge

– Long shelf live

– Capacity under load

– Efficient recharging at low current

– Good relaxation properties (seeming self-recharging)

– Voltage stability (to avoid DC-DC conversion)

Battery examples

• Energy per volume (Joule per cubic centimeter):

Primary batteries

Chemistry Zinc-air Lithium Alkaline

Energy (J/cm3) 3780 2880 1200

Secondary batteries

Chemistry Lithium NiMHd NiCd

Energy (J/cm3) 1080 860 650

Energy scavenging

• How to recharge a battery?
– A laptop: easy, plug into wall socket in the evening

– A sensor node? – Try to scavenge energy from environment

• Ambient energy sources
– Light: solar cells – between 10 W/cm2 and 15 mW/cm2

– Temperature gradients – 80 W/cm2 @ 1 V from 5K difference

– Vibrations – between 0.1 and 10000 W/cm3

– Pressure variation (piezo-electric) – 330 W/cm2 from the heel of a shoe

– Air/liquid flow

(MEMS gas turbines)

Energy scavenging – overview

Energy consumption

• A “back of the envelope” estimation

• Number of instructions
– Energy per instruction: 1 nJ

– Small battery (“smart dust”): 1 J = 1 Ws

– Corresponds: 109 instructions!

• Lifetime
– Or: Require a single day operational lifetime = 24*60*60

=86400 s

– 1 Ws / 86400s = 11.5 W as max. sustained power

consumption!

• Not feasible!

Multiple power consumption modes

• Way out: Do not run sensor node at full operation all the

time
– If nothing to do, switch to power safe mode

– Question: When to throttle down? How to wake up again?

• Typical modes
– Controller: Active, idle, sleep

– Radio mode: Turn on/off transmitter/receiver, both

• Multiple modes possible, “deeper” sleep modes
– Strongly depends on hardware

– TI MSP 430, e.g.: four different sleep modes

– Atmel ATMega: six different modes

Some energy consumption figures

• Microcontroller
– TI MSP 430 (@ 1 MHz, 3V):

• Fully operation 1.2 mW

• Deepest sleep mode 0.3 W – only woken up by external

interrupts (not even timer is running any more)

– Atmel ATMega

• Operational mode: 15 mW active, 6 mW idle

• Sleep mode: 75 W

Switching between modes

• Simplest idea: Greedily switch to lower mode

whenever possible

• Problem: Time and power consumption required

to reach higher modes not negligible
– Introduces overhead

– Switching only pays off if Esaved > Eoverhead

• Example:

Event-triggered

wake up from

sleep mode

• Scheduling problem

with uncertainty

(exercise)

Pactive

Psleep

time tevent t1

Esave

d

Eoverhe

ad

tdown tup

Alternative: Dynamic voltage scaling

• Switching modes complicated by uncertainty how long a

sleep time is available

• Alternative: Low supply voltage & clock
– Dynamic voltage scaling (DVS)

• Rationale:
– Power consumption P

depends on

• Clock frequency

• Square of supply voltage

• P / f V2

– Lower clock allows

lower supply voltage

– Easy to switch to higher clock

– But: execution takes longer

Memory power consumption

• Crucial part: FLASH memory
– Power for RAM almost negligible

• FLASH writing/erasing is expensive
– Example: FLASH on Mica motes

– Reading: 1.1 nAh per byte

– Writing: 83.3 nAh per byte

Transmitter power/energy

consumption for n bits
• Amplifier power: Pamp = amp + amp Ptx

– Ptx radiated power

 amp, amp constants depending on model

– Highest efficiency (= Ptx / Pamp) at maximum output power

• In addition: transmitter electronics needs power PtxElec

• Time to transmit n bits: n / (R ¢ R
code

)
– R nomial data rate, R

code
 coding rate

• To leave sleep mode
– Time Tstart, average power P

start

 ! E
tx

 = T
start

 P
start

 + n / (R ¢ R
code

) (PtxElec + amp + amp
Ptx)

• Simplification: Modulation not considered

Receiver power/energy

consumption for n bits

• Receiver also has startup costs
– Time Tstart, average power P

start

• Time for n bits is the same n / (R ¢ R
code

)

• Receiver electronics needs PrxElec

• Plus: energy to decode n bits EdecBits

 ! Erx = T
start

 P
start

 + n / (R ¢ R
code

) PrxElec + EdecBits (R)

Some transceiver numbers

Comparison: GSM base station power

consumption

• Overview

• Details

• (just to put things
into perspective)

AC power

3802W

DC power

3200W

-48V

RF power

480W

PS

84%
TRXs ACE

Combining

TOC RF

120W

BTS

Central

equipm.

Heat 1920WHeat 602W Heat 360W

Heat 800W

TRX

2400W

CE

800W Total Heat

3682W

AC power

3802W

DC power

3200W

-48V

RF power

480W

PS

84%
TRXs ACE

Combining

TOC RF

120W

BTS

Central

equipm.

Heat 1920WHeat 602W Heat 360W

Heat 800W

TRX

2400W

CE

800W Total Heat

3682W

220V

AC Power

supply

3802W

-48V

3232W

Rack

cabling

-48V

3200W

85% 99%

300W

500W

Fans

cooling

Com-

mon

12 transceivers

60W

idle

85%
Converter

-48V/+27V

9W
Bias

110W
PA

119W

140W

200W

(No active cooling)

40W

Usable PA efficiency

40W/140W=28%

PAs consume

dominant part of power

(12*140W)/2400W=70%

2400W

Combiner
DiplexerOverall efficiency

(12*10W)/3802W=3.1%

10W

TOC

15W

Erlang

efficiency 75%

DTX activity

47%

220V

AC Power

supply

3802W

-48V

3232W

Rack

cabling

-48V

3200W

85% 99%

300W

500W

Fans

cooling

Com-

mon

12 transceivers

60W

idle

85%
Converter

-48V/+27V

9W
Bias

110W
PA

119W

140W

200W

(No active cooling)

40W

Usable PA efficiency

40W/140W=28%

PAs consume

dominant part of power

(12*140W)/2400W=70%

2400W

Combiner
DiplexerOverall efficiency

(12*10W)/3802W=3.1%

10W

TOC

15W

Erlang

efficiency 75%

DTX activity

47%

Controlling transceivers

• Similar to controller, low duty cycle is necessary
– Easy to do for transmitter – similar problem to controller:

when is it worthwhile to switch off

– Difficult for receiver: Not only time when to wake up not

known, it also depends on remote partners

– Dependence between MAC protocols and power consumption

is strong!

• Only limited applicability of techniques analogue

to DVS
– Dynamic Modulation Scaling (DSM): Switch to modulation best

suited to communication – depends on channel gain

– Dynamic Coding Scaling – vary coding rate according to

channel gain

– Combinations

Computation vs. communication energy cost

• Tradeoff?
– Directly comparing computation/communication energy cost

not possible

– But: put them into perspective!

– Energy ratio of “sending one bit” vs. “computing one

instruction”: Anything between 220 and 2900 in the literature

– To communicate (send & receive) one kilobyte

= computing three million instructions!

• Hence: try to compute instead of communicate

whenever possible

• Key technique in WSN – in-network processing!
– Exploit compression schemes, intelligent coding schemes, …

Outline

• Sensor node architecture

• Energy supply and consumption

• Runtime environments for sensor nodes

• Case study: TinyOS

Operating system challenges in WSN

• Usual operating system goals
– Make access to device resources abstract (virtualization)

– Protect resources from concurrent access

• Usual means
– Protected operation modes of the CPU

– ----hardware access only in these modes

– Process with separate address spaces

– Support by a memory management unit

• Problem: These are not available in

microcontrollers
– No separate protection modes, no memory management unit

– Would make devices more expensive, more power-hungry

Operating system challenges in WSN

• Possible options
– Try to implement “as close to an operating system” on WSN nodes

• In particular, try to provide a known programming interface

• Namely: support for processes!

• Sacrifice protection of different processes from each other

 ! Possible, but relatively high overhead

– Do (more or less) away with operating system

• After all, there is only a single “application” running on a WSN

node

• No need to protect malicious software parts from each other

• Direct hardware control by application might improve

efficiency

• Currently popular verdict: no OS, just a simple run-time

environment

– Enough to abstract away hardware access details

– Biggest impact: Unusual programming model

Main issue: How to support

concurrency

• Simplest option: No concurrency,

sequential processing of tasks
– Not satisfactory: Risk of missing data (e.g.,

from transceiver) when processing data, etc.

 ----Interrupts/asynchronous operation has to be

supported

• Why concurrency is needed
– Sensor node’s CPU has to service the radio

modem, the actual sensors, perform

computation for application, execute

communication protocol software, etc.

Poll sensor

Process

sensor

data

Poll transceiver

Process received

packet

Traditional concurrency: Processes

• Traditional OS:
processes/threads
– Based on interrupts, context switching

– But: not available – memory overhead,
execution overhead

• But: concurrency mismatch
– One process per protocol entails too

many context switches

– Many tasks in WSN small with respect to
context switching overhead

• And: protection between
processes not needed in WSN
– Only one application anyway

Handle sensor

process

Handle packet

process

OS-mediated

process switching

Event-based concurrency

• Alternative: Switch to event-based programming model

– Perform regular processing or be idle

– React to events when they happen immediately

– Basically: interrupt handler

• Problem: must not remain in interrupt handler too long

– Danger of loosing events

– Only save data, post information that event has happened, then return

 ! Run-to-completion principle

– Two contexts: one for handlers, one for regular execution

I d l e / R e g u l a r
p r o c e s s i n g

R a d i o
e v e n t

R a d i o e v e n t h a n d l e r

S e n s o r
e v e n t

S e n s o r e v e n t
h a n d l e r

Components instead of processes

• Need an abstraction to group functionality
– Replacing “processes” for this purpose

– E.g.: individual functions of a networking protocol

• One option: Components
– Here: In the sense of TinyOS

– Typically fulfill only a single, well-defined function

– Main difference to processes:

• Component does not have an execution

• Components access same address space, no protection

against each other

– NOT to be confused with component-based programming!

API to an event-based protocol stack

• Usual networking API: sockets
– Issue: blocking calls to receive data

– Ill-matched to event-based OS

– Also: networking semantics in WSNs not necessarily well

matched to/by socket semantics

• API is therefore also event-based
– E.g.: Tell some component that some other component wants

to be informed if and when data has arrived

– Component will be posted an event once this condition is met

– Details: see TinyOS example discussion below

Dynamic power management

• Exploiting multiple operation modes is promising

• Question: When to switch in power-safe mode?
– Problem: Time & energy overhead associated with wakeup;

greedy sleeping is not beneficial (see exercise)

– Scheduling approach

• Question: How to control dynamic voltage

scaling?
– More aggressive; stepping up voltage/frequency is easier

– Deadlines usually bound the required speed form below

• Or: Trading off fidelity vs. energy consumption!
– If more energy is available, compute more accurate results

– Example: Polynomial approximation

• Start from high or low exponents depending where the

polynomial is to be evaluated

Outline

• Sensor node architecture

• Energy supply and consumption

• Runtime environments for sensor nodes

• Case study: TinyOS

Case study embedded OS: TinyOS & nesC

• TinyOS developed by UC Berkely as runtime

environment for their “motes”

• nesC as adjunct “programming language”

• Goal: Small memory footprint
– Sacrifices made e.g. in ease of use, portability

– Portability somewhat improved in newer version

• Most important design aspects
– Component-based system

– Components interact by exchanging asynchronous events

– Components form a program by wiring them together (akin to

VHDL – hardware description language)

TinyOS components

• Components

– Frame – state information

– Tasks – normal execution program

– Command handlers

– Event handlers

• Handlers

– Must run to completion

– Form a component’s interface

– Understand and emits commands &
events

• Hierarchically arranged

– Events pass upward from hardware
to higher-level components

– Commands are passed downward

TimerComponent

setRate fire

init start stop fired

Event

handlers

Command

handlers
Frame

Tasks

Handlers versus tasks

• Command handlers and events must run to

completion
– Must not wait an indeterminate amount of time

– Only a request to perform some action

• Tasks, on the other hand, can perform arbitrary,

long computation
– Also have to be run to completion since no non-cooperative

multi-tasking is implemented

– But can be interrupted by handlers

 ! No need for stack management, tasks are atomic with respect

to each other

Split-phase programming

• Handler/task characteristics and separation has
consequences on programming model
– How to implement a blocking call to another component?

– Example: Order another component to send a packet

– Blocking function calls are not an option

 ! Split-phase programming
– First phase: Issue the command to another component

• Receiving command handler will only receive the
command, post it to a task for actual execution and
returns immediately

• Returning from a command invocation does not mean
that the command has been executed!

– Second phase: Invoked component notifies invoker by event
that command has been executed

– Consequences e.g. for buffer handling

• Buffers can only be freed when completion event is
received

TimerComponent

start stop fired

Timer

init

StdCtrl

setRate fire

Clock

Structuring commands/events into interfaces

• Many commands/events can add up

• nesC solution: Structure corresponding commands/events

into interface types

• Example: Structure timer into three interfaces
– StdCtrl

– Timer

– Clock

 Build configurations by
wiring together
corresponding
interfaces

CompleteTimer

TimerComponent

Timer StdCtrl

Clock

HWClock

Clock

Timer StdCtrl

Building components out of simpler

ones

• Wire together

components to form more

complex components out

of simpler ones

• New interfaces for the

complex component

Defining modules and components in nesC

Wiring components to form a configuration

StdCtrl

Summary

• For WSN, the need to build cheap, low-energy,

(small) devices has various consequences for

system design
– Radio frontends and controllers are much simpler than in

conventional mobile networks

– Energy supply and scavenging are still (and for the

foreseeable future) a premium resource

– Power management (switching off or throttling down devices)

crucial

• Unique programming challenges of embedded

systems
– Concurrency without support, protection

– De facto standard: TinyOS

WSN ARCHITECTURE

118

Outline

• Network scenarios

• Optimization goals

• Design principles

• Service interface

• Gateway concepts

Basic scenarios: sensor networks

• Sensor network scenarios
– Sources: Any entity that provides data/measurements

– Sinks: Nodes where information is required

• Belongs to the sensor network as such

• Is an external entity, e.g., a PDA, but directly connected

to the WSN

– Main difference: comes and goes, often moves

around, …

• Is part of an external network (e.g., internet), somehow

connected to the WSN

– Applications: Usually, machine to machine, often limited

amounts of data, different notions of importance

Source

Sink
Inter

net Sink

Source

Sink

Source

Single-hop vs. multi-hop networks

• One common problem: limited range of wireless communication

– Essentially due to limited transmission power, path loss, obstacles

• Option: multi-hop networks

– Send packets to an intermediate node

– Intermediate node forwards packet to its destination

– Store-and-forward multi-hop network

 Basic technique applies to both
WSN and MANET

 Note: Store&forward multi-
hopping NOT the only possible
solution

 E.g., collaborative networking,
network coding

 Do not operate on a per-
packet basis Source

Sink

Obstacle

Energy efficiency of multi-hopping?

• Obvious idea: Multi-hopping is more energy-

efficient than direct communication
– Because of path loss > 2, energy for distance d is reduced

from cd to 2c(d/2)

• c some constant

• However: sometime this is wrong, or at least

very over-simplified
– Need to take constant offsets for powering transmitter,

receiver into account

 ! Multi-hopping for energy savings needs careful

choice

WSN: Multiple sinks, multiple sources

Different sources of mobility

• Node mobility
– A node participating as source/sink (or destination) or a relay

node might move around

– Deliberately, self-propelled or by external force; targeted or

at random

– Happens in both WSN and MANET

• Sink mobility
– In WSN, a sink that is not part of the WSN might move

– Mobile requester

• Event mobility
– In WSN, event that is to be observed moves around (or

extends, shrinks)

– Different WSN nodes become “responsible” for surveillance of

such an event

WSN sink mobility

Request

Movement

direction

Propagation

of answers

WSN event mobility: Track the pink

elephant

Here: Frisbee model as example

Outline

• Network scenarios

• Optimization goals

• Design principles

• Service interface

• Gateway concepts

Optimization goal: Quality of Service

• In MANET: Usual QoS interpretation
– Throughput/delay/jitter

– High perceived QoS for multimedia applications

• In WSN, more complicated
– Event detection/reporting probability

– Event classification error, detection delay

– Probability of missing a periodic report

– Approximation accuracy (e.g, when WSN constructs a
temperature map)

– Tracking accuracy (e.g., difference between true and
conjectured position of the pink elephant)

• Related goal: robustness
– Network should withstand failure of some nodes

Optimization goal: Energy efficiency

• Umbrella term!

• Energy per correctly received bit
– Counting all the overheads, in intermediate nodes, etc.

• Energy per reported (unique) event
– After all, information is important, not payload bits!

– Typical for WSN

• Delay/energy tradeoffs

• Network lifetime
– Time to first node failure

– Network half-life (how long until 50% of the nodes died?)

– Time to partition

– Time to loss of coverage

– Time to failure of first event notification

Optimization goal: Scalability

• Network should be operational regardless of

number of nodes
– At high efficiency

• Typical node numbers difficult to guess
– MANETs: 10s to 100s

– WSNs: 10s to 1000s, maybe more (although few people have

seen such a network before…)

• Requiring to scale to large node numbers has

serious consequences for network architecture
– Might not result in the most efficient solutions for small

networks!

– Carefully consider actual application needs before looking for

n ! 1 solutions!

Outline

• Network scenarios

• Optimization goals

• Design principles

• Service interface

• Gateway concepts

Distributed organization

• Participants in a MANET/WSN should cooperate

in organizing the network
– E.g., with respect to medium access, routing, …

– Centralistic approach as alternative usually not feasible –

hinders scalability, robustness

• Potential shortcomings
– Not clear whether distributed or centralistic organization

achieves better energy efficiency (when taking all overheads

into account)

• Option: “limited centralized” solution
– Elect nodes for local coordination/control

– Perhaps rotate this function over time

In-network processing

• MANETs are supposed to deliver bits from one

end to the other

• WSNs, on the other end, are expected to provide

information, not necessarily original bits
– Gives addition options

– E.g., manipulate or process the data in the network

• Main example: aggregation
– Apply composable aggregation functions to a convergecast

tree in a network

– Typical functions: minimum, maximum, average, sum, …

– Not amenable functions: median

In-network processing: Aggregation example

• Reduce number of transmitted bits/packets by

applying an aggregation function in the network

1

1

3
1

1

6

1

1

1
1

1

1

In-network processing: signal processing

• Depending on application, more sophisticated

processing of data can take place within the

network
– Example edge detection: locally exchange raw data with

neighboring nodes, compute edges, only communicate edge

description to far away data sinks

– Example tracking/angle detection of signal source: Conceive

of sensor nodes as a distributed microphone array, use it to

compute the angle of a single source, only communicate this

angle, not all the raw data

• Exploit temporal and spatial correlation
– Observed signals might vary only slowly in time ! no need to

transmit all data at full rate all the time

– Signals of neighboring nodes are often quite similar ! only try

to transmit differences (details a bit complicated, see later)

Adaptive fidelity

• Adapt the effort with which data is exchanged to

the currently required accuracy/fidelity

• Example event detection
– When there is no event, only very rarely send short “all is

well” messages

– When event occurs, increase rate of message exchanges

• Example temperature
– When temperature is in acceptable range, only send

temperature values at low resolution

– When temperature becomes high, increase resolution and

thus message length

Data centric networking

• In typical networks (including ad hoc networks),

network transactions are addressed to the

identities of specific nodes
– A “node-centric” or “address-centric” networking paradigm

• In a redundantly deployed sensor networks,

specific source of an event, alarm, etc. might

not be important
– Redundancy: e.g., several nodes can observe the same area

• Thus: focus networking transactions on the data

directly instead of their senders and transmitters

! data-centric networking
– Principal design change

Implementation options for data-centric networking

• Overlay networks & distributed hash tables (DHT)

– Hash table: content-addressable memory

– Retrieve data from an unknown source, like in peer-to-peer

networking – with efficient implementation

– Some disparities remain

• Static key in DHT, dynamic changes in WSN

• DHTs typically ignore issues like hop count or distance between nodes

when performing a lookup operation

• Publish/subscribe

– Different interaction paradigm

– Nodes can publish data, can subscribe to any particular kind of data

– Once data of a certain type has been published, it is delivered to all

subscribes

– Subscription and publication are decoupled in time; subscriber and

publisher are agnostic of each other (decoupled in identity)

• Databases

Further design principles

• Exploit location information
– Required anyways for many applications; can considerably

increase performance

• Exploit activity patterns

• Exploit heterogeneity
– By construction: nodes of different types in the network

– By evolution: some nodes had to perform more tasks and

have less energy left; some nodes received more solar energy

than others; …

• Cross-layer optimization of protocol stacks for

WSN
– Goes against grain of standard networking; but promises big

performance gains

– Also applicable to other networks like ad hoc; usually at least

worthwhile to consider for most wireless networks

Outline

• Network scenarios

• Optimization goals

• Design principles

• Service interface

• Gateway concepts

Interfaces to protocol stacks

• The world’s all-purpose network interface: sockets

– Good for transmitting data from one sender to one receiver

– Not well matched to WSN needs (ok for ad hoc networks)

• Expressibility requirements

– Support for simple request/response interactions

– Support for asynchronous event notification

– Different ways for identifying addressee of data

• By location, by observed values, implicitly by some other form of group
membership

• By some semantically meaningful form – “room 123”

– Easy accessibility of in-network processing functions

• Formulate complex events – events defined only by several nodes

– Allow to specify accuracy & timeliness requirements

– Access node/network status information (e.g., battery level)

– Security, management functionality, …

• No clear standard has emerged yet – many competing, unclear
proposals

Outline

• Network scenarios

• Optimization goals

• Design principles

• Service interface

• Gateway concepts

Gateway concepts for WSN/MANET

• Gateways are necessary to the Internet for

remote access to/from the WSN
– Same is true for ad hoc networks; additional complications

due to mobility (change route to the gateway; use different

gateways)

– WSN: Additionally bridge the gap between different

interaction semantics (data vs. address-centric networking) in

the gateway

• Gateway needs support for different

radios/protocols, …

Gateway

node

Internet Remote

users

Wireless sensor network

Gateway

node

Internet Remote

users

Wireless sensor network

Gateway

nodes

Alice‘s desktop

Alice‘s PDA

Alert Alice

Internet

WSN to Internet communication

• Example: Deliver an alarm message to an Internet host

• Issues

– Need to find a gateway (integrates routing & service discovery)

– Choose “best” gateway if several are available

– How to find Alice or Alice’s IP?

Internet to WSN communication

• How to find the right WSN to answer a need?

• How to translate from IP protocols to WSN protocols,

semantics?

Gateway

nodes

Remote requester

Internet
Gateway

Gateway

nodes

Internet

 Gateway

WSN tunneling

• Use the Internet to “tunnel” WSN packets between two

remote WSNs

Summary

• Network architectures for ad hoc networks are –

in principle – relatively straightforward and

similar to standard networks
– Mobility is compensated for by appropriate protocols, but

interaction paradigms don’t change too much

• WSNs, on the other hand, look quite different on

many levels
– Data-centric paradigm, the need and the possibility to

manipulate data as it travels through the network opens new

possibilities for protocol design

• The following chapters will look at how these

ideas are realized by actual protocols

MAC OF WSN

150

Multiple Access Links and Protocols

Two types of “links”:

• point-to-point

– PPP for dial-up access

– point-to-point link between switch and host

• broadcast (shared wire or medium)

– traditional Ethernet

– upstream HFC

– 802.11 wireless LAN

Multiple Access protocols

• single shared broadcast channel

• two or more simultaneous transmissions by nodes:
interference
– collision if node receives two or more signals at the same time

multiple access protocol

• distributed algorithm that determines how nodes share
channel, i.e., determine when node can transmit

• communication about channel sharing must use channel
itself!
– no out-of-band channel for coordination

Ideal Multiple Access Protocol

Broadcast channel of rate R bps

1. When one node wants to transmit, it can send at

rate R.

2. When M nodes want to transmit, each can send

at average rate R/M

3. Fully decentralized:

– no special node to coordinate transmissions

– no synchronization of clocks, slots

4. Simple

MAC Protocols: a taxonomy

• Static Channel Allocation
– divide channel into smaller “pieces” (time slots, frequency,

code)

– allocate piece to node for exclusive use

• Dynamic Channel Allocation
– channel not divided, allow collisions

– “recover” from collisions

Static Channel Allocation: TDMA

TDMA: time division multiple access

• access to channel in "rounds"

• each station gets fixed length slot (length = pkt trans time) in

each round

• unused slots go idle

• example: 6-station LAN, 1,3,4 have pkt, slots 2,5,6 idle

Static Channel Allocation: FDMA

FDMA: frequency division multiple access

• channel spectrum divided into frequency bands

• each station assigned fixed frequency band

• unused transmission time in frequency bands go idle

• example: 6-station LAN, 1,3,4 have pkt, frequency bands 2,5,6 idle

fr
e
qu

en
cy

 b
an

d
s

Dynamic Channel Allocation

– ALOHA, slotted ALOHA

– CSMA, CSMA/CD, CSMA/CA – in future slides

– Collision free protocols

• Bit-map protocol

• Binary countdown

– Limited contention protocols

• Adaptive tree walk

– Wavelength division multiple access protocol

Not currently used in major

system yet

Ethernet uses CSMA/CD

• No slots

• adapter doesn’t transmit if it

senses that some other adapter

is transmitting, that is, carrier

sense

• transmitting adapter aborts

when it senses that another

adapter is transmitting, that is,

collision detection

• Before attempting a

retransmission, adapter

waits a random time, that

is, random access

MAC FOR WSN

246

Goals of this chapter

• Controlling when to send a packet and when to

listen for a packet are perhaps the two most

important operations in a wireless network
– Especially, idly waiting wastes huge amounts of energy

• This chapter discusses schemes for this medium

access control that are
– Suitable to mobile and wireless networks

– Emphasize energy-efficient operation

Overview

• Principal options and difficulties

• Contention-based protocols

• Schedule-based protocols

• IEEE 802.15.4

Principal options and difficulties

• Medium access in wireless networks is difficult

mainly because of
– Impossible (or very difficult) to send and receive at the same

time

– Interference situation at receiver is what counts for

transmission success, but can be very different from what

sender can observe

– High error rates (for signaling packets) compound the issues

• Requirement
– As usual: high throughput, low overhead, low error rates, …

– Additionally: energy-efficient, handle switched off devices!

Requirements for energy-efficient MAC

protocols
• Recall

– Transmissions are costly

– Receiving about as expensive as transmitting

– Idling can be cheaper but is still expensive

• Energy problems
– Collisions – wasted effort when two packets collide

– Overhearing – waste effort in receiving a packet destined for

another node

– Idle listening – sitting idly and trying to receive when nobody

is sending

– Protocol overhead

• Always nice: Low complexity solution

Main options

Wireless medium access

Centralized

Distributed

Contention-

based

Schedule-

based

Fixed

assignment

Demand

assignment

Contention-

based

Schedule-

based

Fixed

assignment

Demand

assignment

Centralized medium access

• Idea: Have a central station control when a node

may access the medium
– Example: Polling, centralized computation of TDMA schedules

– Advantage: Simple, quite efficient (e.g., no collisions),

burdens the central station

• Not directly feasible for non-trivial wireless

network sizes

• But: Can be quite useful when network is

somehow divided into smaller groups
– Clusters, in each cluster medium access can be controlled

centrally – compare Bluetooth piconets, for example

 ! Usually, distributed medium access is considered

Schedule- vs. contention-based MACs

• Schedule-based MAC

– A schedule exists, regulating which participant may use which

resource at which time (TDMA component)

– Typical resource: frequency band in a given physical space (with a

given code, CDMA)

– Schedule can be fixed or computed on demand

• Usually: mixed – difference fixed/on demand is one of time scales

– Usually, collisions, overhearing, idle listening no issues

– Needed: time synchronization!

• Contention-based protocols

– Risk of colliding packets is deliberately taken

– Hope: coordination overhead can be saved, resulting in overall

improved efficiency

– Mechanisms to handle/reduce probability/impact of collisions

required

– Usually, randomization used somehow

Overview

• Principal options and difficulties

• Contention-based protocols
– MACA

– S-MAC, T-MAC

– Preamble sampling, B-MAC

– PAMAS

• Schedule-based protocols

• IEEE 802.15.4

A

Distributed, contention-based MAC

• Basic ideas for a distributed MAC
– ALOHA – no good in most cases

– Listen before talk (Carrier Sense Multiple Access, CSMA) – better, but

suffers from sender not knowing what is going on at receiver, might

destroy packets despite first listening

 ! Receiver additionally needs some possibility to inform

possible senders in its vicinity about impending

transmission (to “shut them up” for this duration)

B C D

Hidden

terminal

scenario:

Also:

recall

exposed

terminal

scenario

Main options to shut up senders

• Receiver informs potential interferers while a reception is

on-going
– By sending out a signal indicating just that

– Problem: Cannot use same channel on which actual reception takes place

 ! Use separate channel for signaling

– Busy tone protocol

• Receiver informs potential interferers before a reception

is on-going
– Can use same channel

– Receiver itself needs to be informed, by sender, about impending

transmission

– Potential interferers need to be aware of such information, need to store

it

Receiver informs interferers before transmission – MACA

• Sender B asks receiver C whether

C is able to receive a

transmission

Request to Send (RTS)

• Receiver C agrees, sends out a

Clear to Send (CTS)

• Potential interferers overhear

either RTS or CTS and know about

impending transmission and for

how long it will last

– Store this information in a

Network Allocation Vector

• B sends, C acks

 ! MACA protocol (used e.g. in IEEE

802.11)

A B C D

RTS

CTS

Data

Ack

NAV indicates

busy medium

NAV indicates

busy medium

RTS/CTS

• RTS/CTS ameliorate, but do not solve

hidden/exposed terminal problems

• Example problem cases:
A B C D

RTS

CTS

Data

A B C D

RTS

RTS

CTS

RTS

RTS
CTS

CTSData

Data

Ack

MACA Problem: Idle listening

• Need to sense carrier for RTS or CTS packets
– In some form shared by many CSMA variants; but e.g. not by

busy tones

– Simple sleeping will break the protocol

• IEEE 802.11 solution: ATIM windows & sleeping
– Basic idea: Nodes that have data buffered for receivers send

traffic indicators at pre-arranged points in time

– Receivers need to wake up at these points, but can sleep

otherwise

• Parameters to adjust in MACA
– Random delays – how long to wait between

listen/transmission attempts?

– Number of RTS/CTS/ACK re-trials?

– …

Medium Access Control in Sensor Nets

• Important attributes of MAC protocols

(in the past)
1. Collision avoidance

2. Energy efficiency

3. Scalability in node density

4. Latency

5. Fairness

6. Throughput

7. Bandwidth utilization

Sensor-MAC (S-MAC)

• MACA’s idle listening is particularly unsuitable if average data rate is low

– Most of the time, nothing happens

• Idea: Switch nodes off, ensure that neighboring nodes turn on simultaneously

to allow packet exchange (rendez-vous)

– Only in these active periods,

packet exchanges happen

– Need to also exchange wakeup

schedule between neighbors

– When awake, essentially perform

RTS/CTS

• Use SYNCH, RTS, CTS phases

• After they start data transmission,

they do not follow the sleep

schedule – transmit until all

segments of a packet done

Wakeup period

Active period

Sleep period

For SYNCH For RTS For CTS

S-MAC: Periodic Listen and Sleep

• Motivation: Idle listening consumes significant energy

– Nodes do not sleep in IEEE 802.11 ad hoc mode

• Solution: Periodic listen and sleep

– Turn off radio when sleeping

– Reduce duty cycle to ~10% (200 ms on/2s off)

– Increased latency for reduced energy

sleep listen listen sleep

S-MAC: Periodic Listen and Sleep

• Schedule maintenance
– Remember neighbors’ schedules

 — to know when to send to them

– Each node broadcasts its schedule every few periods

– Refresh on neighbor’s schedule when receiving an update

– Schedule packets also serve as beacons for new nodes to join

a neighborhood

S-MAC: Periodic Listen and Sleep

• Schedules can differ

• Preferable if neighboring nodes have same schedule

— easy broadcast & low control overhead

Border nodes:
 two schedules
 broadcast twice

Node 1

Node 2

sleep listen listen sleep

sleep listen listen sleep

Schedule 2

Schedule 1

S-MAC synchronized islands

• Nodes try to pick up schedule synchronization from

neighboring nodes

• If no neighbor found, nodes pick some schedule to start

with

• If additional nodes join, some node might learn about two

different schedules from different nodes

– “Synchronized islands”

• To bridge this gap, it has to follow both schemes

Time

A A A A

C C C C

A

B B B B

D D D

A

C

B

D

E
E E E E E E

Timeout-MAC (T-MAC)

• In S-MAC, active period is of

constant length

• What if no traffic actually happens?

– Nodes stay awake needlessly long

• Idea: Prematurely go back to sleep

mode when no traffic has happened

for a certain time (=timeout): T-MAC

– After the SYNC section of the active

period, there is a short window to

send or receive RTS and CTS

packets. If no activity happens in

that period, the node goes to sleep.

– Adaptive duty cycle!

• One ensuing problem: Early sleeping

– C wants to send to D, but is hindered

by transmission A->B

A B C D

CTS

May not

send

Timeout,

go back to

sleep as

nothing

happened

Preamble Sampling

• So far: Periodic sleeping supported by some

means to synchronize wake up of nodes to

ensure rendez-vous between sender and receiver

• Alternative option: Don’t try to explicitly

synchronize nodes
– Have receiver sleep and only periodically sample the channel

• Use long preambles to ensure that receiver

stays awake to catch actual packet
– Example: WiseMAC

Check

channel

Check

channel

Check

channel

Check

channel

Start transmission:
Long preamble Actual packet

Stay awake!

B-MAC

• Combines several of the above discussed ideas
– Takes care to provide practically relevant solutions

• Clear Channel Assessment
– Adapts to noise floor by sampling channel when it is assumed

to be free

– Samples are exponentially averaged, result used in gain

control

– For actual assessment when sending a packet, look at five

channel samples – channel is free if even a single one of them

is significantly below noise

– Optional: random backoff if channel is found busy

• Optional: Immediate link layer

acknowledgements for received packets

B-MAC II

• Low Power Listening (= preamble sampling)
– Uses the clear channel assessment techniques to decide

whether there is a packet arriving when node wakes up

– Timeout puts node back to sleep if no packet arrived

• B-MAC does not have
– Synchronization

– RTS/CTS

– Results in simpler, leaner implementation

– Clean and simple interface

• Currently: Often considered as the default WSN

MAC protocol

Power Aware Multiaccess with Signaling – PAMAS

• Idea: combine busy tone with RTS/CTS
– Results in detailed overhearing avoidance, does not address

idle listening

– Uses separate data and control channels

• Procedure
– Node A transmits RTS on control channel, does not sense

channel

– Node B receives RTS, sends CTS on control channel if it can

receive and does not know about ongoing transmissions

– B sends busy tone as it starts to receive data

Time

Control

channel

Data

channel

RTS

A ->B

CTS

B -> A

Data

A -> B

Busy tone

sent by B

PAMAS – Already ongoing transmission

• Suppose a node C in vicinity of A is already

receiving a packet when A initiates RTS

• Procedure
– A sends RTS to B

– C is sending busy tone (as it receives data)

– CTS and busy tone collide, A receives no CTS, does not send

data

A

B
C

?

Time

Control

channel

Data

channel

RTS

A ! B

CTS

B ! A

No data!

Busy tone by C

Similarly: Ongoing

transmission near B destroys

RTS by busy tone

Overview

• Principal options and difficulties

• Contention-based protocols

• Schedule-based protocols
– LEACH

– SMACS

– TRAMA

• IEEE 802.15.4

Low-Energy Adaptive Clustering Hierarchy

(LEACH)
• Given: dense network of nodes, reporting to a

central sink, each node can reach sink directly

• Idea: Group nodes into “clusters”, controlled by
clusterhead
– Setup phase; details: later

– About 5% of nodes become clusterhead (depends on scenario)

– Role of clusterhead is rotated to share the burden

– Clusterheads advertise themselves, ordinary nodes join CH
with strongest signal

– Clusterheads organize

• CDMA code for all member transmissions

• TDMA schedule to be used within a cluster

• In steady state operation
– CHs collect & aggregate data from all cluster members

– Report aggregated data to sink using CDMA

LEACH rounds

Setup phase Steady-state phase

Fixed-length round

……….. ………..

Advertisement phase Cluster setup phase Broadcast schedule

Time slot

1

Time slot

2

Time slot

n

Time slot

1
…..….. …..

Clusterheads

compete with

CSMA

Members

compete

with CSMA
Self-election of

clusterheads

SMACS

• Given: many radio channels, superframes of

known length (not necessarily in phase, but still

time synchronization required!)

• Goal: set up directional links between

neighboring nodes
– Link: radio channel + time slot at both sender and receiver

– Free of collisions at receiver

– Channel picked randomly, slot is searched greedily until a

collision-free slot is found

• Receivers sleep and only wake up in their

assigned time slots, once per superframe

• In effect: a local construction of a schedule

SMACS link setup

• Case 1: Node X, Y both so far unconnected

– Node X sends invitation message

– Node Y answers, telling X that is unconnected to

any other node

– Node X tells Y to pick slot/frequency for the link

– Node Y sends back the link specification

• Case 2: X has some neighbors, Y not

– Node X will construct link specification and instruct

Y to use it (since Y is unattached)

• Case 3: X no neighbors, Y has some

– Y picks link specification

• Case 4: both nodes already have links

– Nodes exchange their schedules and pick free

slots/frequencies in mutual agreement

X Y

Type1 (X, unconnected)

Type2(X, Y, unconnected)

Type3 (Y, --)

Type4(LinkSpec)

Message exchanges
protected by
randomized backoff

TRAMA

• Nodes are synchronized

• Time divided into cycles, divided into
– Random access periods

– Scheduled access periods

• Nodes exchange neighborhood information
– Learning about their two-hop neighborhood

– Using neighborhood exchange protocol: In random access

period, send small, incremental neighborhood update

information in randomly selected time slots

• Nodes exchange schedules
– Using schedule exchange protocol

– Similar to neighborhood exchange

TRAMA – adaptive election

• Given: Each node knows its two-hop neighborhood and

their current schedules

• How to decide which slot (in scheduled access period) a

node can use?
– Use node identifier x and globally known hash function h

– For time slot t, compute priority p = h (x © t)

– Compute this priority for next k time slots for node itself and all two-hop

neighbors

– Node uses those time slots for which it has the highest priority

t = 0 t = 1 t = 2 t=3 t = 4 t = 5

A 14 23 9 56 3 26

B 33 64 8 12 44 6

C 53 18 6 33 57 2

Priorities of

node A and its

two neighbors

B & C

TRAMA – possible conflicts

• When does a node have to receive?
– Easy case: one-hop neighbor has won a time slot and announced a packet

for it

– But complications exist – compare example

C
A

B
D

Prio 100 Prio 95 Prio 79 Prio 200

 What does B
believe?
 A thinks it can send

 B knows that D has
higher priority in its 2-
hop neighborhood!

 Rules for resolving such
conflicts are part of
TRAMA

Comparison: TRAMA, S-MAC

• Comparison between TRAMA & S-MAC
– Energy savings in TRAMA depend on load situation

– Energy savings in S-MAC depend on duty cycle

– TRAMA (as typical for a TDMA scheme) has higher delay but

higher maximum throughput than contention-based S-MAC

• TRAMA disadvantage: substantial memory/CPU

requirements for schedule computation

Overview

• Principal options and difficulties

• Contention-based protocols

• Schedule-based protocols

• IEEE 802.15.4

IEEE 802.15.4

• IEEE standard for low-rate WPAN applications

• Goals: low-to-medium bit rates, moderate delays

without too stringent guarantee requirements,

low energy consumption

• Physical layer
– 20 kbps over 1 channel @ 868-868.6 MHz

– 40 kbps over 10 channels @ 905 – 928 MHz

– 250 kbps over 16 channels @ 2.4 GHz

• MAC protocol
– Single channel at any one time

– Combines contention-based and schedule-based schemes

– Asymmetric: nodes can assume different roles

IEEE 802.15.4 MAC overview

• Star networks: devices are associated with

coordinators
– Forming a PAN, identified by a PAN identifier

• Coordinator
– Bookkeeping of devices, address assignment, generate

beacons

– Talks to devices and peer coordinators

• Beacon-mode superframe structure
– GTS assigned to devices upon request

Active period Inactive period

Contention

access

period

Guaranteed time

slots (GTS)
Beacon

Coordinator Device

Beacon

Data

request

Acknowledgement

Data

Acknowledgement

Wakeup radio MAC protocols

• Simplest scheme: Send a wakeup “burst”, waking
up all neighbors ! Significant overhearing
– Possible option: First send a short filter packet that includes

the actual destination address to allow nodes to power off
quickly

• Not quite so simple scheme: Send a wakeup
burst including the receiver address
– Wakeup radio needs to support this option

• Additionally: Send information about a (randomly
chosen) data channel, CDMA code, … in the
wakeup burst

• Various variations on these schemes in the
literature, various further problems
– One problem: 2-hop neighborhood on wakeup channel might

be different from 2-hop neighborhood on data channel

– Not trivial to guarantee unique addresses on both channels

Further protocols

• MAC protocols for ad hoc/sensor networks is one

the most active research fields
– Tons of additional protocols in the literature

– Examples: STEM, mediation device protocol, many CSMA

variants with different timing optimizations, protocols for

multi-hop reservations (QoS for MANET), protocols for

multiple radio channels, …

– Additional problems, e.g., reliable multicast

• This chapter has barely scratched the surface…

Summary

• Many different ideas exist for medium access

control in MANET/WSN

• Comparing their performance and suitability is

difficult

• Especially: clearly identifying interdependencies

between MAC protocol and other

layers/applications is difficult
– Which is the best MAC for which application?

• Nonetheless, certain “common use cases” exist
– IEEE 802.11 DCF for MANET

– IEEE 802.15.4 for some early “commerical” WSN variants

– B-MAC for WSN research not focusing on MAC

LINK LAYER OF WSN

287

Overview

• Error control

• Framing

• Link management

Error control

• Error control has to ensure that data transport is
– Error-free – deliver exactly the sent bits/packets

– In-sequence – deliver them in the original order

– Duplicate-free – and at most once

– Loss-free – and at least once

• Causes: fading, interference, loss of bit

synchronization, …
– Results in bit errors, bursty, sometimes heavy-tailed runs (see

physical layer chapter)

– In wireless, sometimes quite high average bit error rates – 10-

2 … 10-4 possible!

• Approaches
– Backward error control – ARQ

– Forward error control – FEC

Backward error control – ARQ

• Basic procedure (a quick recap)
– Put header information around the payload

– Compute a checksum and add it to the packet

• Typically: Cyclic redundancy check (CRC), quick, low

overhead, low residual error rate

– Provide feedback from receiver to sender

• Send positive or negative acknowledgement

– Sender uses timer to detect that acknowledgements have not

arrived

• Assumes packet has not arrived

• Optimal timer setting?

– If sender infers that a packet has not been received

correctly, sender can retransmit it

• What is maximum number of retransmission attempts? If

bounded, at best a semi-reliable protocols results

Standard ARQ protocols

• Alternating bit – at most one packet outstanding,

single bit sequence number

• Go-back N – send up to N packets, if a packet has

not been acknowledged when timer goes off,

retransmit all unacknowledged packets

• Selective Repeat – when timer goes off, only

send that particular packet

How to use acknowledgements

• Be careful about ACKs from different layers
– A MAC ACK (e.g., S-MAC) does not necessarily imply buffer

space in the link layer

– On the other hand, having both MAC and link layer ACKs is a

waste

• Do not (necessarily) acknowledge every packet –

use cumulative ACKs
– Tradeoff against buffer space

– Tradeoff against number of negative ACKs to send

When to retransmit

• Assuming sender has decided to retransmit a

packet – when to do so?
– In a BSC channel, any time is as good as any

– In fading channels, try to avoid bad channel states – postpone

transmissions

– Instead (e.g.): send a packet to another node if in queue

(exploit multi-user diversity)

• How long to wait?
– Example solution: Probing protocol

– Idea: reflect channel state by two protocol modes, “normal”

and “probing”

– When error occurs, go from normal to probing mode

– In probing mode, periodically send short packets

(acknowledged by receiver) – when successful, go to normal

mode

Forward error control

• Idea: Endow symbols in a packet with additional

redundancy to withstand a limited amount of

random permutations
– Additionally: interleaving – change order of symbols to

withstand burst errors

Channel

encoder

(FEC)

Inter-

leaver

Modula-

tor

Demo-

dulator

Deinter-

leaver

Channel

decoder

Channel

Tx antenna

Rx antenna

Source symbols Channel symbols Channel symbols Digital waveform

Channel symbols Channel symbolsSource symbols Digital waveform

Information

source

Information

sink

Error-Correction Code

• Theoretical lower limit
– A code with m message bits and r check bits which will allow all

single errors to be corrected

• 2m legal messages – legal codewords

• For each legal message, there is n illegal codewords

• Total number of bit pattern is 2n

• Therefore, (n+1)2m2n

• n=m+r, (m+r+1) 2r

• Hamming Code
– It can correct any single bit error

– bits in power of 2 positions (1,2,4,8,) are check bits, the rest are m
data bits

– Check bit forces the parity of some collection of bit “1” to be even

– To see which check bits the data bit in position k contributes to,
rewrite k as a sum of powers of 2.

• 11=1+2+8, 29=1+4+8+16

Hamming code

Hamming Code Example

If a 12-bit hamming code 0x9B8 = 100110111000 arrives at receiver, is there any bit
error? If so, which bit is wrong?

Check
bit

Checked Data bits Bits Sequence

1 3 5 7 9 11 1 0 1 1 1 0 (Yes)

2 3 6 7 10 11 0 0 0 1 0 0 (No)

4 5 6 7 12 1 1 0 1 0 (No)

8 9 10 11 12 1 1 0 0 0 (Yes)

1 2 3=2+1 4 5=4+1 6=4+2 7=4+2+1 8 9=8+1 10=8+2 11=8+2+1 12=8+4

1 0 0 1 1 0 1 1 1 0 0 0

Hence bit 6 = 2+4 is wrong, so correct hamming code should be
0x9F8 = 100111111000

Correct burst errors

Use of Hamming code to correct k burst errors by send k ASCII character together, column by
column. (Read Tanenbaum textbook page 195)

Comparison: FEC vs. ARQ

• FEC
– Constant overhead for

each packet

– Not (easily) possible to
adapt to changing
channel
characteristics

• ARQ
– Overhead only when

errors occurred
(expect for ACK,
always needed)

• Both schemes have
their uses ! hybrid
schemes

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1

p

no FEC
t=2
t=4
t=6
t=8

t=10

BCH + unlimited number of retransmissions

R
el

at
iv

e
en

er
g

y
 c

o
n
su

m
p
ti

o
n

t: error correction capacity

Power control on a link level

• Further controllable parameter: transmission

power
– Higher power, lower error rates – less FEC/ARQ necessary

– Lower power, higher error rates – higher FEC necessary

• Tradeoff!

Overview

• Error control

• Framing

• Link management

Frame, packet size

• Small packets: low

packet error rate, high

packetization overhead

• Large packets: high

packet error rate, low

overhead

• Depends on bit error

rate, energy

consumption per

transmitted bit

• Notation: h(overhead,

payload size, BER)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 1e-05 0.0001 0.001
E

n
e
rg

y
 p

e
r

u
s
e
fu

l
b
it

Bit error rate

h(100, 100, p)
h(100, 500, p)

 0

 5

 10

 15

 20

 25

 30

 0 500 1000 1500 2000 2500 3000

E
n

e
rg

y
 p

e
r

u
s
e

fu
l
b

it

User data size

h(100,u,0.001)

Dynamically adapt frame length

• For known bit error rate (BER), optimal frame

length is easy to determine

• Problem: how to estimate BER?
– Collect channel state information at the receiver (RSSI, FEC

decoder information, …)

– Example: Use number of attempts T required to transmit the

last M packets as an estimator of the packet error rate

(assuming a BSC)

• Second problem: how long are observations

valid/how should they be aged?
– Only recent past is – if anything at all – somewhat credible

Putting it together: ARQ, FEC, frame length

optimization
• Applying ARQ, FEC (both block and convolutional

codes), frame length optimization to a Rayleigh

fading channel
– Channel modeled as Gilbert-Elliot

Overview

• Error control

• Framing

• Link management

Link management

• Goal: decide to which neighbors that are more

or less reachable a link should be established
– Problem: communication quality fluctuates, far away

neighbors can be costly to talk to, error-prone, quality can

only be estimated

• Establish a neighborhood table for each node
– Partially automatically constructed by MAC protocols

Link quality characteristics

• Expected: simple, circular

shape of “region of

communication” – not realistic

• Instead:
– Correlation between distance and loss

rate is weak; iso-loss-lines are not

circular but irregular

– Asymmetric links are relatively

frequent (up to 15%)

– Significant short-term PER variations

even for stationary nodes

Three regions of communication

• Effective region:

PER consistently <

10%

• Transitional

region: anything in

between, with

large variation for

nodes at same

distance

• Poor region: PER

well beyond 90%

Link quality estimation

• How to estimate, on-line, in the field, the actual
link quality?

• Requirements
– Precision – estimator should give the statistically correct

result

– Agility – estimator should react quickly to changes

– Stability – estimator should not be influenced by short
aberrations

– Efficiency – Active or passive estimator

• Example:
WMEWMA
only estimates
at fixed intervals

7 10 11 15Gap = 2 Gap = 3 Gap = ?

Conclusion

• Link layer combines traditional mechanisms
– Framing, packet synchronization, flow control

 with relatively specific issues
– Careful choice of error control mechanisms – tradeoffs

between FEC & ARQ & transmission power & packet size …

– Link estimation and characterization

WSN ROUTING

311

Routing Overview

• Network with nodes, edges

• In any network of diameter > 1, the
routing & forwarding problem appears

• Goal: Devise scheme for transferring
message from one node to another
– Which path?

– Who decides – source or intermediate nodes?
msg

Characteristics of Ad Hoc Communications

• Characteristics are dominated by heterogeneity and

variability

– Mobility characteristics (speed, predictability, uniformity,

synthetic vs. empirical models , …)

– Wireless characteristics (broadcast nature of the net, packet

losses due to transmission errors, limited range, hidden and

exposed terminals, partitioning)

– Application / traffic characteristics and patterns (P2P, real

time, unicast, multicast, geocast, CBR, VBR, self-similar, …)

– System characteristics (distribution, absence of

infrastructure, (unpredictable) high dynamics, (a)symmetry

…)

• Hidden terminals

– A sends to B, C cannot receive A

– C wants to send to B, C senses a “free” medium

– collision at B, A cannot receive the collision

– A is “hidden” for C

• Exposed terminals

– B sends to A, C wants to send to another terminal (not A or B)

– C senses carrier, finds medium in use and has to wait

– A is outside the radio range of C, therefore waiting is not necessary

– C is “exposed” to B

Hidden and Exposed Terminals

B A C

Why Specialized Ad Hoc Routing

• Some nodes may be out of range of others

• Must use other peer nodes as routers to forward packets

• Need to find new routes as nodes move or conditions change (highly

dynamic and unpredictable)

• Routing protocol captures and distributes state of network

• Routing strategy (algorithm) computes shortest paths

A B C

In WANETs

Requirements for Ad Hoc Routing

• The routing protocol needs to

– Converge fast

– Minimize signaling overhead

• The routing strategy (algorithm) may include

– Shortest distance

– Minimum delay

– Minimum loss

– Minimum congestion (load-balancing)

– Minimal interference

– Maximum stability of routes or maximal signal strength

– Minimum energy (power aware routing)

• Standard Internet routing cannot fulfill these requirements

– Assumes infrastructure, assumes symmetrical conditions,
assumes plenty of resources, misses metrics, …

Review of Internet Routing

• Intra-AS (autonomous systems) Routing
– OSPF: Open Shortest Path First

• Link State algorithm (Global)

– LS packet dissemination (entire network)

– Complete topology map at each node

– Route computation using Dijkstra’s algorithm

– RIP: Routing Information Protocol

• Distance Vector algorithm (Decentralized)

– Router knows physically-connected neighbors, link costs to
neighbors

– Distance vectors: exchanged among neighbors

– Iterative process of computation, exchange of info with
neighbors

u

y x

w v
z

2

2

1
3

1

1

2

5
3

5

Graph: G = (N,E)

N = set of routers = { u, v, w, x, y, z }

E = set of links ={ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) }

Graph abstraction

Remark: Graph abstraction is useful in other network contexts

Example: P2P, where N is set of peers and E is set of TCP connections

Graph abstraction: costs

u

y x

w v
z

2

2

1
3

1

1

2

5
3

5 • c(x,x’) = cost of link (x,x’)

 - e.g., c(w,z) = 5

• cost could always be 1, or
inversely related to bandwidth,
or inversely related to
congestion

Cost of path (x1, x2, x3,…, xp) = c(x1,x2) + c(x2,x3) + … + c(xp-1,xp)

Question: What’s the least-cost path between u and z ?

Routing algorithm: algorithm that finds least-cost path

A Link-State Routing Algorithm

Dijkstra’s algorithm

• net topology, link costs known to all
nodes

– accomplished via “link state
broadcast”

– all nodes have same info

• computes least cost paths from one
node (‘source”) to all other nodes

– gives forwarding table for that
node

• iterative: after k iterations, know
least cost path to k dest.’s

Notation:

• c(x,y): link cost from node x to y; =

∞ if not direct neighbors

• D(v): current value of cost of path

from source to dest. v

• p(v): predecessor node along path

from source to v

• N': set of nodes whose least cost

path definitively known

Dijsktra’s Algorithm

1 Initialization:

2 N' = {u}

3 for all nodes v

4 if v adjacent to u

5 then D(v) = c(u,v)

6 else D(v) = ∞

7

8 Loop

9 find w not in N' such that D(w) is a minimum

10 add w to N'

11 update D(v) for all v adjacent to w and not in N' :

12 D(v) = min(D(v), D(w) + c(w,v))

13 /* new cost to v is either old cost to v or known

14 shortest path cost to w plus cost from w to v */

15 until all nodes in N'

Dijkstra’s algorithm: example

Step

0

1

2

3

4

5

N'

u

ux

uxy

uxyv

uxyvw

uxyvwz

D(v),p(v)

2,u

2,u

2,u

D(w),p(w)

5,u

4,x

3,y

3,y

D(x),p(x)

1,u

D(y),p(y)

∞
2,x

D(z),p(z)
∞
∞

4,y

4,y

4,y

u

y
x

w v

z

2

2

1

3

1

1

2

5

3

5

Distance Vector Algorithm

Bellman-Ford Equation (dynamic programming)

Define

dx(y) := cost of least-cost path from x to y

Then

dx(y) = min {c(x,v) + dv(y) }

where min is taken over all neighbors of x

Bellman-Ford example

u

y x

w v
z

2

2

1
3

1

1

2

5
3

5

Clearly, dv(z) = 5, dx(z) = 3, dw(z) = 3

du(z) = min { c(u,v) + dv(z),
 c(u,x) + dx(z),
 c(u,w) + dw(z) }
 = min {2 + 5,
 1 + 3,
 5 + 3} = 4

Node that achieves minimum is next
hop in shortest path ➜ forwarding table

B-F equation says:

Distance Vector Algorithm

• Dx(y) = estimate of least cost from x to y

• Distance vector: Dx = [Dx(y): y є N]

• Node x knows cost to each neighbor v: c(x,v)

• Node x maintains Dx = [Dx(y): y є N]

• Node x also maintains its neighbors’ distance

vectors

– For each neighbor v, x maintains

Dv = [Dv(y): y є N]

Distance vector algorithm

Basic idea:

• Each node periodically sends its own distance vector
estimate to neighbors

• When node a node x receives new DV estimate from
neighbor, it updates its own DV using B-F equation:

Dx(y) ← minv{c(x,v) + Dv(y)} for each node y ∊ N

 Under minor, natural conditions, the estimate Dx(y)
converge the actual least cost dx(y)

Distance Vector Algorithm

Iterative, asynchronous:
each local iteration caused
by:

• local link cost change

• DV update message from
neighbor

Distributed:
• each node notifies

neighbors only when its DV
changes

– neighbors then notify their
neighbors if necessary

wait for (change in local link cost

of msg from neighbor)

recompute estimates

if DV to any dest has changed,

notify neighbors

Each node:

x y z

x
y
z

0 2 7

∞ ∞ ∞
∞ ∞ ∞

fr
om

cost to

fr
om

fr

om

x y z

x
y
z

0 2 3

fr
om

cost to
x y z

x
y
z

0 2 3

fr
om

cost to

x y z

x
y
z

∞ ∞

∞ ∞ ∞

cost to
x y z

x
y
z

0 2 7

fr
om

cost to

x y z

x
y
z

0 2 3

fr
om

cost to

x y z

x
y
z

0 2 3

fr
om

cost to

x y z

x
y
z

0 2 7

fr
om

cost to

x y z

x
y
z

∞ ∞ ∞
7 1 0

cost to

∞
2 0 1

∞ ∞ ∞

2 0 1
7 1 0

2 0 1
7 1 0

2 0 1
3 1 0

2 0 1
3 1 0

2 0 1

3 1 0

2 0 1

3 1 0

time

x z
1 2

7

y

node x table

node y table

node z table

Dx(y) = min{c(x,y) + Dy(y), c(x,z) + Dz(y)}

 = min{2+0 , 7+1} = 2

Dx(z) = min{c(x,y) +
 Dy(z), c(x,z) + Dz(z)}
= min{2+1 , 7+0} = 3

Ad Hoc Routing

• Simple solution: Flooding of data packets
– Does not need any information (routing tables) – simple

– Packets are usually delivered to destination

– But: extremely high overhead, usually not acceptable

– Many protocols perform (limited) flooding of control
packets

• To discover routes

• Overhead of control packet flooding is amortized over
data packets transmitted between consecutive control
packet floods

– Modified flooding based ad hoc broadcast routing

Ad Hoc Routing - Classification

• Uniform Protocols vs Non-Uniform Protocols

– All nodes are equal

– Some nodes have special roles (e.g. Clusterhead, Gateway-node)

• Flat Routing vs. Hierarchical/Clustered Routing

– Network has no hierarchy

– Trying to structure/cluster the network

• Proactive (table-driven) vs Reactive (on-demand)

– Trade-off latency vs overhead

– Hybrid (combination)

• Source Routing vs Destination Routing

• Other:

– Geographical/Position-based routing

– Power efficient routing

– Multipath routing

– ……

Who determines route?

• Source (“path”) routing

– Source specifies entire route: places complete path to

destination in message header: A – D – F – G

– Intermediate nodes just forward to specified next hop: D

would look at path in header, forward to F

– Like airline travel – get complete set of tickets to final

destination before departing…

• Destination (“hop-by-hop”) routing

– Source specifies only destination in message header: G

– Intermediate nodes look at destination in header, consult

internal tables to determine appropriate next hop

– Like postal service – specify only the final destination on an

envelope, and intermediate post offices select where to

forward next…

Who determines route?

Comparison

• Source routing
– Moderate source storage

(entire route for each
desired dest.)

– No intermediate node
storage

– Higher routing overhead
(entire path in message
header, route discovery
messages)

• Destination routing
– No source storage

– High intermediate node
storage (table w/ routing
instructions for all possible
dests.)

– Lower routing overhead (just
dest in header, only routers
need deal w/ route
discovery)

When does routing operate ?

• Main question to ask: When does the routing
protocol operate?

• Option 1: Routing protocol always tries to keep
its routing data up-to-date
– Protocol is proactive (active before tables are actually

needed) or table-driven

• Option 2: Route is only determined when
actually needed
– Protocol operates on demand or reactive

• Option 3: Combine these behaviors
– Hybrid protocols

Proactive vs. Reactive

 Proactive routing maintains
routes to every other node in
the network

 Table driven

 Regular routing updates impose
large overhead

 No latency in route discovery,
i.e., data can be sent
immediately

 Most routing information might
never be used

 Suitable for high traffic networks

 Bellman-Ford type algorithms

 Reactive routing maintains routes
to only those nodes which are
needed

 Cost of finding routes is
expensive since flooding is
involved

 Might be delay before
transmitting data

 Cache information from other
nodes’ transmissions

 May not be appropriate for real-
time applications

 Good for low/medium traffic
networks

Taxonomy of Routing Protocols

Routing in Ad Hoc

• Lots and lots of protocols suggested

• Sample Protocols

– Table Driven / Proactive: DSDV

– On-Demand-Driven Reactive: AODV, DSR

– Hybrid: ZRP

– Geographic Routing: GPSR, LAR

– Hierarchical Routing: CBRP

Destination Sequenced Distance Vector

DSDV

C. Perkins and P. Bhagwat
IBM and U of Maryland

"Highly Dynamic Destination-Sequenced Distance-
Vector Routing (DSDV) for Mobile Computers“,
ACM SIGCOMM, 1994.

Introduction

• DSDV is Uniform

– Each node sends and responds to

routing control message the same way

– No hierarchical structure

– Avoids the resource costs involved in

maintaining high-level structure

– Scalability may become an issue in larger

networks

Uniform

Introduction

• DSDV is Destination Based

– Nodes maintain only local topology

information

(e.g. 1 or 2-hop neighborhood)

– No global view of topology

– Possible inconsistencies

Destination Based

Uniform

Introduction

• DSDV is Proactive (Table Driven)
– Each node maintains routing information for

all known destinations

– Routing information must be updated
periodically (no sleeping nodes)

– Traffic overhead even if there is no change in
network topology

– Maintains routes which are never used

Destination Based

Uniform

DSDV

Proactive (Table Driven)

Distance Vector

• Basic Routing Protocol

– known also as Distributed Bellman-Ford or RIP

• Every node maintains a routing table

– all available destinations

– the next node to reach to destination

– the number of hops to reach the destination

• Periodically send table to all neighbors to

maintain topology

• Bi-directional links are required!

Distance Vector (Tables)

C

Dest. Next Metric …

A A 1

B B 0

C C 2

Dest. Next Metric …

A A 0

B B 1

C B 3

1 2

Dest. Next Metric …

A B 3

B B 2

C C 0

B A

(A, 1)

(B, 0)

(C, 1)

(A, 1)

(B, 0)

(C, 1)

Distance Vector (Update)

C

Dest. Next Metric …

A A 1

B B 0

C C 1

Dest. Next Metric …

A A 0

B B 1

C B 3 2

1 1

Dest. Next Metric …

A B 3 2

B B 1

C C 0

B A

B broadcasts the new routing

information to his neighbors

Routing table

is updated

(D, 0)

(A, 2)

(B, 1)

(C, 0)

(D, 1)

(A, 1)

(B, 0)

(C, 1)

(D, 2)

Distance Vector (New Node)

C
1 1

B A D
1

broadcasts to update

tables of C, B, A with

new entry for D

Dest. Next Metric …

A B 2

B B 1

C C 0

D D 1

Dest. Next Metric …

A A 1

B B 0

C C 1

D C 2

Dest. Next Metric …

A A 0

B B 1

C B 2

D B 3

Distance Vector (Broken Link)

C
1 1

B A D
1

Dest.c Next Metric …

… … …

D C 2

Dest. Next Metric …

… … …

D B 3

Dest. Next Metric …

… … …

D B 1

Dest. Next Metric …

… … …

D D

(D, 2) (D, 2)

Distance Vector (Loops)

C
1 1

B A D
1

Dest. Next Metric …

… … …

D B 3

Dest. Next Metric …

… … …

D C 2

Dest. Next Metric …

… … …

D B 3

(D,2)

(D,4)

(D,3)

(D,5)

(D,2)

(D,4)

Distance Vector (Count to Infinity)

C
1 1

B A D
1

Dest. Next Metric …

… … …

D B 3, 5, …

Dest. Next Metric …

… … …

D B 3, 5, …

Dest. Next Metric …

… … …

D C 2, 4, 6…

Distance Vector

• DV not suited for ad-hoc networks!

– Loops

• Bandwidth reduction in network

• Unnecessary work for loop nodes

– Count to Infinity

• Very slow adaptation to topology changes.

• Solution -> DSDV

DSDV Protocol

• Keep the simplicity of Distance Vector

• Guarantee loop freeness
– New Table Entry for Destination Sequence Number

• Allow fast reaction to topology changes
– Make immediate route advertisement on significant changes in

routing table

– but wait with advertising of unstable routes

DSDV (Table Entries)

• Sequence number originated from destination. Ensures loop
freeness.

• Install time when entry was made (used to delete stale entries
from table)

Destination Next Metric Seq. Nr Install Time

A A 0 A-550 001000

B B 1 B-102 001200

C B 3 C-588 001200

D B 4 D-312 001200

DSDV (Route Advertisements)

• Advertise to each neighbor own routing information
– Destination Address

– Metric = Number of Hops to Destination

– Destination Sequence Number

– Other info (e.g. hardware addresses)

• Rules to set sequence number information
– On each advertisement increase own destination sequence

number (use only even numbers)

– If a node is no more reachable (timeout) increase sequence
number of this node by 1 (odd sequence number) and set metric
= .

DSDV (Route Selection)

• Update information is compared to own routing

table

– 1. Select route with higher destination sequence

number (This ensure to use always newest information

from destination)

– 2. Select the route with better metric when sequence

numbers are equal.

DSDV (Tables)

C

Dest. Next Metric Seq

A A 1 A-550

B B 0 B-100

C C 2 C-588

Dest. Next Metric Seq

A A 0 A-550

B B 1 B-100

C B 2 C-586

Dest. Next Metric Seq.

A B 1 A-550

B B 2 B-100

C C 0 C-588

B A

(A, 1, A-550)

(B, 0, B-102)

(C, 1, C-588)

(A, 1, A-550)

(B, 0, B-102)

(C, 1, C-588)

DSDV (Route Advertisement)

C B A

B increases Seq.Nr from 100 -> 102

B broadcasts routing information

to Neighbors A, C including destination

sequence numbers

Dest. Next Metric Seq

A A 0 A-550

B B 1 B-102

C B 2 C-588

Dest. Next Metric Seq

A A 1 A-550

B B 0 B-102

C C 1 C-588

Dest. Next Metric Seq.

A B 2 A-550

B B 1 B-102

C C 0 C-588

DSDV (Respond to Topology Changes)

• Immediate advertisements
– Information on new Routes, broken Links, metric change is

immediately propagated to neighbors.

• Full/Incremental update:
– Full Update: Send all routing information from own table.

– Incremental Update: Send only entries that has changed.
(Make it fit into one single packet)

(D, 0, D-000)

DSDV (New Node)

C B A D

Dest. Next Metric Seq.

A A 0 A-550

B B 1 B-104

C B 2 C-590

Dest. Next Metric Seq.

A A 1 A-550

B B 0 B-104

C C 1 C-590

Dest. Next Metric Seq.

A B 2 A-550

B B 1 B-104

C C 0 C-590

D D 1 D-000

1. D broadcast for first time

Send Sequence number D-000

2. Insert entry for D with sequence

number D-000

Then immediately broadcast own

table

(A, 2, A-550)

(B, 1, B-104)

(C, 0, C-592)

(D, 1, D-000)

(A, 2, A-550)

(B, 1, B-104)

(C, 0, C-592)

(D, 1, D-000)

DSDV (New Node cont.)

C B A D

Dest. Next Metric Seq.

A A 1 A-550

B B 0 B-104

C C 1 C-592

D C 2 D-000

Dest. Next Metric Seq.

A A 0 A-550

B B 1 B-104

C B 2 C-590

Dest. Next Metric Seq.

A B 2 A-550

B B 1 B-104

C C 0 C-592

D D 1 D-000

………

………

3. C increases its sequence number

to C-592 then broadcasts its new

table. 4. B gets this new information and

updates its table…….

(D, 2, D-100) (D, 2, D-100)

DSDV (no loops, no count to infinity)

C B A D
1

Dest. Next Metric Seq.

… … …

D C 2 D-100

Dest. Next Metric Seq.

… … …

D B 3 D-100

Dest. Next Metric Seq.

… … …

D D D-101

1. Node C detects broken Link:

-> Increase Seq. Nr. by 1
(only case where not the destination sets

the sequence number -> odd number)

2. B does its broadcast

-> no affect on C (C knows that B has

stale information because C has higher

seq. number for destination D)

 -> no loop -> no count to infinity

(D, , D-101) (D, , D-101)

DSDV (Immediate Advertisement)

C B A D

Dest.c Next Metric Seq.

… … …

D C 3 D-100

Dest. Next Metric Seq.

… … …

D B 4 D-100

Dest. Next Metric Seq.

… … …

D B 1 D-100

Dest. Next Metric Seq.

… … …

D D 1 D-100

D D D-101

1. Node C detects broken Link:

-> Increase Seq. Nr. by 1
(only case where not the destination sets

the sequence number -> odd number)

3. Immediate propagation

B to A:
(update information has higher

Seq. Nr. -> replace table entry)

2. Immediate propagation

C to B:
(update information has higher

Seq. Nr. -> replace table entry)

Dest. Next Metric Seq.

… … … ...

D C 2 D-100

D C D-101

Dest. Next Metric Seq.

… … … ...

D B 3 D-100

D B D-101

DSDV properties

• Advantages
– Simple (almost like Distance Vector)

– Loop free through destination seq. numbers

– No latency caused by route discovery

• Disadvantages
– No sleeping nodes

– Bi-directional links required

– Overhead: most routing information never used

– Scalability is a major problem

Reactive Protocols

• Every packet carries the routing
sequence

• Intermediate nodes may learn
routes on “heard” traffic (RREQ,
RREP, DATA)

• No periodic sending of routing
packets

• May piggyback route requests on
route replies

• Uses “traditional” routing

tables

• Hello messages sent

periodically to identify

neighbors

• Sequence numbers guarantees

freshness

• Route requests are sent in

reverse direction, i.e. only uses

bi-directional links

Dynamic Source Routing

(DSR)

Ad-Hoc On Demand Distance Vector

(AODV)

Dynamic Source Routing

DSR

D. B. Johnson and D. A. Maltz
CMU

"Dynamic Source Routing in Ad-Hoc Wireless
Networks”,
 Mobile Computing, edited by T. Imielinski and
H. Korth, Chapter 5, Kluwer Academic Publishers,
1996.

Dynamic Source Routing (DSR)

• To send a packet the sender constructs a source route in the packet’s
header (Source Routing)

• The source route has the address of every host through which the
packet should be forwarded to reach its destination

• No Periodic Announcements

• Each host in the ad hoc network maintains a route cache in which it
stores source routes it has learned

• Each entry in the route cache has an expiration period, after which it
will be deleted

• If the sender doesn’t have a route to a destination it then attempts to
find out by using a routing discovery process

• While waiting for the routing discovery to complete the sender
continues sending and receiving packets with other hosts

• Each host uses a route maintenance procedure to monitor the correct
operation of a route

DSR – Route Discovery

A B

G

D

E

H

node discards packets having been seen

s

D
C

F

Source broadcasts a route
packet with the address of
the source and destination

A neighbor that receives the
request looks up its route cache to
look for a route to destination. If
not found it appends its address
into the packet and re-broadcasts it

A H

DSR – Route Discovery

A B

G

D

E

H

s

C

F

D

node discards
packets having
been seen

How to send a reply packet

• If the destination has a route to the source in its

route cache, use it

• Else if symmetric links are supported, use the

reverse of route record

• Else if symmetric links are not supported, the

destination initiate route discovery to source

DSR – Route Discovery

A B

G

D

E

H

s

C

F

reply packet follows the reverse path of the route
request packet recorded in broadcast packet

A-B-G-H

D

Route Discovery: at source A

A need to send to G

Lookup Cache for route A to G

Route

found?

Start Route

Discovery

Protocol

Route

Discovery

finished

Packet

in

buffer? Send packet

to next-hop
done

Buffer

packet

no

Write route in

packet header

yes

yes

no

Continue

normal

processing
wait

Route Discovery: At an intermediate node

Accept route

request packet

<src-id> in

recently seen

requests list?

Discard

route

request

yes

no

Host address

already in

partial

route?

Discard

route

request

yes

Store <src-id> in

list

Broadcast packet

Send route

reply packet

done

my-Addr =target?

Or route found in

cache

no
Append

my-Addr to partial

route

no

yes
Optimization by

cache

DSR – Route Maintenance

• Usually the data link layer has a mechanism to detect a link failure

• When a link failure is detected the host sends a route error packet to

the original sender of the packet

• The route error packet has the address of the host who detected the

failure and the host to which it was attempting to transmit the

packet

• When a route error packet is received by a host, the hop in error is

removed from the host’s route cache, and all routes which contain

this hop are truncated at that point

• To return the route error packet the host uses a route in its route

cache to the sender of the original packet. It the host does not have

a route it can reverse the route information carried in the packet

that could not be forwarded because of the link error. The later

assumes that only bidirectional links are being used for routing

• Another option to return route error packets is to perform a route

discovery process to find a route to the original sender and use that

route

DSR - Optimizations

Several optimizations are possible to reduce the amount of overhead traffic

Route Cache

During the process of route discovery and maintenance a host receives,

directly or indirectly, information about routes to other hosts thus

minimizing the need to search for that information in the future. For

example in the following ad hoc network let’s assume that node A

performs a route discovery to E

A B C D E

A-B-C-D-E
Route Request

Route Reply

Since hosts B, C, and D are on the route to E, host A also learns the

routes to B, C, and D. Likewise these “intermediate hosts” learn about

routes to each other by looking into the content of the route reply packet

Route Discovery – with Cache

• The source sends a broadcast packet which contains
source address, destination address, request id and
path.

• If a host saw the packet before, discards it.

• Otherwise, the route looks up its route caches to
look for a route to destination, If not find, appends
its address into the packet, rebroadcast,

• If finds a route in its route cache, sends a route
reply packet, which is sent to the source by route
cache or the route discovery.

4

3

6

5

1

2
Quelle

Senke

RREQ(1,5,{1,2,4})

Route cache

(3,5) > {3,6,5}

...

Route cache

...

Route cache

...

RREQ(1,5,{1})

RREQ(1,5,{1,2})

RREQ(1,5,{1,2})

Route request (source, destination, hops)

Route cache

...

Route cache

...

Route Request – with Cache

4

3

6

5

1

2
Quelle

Senke

Route cache

(3,1) > {3,2,1}

(3,2) > {3,2}

(3,5) > {3,6,5}

...

Route cache

...

Route cache

(5,1) > {5,4,2,1}

(5,2) > {5,4,2}

(5,4) > {5,4}

...

Route cache

(2,1) > {2,1}

(2,4) > {2,4}

...
Route cache

(1,5) > {1,2,4,5},

{1,2,3,6,5}

...

RREP(5,1,{1,2,4,5})

RREP(5,1,{1,2,4,5})

RREP(5,1,{1,2,4,5})

Route reply (source, destination, source route)

RREP(3,1,{1,2,3,6,5})

Route Reply – with Cache

DSR - Optimizations

Piggybacking on Route Discoveries

To minimize the delay in delivering a data packet when there is no route

to the destination and a route discovery process is needed one can

piggyback the data on the route request packets

Learning by “listening”

If the host operate in promiscuous receiving mode, i.e. they receive and

process every transmission in their range, then they can obtain substantial

information about routing, e.g., in the following network,

A

B

C

D

E

Route Error

Nodes B, C, and D, listen a

process the route error packet from

E to A. Since the route error

packet identifies precisely the hop

where the failure was detected

hosts B, C, and D can update their

route cache with this information

DSR - summary

• On-demand, potentially minimum control message overhead if
topology does not change often

• Do not exchange the routing update periodically, so overhead
transmission is greatly reduced.

• Packet delays/jitters(variations of delays) associated with on-
demand routing

• Route caching used to minimize route discovery overhead

• Scalability problem: Not easily scalable to large networks since high
route discovery latency for large network.

• The need to place the entire route in the route replies and data
packets translates in large on the air packet overhead (packet
header size grows with route length due to source routing)

• Allows for the possibility to keep multiple routes to a destination in
the route cache

• CPU and memory use demands on each host are high since the routes
have to be continuously maintained and updated

Ad-Hoc on Demand Distance Vector

AODV

C. E. Perkins, E. M. Royer
SUN and UCSB

“Ad-Hoc on Demand Distance Vector Routing”,
Proc. IEEE WMCSA ’99, 1999.

AODV Algorithm

• The algorithm’s primary objectives are

– To broadcast discovery packets only when necessary

– To distinguish between local connectivity management

and general topology maintenance

– To disseminate information about changes in local

connectivity to those neighboring nodes

• Algorithm

– Path Discovery

– Reverse Path Setup

– Forward Path Setup

– Route Table Management

– Path Maintenance

– Local Connectivity Management

Ad-Hoc On Demand Distance Vector (AODV)

• Based on the Destination-Sequenced Distance-Vector (DSDV) algorithm

• On-demand route acquisition

• Nodes maintain route cache and uses destination sequence number for
each route entry

• Does nothing when connection between end points is still valid

• Route Discovery Mechanism is initiated, by broadcasting a Route Request
Packet (RREQ), when a route to new destination is needed

• The neighbors forward the request to their neighbors until either the
destination or an intermediate node with a “fresh enough” route to the
destination is located

• Route Reply Packets (RREP) are transmitted upstream the path taken by
the Route Request packet to inform the original sender (an intermediate
nodes) of the route finding

• Route Error Packets (RERR) are used to erase broken links

AODV-Path Discovery

• If there is existing routes to the destination,
– Sends the packet to this route

• initiated whenever a node needs to communicate with another
node.

• initiates path discovery by broadcasting a route request (RREQ)
packet to its neighbors.

• RREQ contains :
– Source_addr, source_sequence_#, broadcast_id, dest_addr,

dest_sequence_#, hop_count

• The pair <Source_addr, broadcast_id> uniquely identifies a RREQ.

– Broadcast_id is incremented whenever the source issues a new RREQ

• At intermediate node, if it receive redundant RREQ (same
broadcast_id, source address), drop the RREQ.

• If node is the destination then it sends Route Reply (RREP)
else it forwards the RREQ to its neighbors (hop count ++)

• It keeps information about the RREQ to setup the forward
and reverse path

AODV – Path Finding

A B

G

D

E

H

node discards packets
that have been seen

S

D
C

F

Source broadcasts
a route request packet

neighbors re-broadcast the packet until
it reaches the intended destination

reply packet follows the reverse
path of the route request packet
recorded in broadcast packet

node discards packets
that have been seen

AODV-Path Discovery (cont.)

• If the RREQ is lost

– Retry the broadcast route discovery

– After rreq_retries attempts,

• Notify the application that the destination is unreachable

• If a node cannot satisfy the RREQ

– To implement the reverse path setup, intermediate

node keeps track of the following information.

• Destination IP

• Source IP

• Broadcast_id

• Expiration time for reverse Path route entry

• Source node’s sequence number.

AODV -Reverse Path Setup

• Node set up a reverse route entry for the source

node

• A Node records the address of the neighbor from

which it received the first copy of the RREQ

• Reverse route entry is contain :

– Source node’s IP address and sequence number

– Number of hops to the source node

– IP address of the neighbor from which the RREQ was

received

• The node knows how to forward a RREP (from

reverse route entry)

AODV-Reverse Path Setup (cont.)

A B

G

D

E

H

node discards packets
that have been seen

S

D
C

F

Source broadcasts
a route request packet

neighbors re-broadcast the packet until
it reaches the intended destination

reply packet follows the reverse
path of the route request packet
recorded in broadcast packet RR

EP
node discards packets
that have been seen

AODV-Forward Path Setup

• RREP Sent in response to the RREQ

• After a node receives the RREQ

– If an intermediate node has a route for the desired

destination

• Compare the destination sequence number

– Rebroadcast the RREQ or reply with RREP

– If a node does have a current route to the destination

• Send RREP to its neighbor

– Anything else

• Forward RREQ with incremented hop count to adjacent

• A RREP contains the following information:

– Source address, dest_addr

– dest_sequence number, hop_count

– lifetime

AODV-Forward Path Formation (cont.)

• When an intermediate node receives the RREP

– Set up a Forward entry to the destination in its route

table

• Forward path entry contains :

– IP address of the destination

– IP address of the neighbor from which the RREP arrived

– Hop count to the destination

• To obtain its hop count, the node increments the value by

1

– Lifetime

• Not used within lifetime, it is deleted

• In the case that received more than one

neighbor, node forwards the first RREP

AODV-Forward Path Formation (cont.)

• As soon as source node receives first RREP, it

begins data transmission

• If a node receives further RREPs, it updates its

routing information

– In the case that RREP contains greater destination

sequence number than the previous RREP or same with

a smaller hop count, propagates the RREP

AODV-Route Table Management

• Each route table entry contains :

– Destination

– Next Hop

– Number of hops (metric)

– Sequence number for the destination

– Active neighbors for this route

– Expiration time for the route table entry

• Route request expiration timer

– To Purge reverse path routing entries (not lie on the

path from the source to the destination)

AODV-Path Maintenance

• When source node move

– Reinitiate the route discovery

• When node (destination, intermediated) move

– RERR is sent to the affected source nodes

– Broadcasts the RERR to these neighbors (precursor

nodes)

– Neighbors mark hop count (infinity) and propagate the

RERR to their precursor nodes.

– When source node receives the RERR

• Reinitiate route discovery

AODV-Path Maintenance (cont.)

(b) New route find

3-1

1
2

4

Source
Destination

4

3-1

(a) Node move

1
2

3

Source
Destination

RERR

AODV-Local Connectivity Management

• If the Node has not sent any packets to all of its

active downstream neighbors within

hello_interval

– Broadcasts to its neighbors a hello message

– hello message contains :

• Destination address, Destination sequence number

• the node’s address, the latest sequence number

– Hello message prevented from being rebroadcast

outside neighbor

• Because of Time to live(TTL) value of 1

• An indication that the local connectivity has

changed

– Receiving broadcast or a hello from a new neighbor

– Failing to receive allowed_hello_loss consecutive hello

messages form a node in the neighborhood

Ad Hoc On-Demand Distance Vector

• Combination of DSR and DSDV

– On-demand mechanism of route discovery and route-

maintenance from DSR

– Plus the hop-by-hop routing, sequence numbers and

periodic beacons from DSDV

Zone Routing Protocol

ZRP

M.R. Pearlman, and Z.J. Haas
Cornell

“Determining the Optimal Configuration
for the Zone Routing Protocol”,
IEEE JSAC, 1999, vol. 17, no. 8

Zone Routing Protocol (ZRP)

• Hybrid reactive/proactive protocol

• Proactive procedure only to the nodes within a routine zone of radius ρ

• Reactive procedure to nodes beyond the routing zone by querying only a subset
of the network nodes

Routing zone of radius = 2 hops

S

Neighbor node

Peripheral node

ZRP - Routing Zones

• A collection of nodes which are within the zone radius of another
node

• Zone radius of a node is defined in terms of number of hops from
that node

• The transmission power as well as the propagation conditions and
receiver sensitivity determines the set of neighbors

• Each node has its own routing zone

• Routing zones of different nodes may overlap

• Each node maintains routing information to all nodes within its
own routing zone

• The nodes uses a proactive mechanism to learn about the topology
of its routing zone, this mechanism is called Intrazone Routing
Protocol (IARP)

ZRP – Interzone Routine

• The Interzone Routing Protocol (IERP) is responsible for reactively
discovering routes to destinations located beyond a node’s routing zone

• The Bordercast Resolution Protocol (BRP) allows the node to send
messages only to its peripheral nodes

• Efficient querying of specific nodes rather than flooding the whole
network

• Bordercasting can be implemented using efficient multicast techniques

• A single route query returns multiple route replies, which can be used
to determine the best route based on relative quality

• Because the routing zones overlap, a node can be a member of many
routing zones

• It is important to have a mechanism to detect duplicate route queries
and reduce excessive control traffic

ZRP – IERP (example)

S
B

G

C

H

D
F

E

G

 Source S needs to send a packet to destination D

 S checks whether D is within its routing zone. If yes, S knows a path to D

 If not S bordercasts a query to its peripheral nodes (C, G, and H)

 These nodes, after verifying that D is not within their routing zones, bordercast

the query to their peripheral nodes

 B, a peripheral node of H, recognizes D as being in its routing zone and

responds to the query indicating the path S→H →B →D

ZRP - Guiding the Search in Desirable

Directions

To minimize route query

traffic a procedure is

needed to steer the query

packets outwards from the

source’s routing zone and

away from each other.

Desired

search

direction

Desired

search

direction

Desired

search

direction

Desired

search

direction

Desired

search

direction

This problem is

addressed through the

following mechanisms:

source

Loop-back Termination (LT)

Query Detection (QD1/QD2)

Early Termination (ET)

Selective Bordercasting (SBC)

ZRP – Query Control Mechanisms

C

B

A

S

Loop-back Termination

The query is terminated when the

accumulated route (excluding the

previous node) contains the host which

lies in routing zone, e.g.,

route = {S→A→B→C}

C terminates the query, because S is in

the C’s routing zone.

Early Termination

When a thread penetrate into previously

covered areas, the excess traffic can be

terminated by extending the ability of the

intermediate nodes, e.g. intermediate node

A passes along a query to B. B terminates

the thread because a different thread of the

same query has been detected earlier.

C

B

A

S

Earlier

query

Later

query

ZRP – Query Control Mechanisms

C

B

A

S

QD2

QD1

E D

QD1
Query Detection

Only the node that bordercasts a route

request is aware that its zone is covered by

the query

When the peripheral nodes continue to

bordercast to their peripheral nodes, the

query may be relayed through the same

nodes again

ZRP provides two query detection methods,

QD1 and QD2, to notify the remaining nodes

through some form of eavesdropping without

incurring additional control traffic

QD2 - In single channel networks, it is

possible for queries to be detected by any

node within range of a query transmitting

node, e.g., E may be able to receive C’s

transmission and record the query information

QD1 - Allows intermediate nodes (which

relay queries to the edge of the routing zone)

to detect queries, e.g., A and C can detect

passing route request packet and record that

S’s routing zone has been queried

ZRP – Query Control Mechanisms

C
B

A

S

F

H

G Z

Y
X

Selective Bordercasting (SBC)

Rather than bordercast queries to all

peripheral nodes, the same coverage

can be provided by bordercasting to a

chosen subset of peripheral nodes

Requires IARP to provide network

topology information for an extended

zone that is twice the radius of the

routing zone

A node will first determine the subset

of other peripheral nodes covered by

its assigned inner peripheral nodes

The node will then bordercast to this

subset of assigned inner peripheral

nodes which forms the minimal

partitioning set of the outer peripheral

nodes

 S’s inner peripheral nodes are A, B and C

 Its outer peripheral nodes are F, G, H, X, Y and Z

Two inner peripheral nodes of B (H and X) are also

inner peripheral nodes of A and C

 S can then choose to eliminate B from its list of

bordercast recipients since A can provide coverage

to H and C can cover X

B is

redundant

ZRP - Architecture

NETWORK Layer

IARP IERP

MAC Layer (including

NDP)

The Zone Routing Protocol

Inter-process

communications

Packet Flow

Route updates are triggered by the MAC-level Neighbor Discovery Protocol (NDP)

 IARP is notified when a link to a neighbor is established or broken

 IERP reactively acquires routes to nodes beyond the routing zone

 IERP forwards queries to its peripheral nodes (BRP) keeping track of the peripheral

nodes through the routing topology information provided by IARP

ZRP - Summary

• ZRP combines two completely different protocols, one proactive and

the other reactive, into a single protocol based on clustering of

nodes into routing zones

• Proactive IARP maintains routing tables within a routing zone

• Reactive IERP performs route discovery outside the zone

• ZRP can perform worse than flooding without proper query control

mechanisms.

• Query Detection, Early Termination, and Loop-back Termination

provide significant improvements compared with purely reactive and

purely proactive schemes

• Use of Selective Bordercasting reduces significantly the amount of

inter-zone control traffic

Ad Hoc Routing

• Sample Protocols

– Table Driven / Proactive: DSDV

– On-Demand-Driven Reactive: AODV, DSR

– Hybrid: ZRP

– Geographic Routing:

Greedy, Face, GFG/GPSR, LAR

– Hierarchical Routing:

CBRP

– Other Routing

Geographic routing

• Routing tables contain information to which next hop
a packet should be forwarded
– Explicitly constructed

• Alternative: Implicitly infer this information from
physical placement of nodes
– Position of current node, current neighbors, destination

known – send to a neighbor in the right direction as next hop

– Geographic routing, geometric routing and position-based
routing (use position information to aid in routing)

• Options
– Send to any node in a given area – Geocasting

Location Information

• Consider a node S that needs to find a route to
node D.

• Assumption:
– each host in the ad hoc network knows its current location

precisely

– node S knows that node D’s location

• Might need a location service to map node ID to
node position

• Location services in ad hoc networks, refer to
– A survey on position-based routing in mobile ad hoc networks,

M. Mauve, J. Widmer, and H. Hartenstein, IEEE Network, Vol.
15 No. 6, 2001.

Localization

• Problem: Given the positions of beacons, and
some relative distances between nodes,
determine the positions of the nodes

• Two questions
– Localizability: under what conditions can a node

uniquely determine its location uniquely?

– Computation: how to determine the location?

Localized Routing

• Also called online routing

• Every node can make decision based on local

info, do not need to maintain routing table

Strictly Local

Greedy Routing

Greedy Routing ?

Basics of position-based routing

• “Most forward within range r” strategy
– Send to that neighbor that realizes the most forward progress

towards destination

– NOT: farthest away
from sender!

• Nearest node with (any) forward progress
– Idea: Minimize transmission power

• Directional routing /Compass routing
– Choose next hop that is angularly closest to destination

– Choose next hop that is closest to the connecting line to
destination

– Problem: Might result in loops!

Compass
• angle tuv is smallest

Greedy
•Find v with min |vt|
And |uv|<R

Greedy Compass

Localized Routing

Random Compass

• with smallest angle either

clockwise or couterclockwise

Farthest Neighbor Nearest Neighbor

Most Forwarding

Localized Routing

Greedy Routing

• Greedy routing looks

promising

• Maybe there is a way to

choose the next neighbor

and a particular graph

where we always reach

the destination?

Greedy Fails

Compass Fails

Face Routing

• To avoid void, use face routing (using right hand

rule) on planar graphs

Face Routing

Face Routing Properties

Face Routing

Use right hand rule to traverse the first face

Go to the point that is furthest away from s

Face Routing

Use right hand rule to traverse the second face

Face Routing

Face Routing

Face Routing

Face Routing

Face Routing

Face Routing

 Planar
 Guarantee the delivery
 Not localized

Performance of Face Routing in Terms of Hop Count

• A worst case scenario
– destination is central node

– source is any node on ring

– any spine can go to middle

– O(c) nodes along ring and O(c)
nodes along each spine

• Best path length: O(c)+O(c)

• Geographic routing:
– Test O(c) spines of length O(c)

– Cost O(c2) instead of O(c)

Greedy Perimeter Stateless Routing

GPSR

Brad Karp and H.T.Kung
Harvard University

"GPSR: Greedy Perimeter Stateless Routing
 for Wireless Networks",
ACM Mobicom 2000.

GPSR

• Greedy Perimeter Stateless Routing for Wireless
Networks.

• Use geography to achieve scalability.

• Reduced state requirement:
– Traditional shortest-path (Distance Vector) requires state

proportional to the total number of destinations.

– On-demand ad-hoc routing require state proportional to the
number of active destinations.

– GPSR requires only single hop information. Depends only on
the network density and not on the total number of
destinations in the network.

Greedy Mode

– Choose the next hop node, which is closest to destination.

• Switch to Perimeter mode if local maxima occurs

Perimeter Mode

– allows GPSR to deal with holes (local maxima).

– planarization of the graph (get rid of cross-edges, GG and RNG).

– traverse progressively closer polygon to get out of the holes (right
hand rule).

– after it progresses, i.e. closer than the point which greedy
algorithm fails, returns back to greedy mode.

Geographic Routing

Average Case

• Not interesting when graph not dense enough

• Not interesting when graph is too dense

• Critical density range (“percolation”)

– Shortest path is significantly longer than Euclidean

distance

Shortest Path vs. Euclidean Distance

• Shortest path is significantly longer than Euclidean distance

• Critical density range mandatory for the simulation of any

routing algorithm (not only geographic)

Random Graphs: Critical Density Range

Simulation on Random Graphs

Routing on Delaunay

P. Bose and P. Morin
Carleton University

"Online routing in triangulations",
Annual Int. Symp. on Algorithms and Computation
ISAAC 99, 1999.

 Delaunay Triangulation

R

c

For every simplex (triangle in 2D, tetrahedron in 3D),

circumsphere (c, R) is empty.

p

q

r

s

 Delaunay vs Voronoi

Voronoi Region, Vor(p)
A collection of two dimensional points s.t. every point
is closer to p than to any other node

Voronoi Diagram
The union of all Voronoi
region Vor(p) where pV

Delaunay Triangulation
is the dual of
Voronoi Diagram

Ask for Delaunay

• Morin [2001] proved the following localized

routing methods guarantee the delivery if

Delaunay triangulation used as the underlying

structure

– Greedy routing

– Compass routing

– Greedy compass routing

Delaunay Triangulation

• Planar graph

– No intersection

• Spanner

– Constant Stretch Factor

p

q

r

s

42.2

6
cos3

2

u

v

Routing on Delaunay

• Proposed by Bose and Morin [1999]

• Basic idea is to find a path in Del with length no

more than

which consists of two parts:

– Direct DT path

– Shortcut path

||||
2

)51(uv

Direct DT path

Routing on Delaunay

Given two nodes u and v, let b0 = u, b1, b2, · · · , bm−1, bm = v be the nodes

corresponding to the sequence of Voronoi regions traversed by walking from u to v along

the segment uv. If a Voronoi edge or a Voronoi vertex happens to lie on the segment uv,

then choose the Voronoi region lying above uv.

Shortcut path

Routing on Delaunay

Shortcut is the upper boundary of the

tunnel T(u, v) that connects bi and bj

Routing on Delaunay

• Use direct DT path as long as it is above uv

• When some nodes bi>0 and bi+1<0

– Use either direct DT path or shortcut path

– Exploring both in parallel manner until one reaches

next bj>0

• Many detailed

– How to find next node in direct DT path locally

– How to find next node in shortcut path locally

– How to determine whether node bj is reached

Routing on Delaunay

• The distance traveled by the above routing method is 9cdfs-

competive,

here

2
)51(

dfsc

 However, Delaunay triangulation CONNOT be
constructed locally

 May need globe info

 Cannot communicate through long edges

Routing on Local Delaunay

• Build Delaunay Locally w.h.p.

• When ,
– The longest edge in Del is at most

with probability ,

in other words, LDel=Del w.h.p.

• "Efficient Localized Routing for Wireless Ad Hoc Networks", X.-Y. Li, Y.
Wang, and O. Frieder,
IEEE ICC 2003.

n

n
rn

ln82

n

1
1

nr

Location-Aided Routing

LAR

Young-Bae Ko and Nitin H. Vaidya
Texas A&M University

"Location-Aided Routing(LAR) in Mobile Ad Hoc
Networks", ACM MOBICOM'98, 1998.

Location-Aided Routing

• Main Idea

– Using location information to reduce the number of

nodes to whom route request is propagated.

– Location-aided route discovery based on “limited”

flooding

Expected Zone

expected zone of D ---- the region that node S
expects to contain node D at time t1, only an
estimate made by node S

Request Zone

• LAR’s limited flooding

– A node forwards a route
request only if it belongs to
the request zone

– The request zone should
include

• expected zone

• other regions around the
expected zone

– No guarantee that a path
can be found consisting only
of the hosts in a chosen
request zone.

• timeout

• expanded request zone

 Trade-off
between
 latency of route

determination

 the message overhead

Membership of Request Zone

• How a node determine if it

is in the request zone for a

particular route request

•LAR scheme 1

•LAR scheme 2

LAR Scheme 1

LAR Scheme 2

S knows the location (Xd, Yd) of
node D at time t0

Node S calculates its distance
from location (Xd, Yd): DISTs

Node I receives the route request,
calculates its distance from
location (Xd, Yd): DISTi

For some parameter δ,
If DISTs + δ ≥ DISTi, node I
replaces DISTs by DISTi and
forwards the request to its
neighbors; otherwise discards the
route request

Error in Location Estimate

• Let e denote the maximum error in the

coordinates estimated by a node.

• Modified LAR scheme 1

D (Xd, Yd)

e+v(t1-t0) Expected Zone

Variations and Optimizations

• Alternative Definitions of
Request Zone
– increasing the request

zone gradually?

• Adaptation of Request
Zone

• Propagation of Location
and Speed Information

• Local Search

Geographic Routing Without Location Information

 AP, Sylvia, Ion, Scott and Christos

UC Berkeley

ACM International Conference on Mobile
Computing
and Networking (Mobicom'03), 2003

Why Geographic Routing Without Location?

• Location is hard to get

– GPS takes power, doesn’t work indoors, difficult to

incorporate in small sensors

– The network localization problem is hard

• True location may not be useful if there are obstacles

S D A

B

In the “connectivity” space, B is closer to destination!!

Overview

• Objective: assign coordinates to nodes so that

– the coordinates are computed efficiently,

– routing works well using the computed coordinates

• Coordinates reflect true connectivity and not the
geographic locations of the nodes

– Need not be accurate representations of the underlying
geography

– Reflect the underlying connectivity

• Progress in three steps

– The perimeter nodes and their locations are known

– The perimeter nodes are known but not their coordinates are
not known

– Nothing is known

Step by Step Approach

Perimeter nodes and their locations are known

Perimeter nodes are known but their locations are
not known

Nothing is known about the perimeter

Relaxation algorithm

Balls and Springs

Perimeter node detection

Degree of Information

The Perimeter Nodes and Their Locations Are Known

• Image a rubber band
from each node to
each (connected)
neighbor

• The force of a rubber
band is proportional
to its length, directed
to the neighbor

The Perimeter Nodes and Their Locations Are Known

• Iterative process for picking coordinates for a

node

• Some nodes along the periphery of the network

know their correct (relative) locations and are

fixed

• Other nodes compute coordinates by relaxation

– Assume that nodes are connected by rubber bands and

slowly converge to the equilibrium

The Perimeter Nodes and Their Locations Are Known

• The equilibrium is achieved
when the position p of a

node is equal to the

average of its neighbors

where n is number of neighbors

• Algorithm

– each node sends its position

to its neighbors

– A node updates its new position

 to be the average of those of its neighbors

n

p
ppp

i

i 0)(

n

tp
tp

i

)(
)1(

Perimeter Nodes Are Known (True Positions)

3200 nodes; 64 perimeter nodes on the boundary

Perimeter Nodes Are Known (10 iterations)

Internal nodes initialized as the center of the square

Perimeter Nodes Are Known (100 iterations)

Internal nodes initialized as the center of the square

Perimeter Nodes Are Known (1000 iterations)

Internal nodes initialized as the center of the square

Routing Performance

• 32000 packets with random source-destination

pairs

Success rate Average path
length

True position 0.989 16.8

Virtual
position

0.993 17.1

Success rate: using (distance) greedy routing

Two More Scenarios

Success rate: 0.981

Avg. path length: 17.3

Success rate: 0.99

Avg. path length: 17.1

Weird Shapes

The Perimeter Nodes Are Known But Their Locations Are

Not Known

• Assume the distance
between two perimeter
nodes is the (minimum)
number of hops to go
from one to the other

• Distances can be derived by
flooding the network

– Each perimeter node sends a HELLO
message with a hop counter of 0

– when seeing a message from a perimeter node with a lower
hop counter, a node increases the counter by 1 and forwards
it

• Stage 1 : Each perimeter node broadcasts a HELLO

message to the entire network

• Stage 2 : Each perimeter node broadcasts its

perimeter vector to the entire network

• Stage 3 : Every perimeter node uses a triangulation

algorithm to compute the coordinates of all other

perimeter nodes

The Perimeter Nodes Are Known But Their
Locations Are Not Known

• Balls and Springs
– Ball : each perimeter node

– Spring : each ball is attached by a spring

– Spring’s length : the hop count distance

• Seen as minimizing the potential energy when a
ball attached to every other ball by a spring

The Perimeter Nodes Are Known But Their
Locations Are Not Known

Virtual Coordinates by Triangulation

• Each perimeter node solves the minimization

problem:

• Detail

nodesperimeter ,

2

ji,)-(dmin
ji

ji pp

2
1

22

2

2

2

2
1

2

UX

 Uof columns 2first the:

eseigen valu 2largest the:

111 ;/

][where, Compute

V

U

V

UVUH

JJDH

],...,[eneeIJ

dDD

T

T

ij

Convergence and Performance

One iteration: success rate = 0.992; avg. path length = 17.2

Ten iterations: success rate = 0.994; avg. path length = 17.2

Nothing is Known about the Perimeter

• Bootstrap nodes

– Special perimeter nodes or run leader election to select

the two nodes

• Bootstrap Nodes flood the network and every
node discovers its distance to these bootstrap
nodes

• Nodes use the following criterion to decide
whether they are perimeter nodes

Selecting Perimeter Nodes

Rule: A node is a perimeter node if:

 It is farthest away from the first bootstrap node

among all its two-hop neighbors

Perimeter Node Detection

Example: change 2 hop to 1 hop

Overall algorithm - Bootstrap the coordinate

assignment
1. Two designated bootstrap beacon nodes

broadcast to the entire network

2. Node uses the distance to determine whether is
a perimeter node

3. Every perimeter node sends a broadcast
message to the entire network to enable every
other node to compute its perimeter vector

4. Perimeter and bootstrap nodes broadcast their
perimeter vectors to the entire network

5. Each node uses these inter-perimeter distances
to compute normalized coordinates for both
itself and the perimeter nodes

Overall Algorithms[Cont’d] - normal

operation
5. Perimeter nodes stay fixed while other nodes

run a relaxation algorithm

6. A designated bootstrap node periodically

broadcasts by which nodes periodically re-

asses whether they lie on the perimeter or not

Projecting on Circle After First Computation

 Circle: center is
center of gravity; radius
is average of distance of
the perimeter nodes to
the CG

 Motivation: maintain a
consistent coordinate
space

Convergence and Performance

Ten iterations: success rate = 0.996; avg. path length = 17.3

Cluster Based Routing Protocol

CBRP

Mingliang Jiang, Jinyang Li and Y.C. Tay.
National University of Singapore

“Cluster Based Routing Protocol (CBRP)”,
Internet Draft draft-ietf-manet-cbrp-spec-
01.txt,
August 1999.

CBRP: Features

 use clustering approach to minimize on-
demand route discovery traffic

 use “local repair” to reduce route
acquisition delay and new route discovery
traffic

 suggest a solution to use uni-directional
links

CBRP: Protocol Overview

Some Terminologies

• A cluster head must have bi-directional links to all its

member nodes.

• A node will be a member of all those clusters for which

it has a bi-directional link to the cluster heads.

• These are called host clusters for the node.

Data Structures

• Neighbor Table

– Id, Role , Status of the link

• Cluster Adjacency Table (CAT)

– Keeps info. about adjacent clusters

– Contains

• Id of neighboring cluster

• the gateway node (a member) to reach the neighboring

cluster head

• the status of the link

Data Structures (Contd.)

• Two-hop Topology Database

– each node broadcasts its neighbor table information

periodically in HELLO packets.

– Therefore, by examining the neighbor table from its

neighbors, a node is able to gather ‘complete’

information about the network topology that is at most

two-hops away from itself.

HELLO Messages

• Every node periodically broadcasts HELLO

messages to its neighbors.

• HELLO message from a node contains its

neighbor table and its cluster adjacency table

(CAT).

• Nodes update their neighbor tables and CAT

when they receive HELLO messages from their

neighbors.

HELLO Messages (Contd.)

• When a node A receives HELLO message from a

node B

– A adds B to its neighbor table if B is not present in its

table.

– If B is already in the table update the status of link

from B to A if required.

– Update the role of B if it has changed.

Cluster Formation

• A node can be in any of the three states
– A cluster head

– A cluster member

– Undecided (Looking for a head)

• An undecided node starts a timer and broadcasts
a HELLO message.

• Any cluster head that receives this message
sends out HELLO message back.

Cluster Formation

• If the node has bi-directional link to that cluster

head it chooses that node as its cluster head and

regards itself as a member of that cluster head.

• If it does not find any head till the timer expires

and it declares itself as a cluster head.

Cluster Formation

• If two cluster heads have bi-directional links to
each other one of them gives his status as a head
and becomes member of the other head. The
node with a smaller id continues to be a cluster
head.

• However the cluster heads wait for a certain
period of time before this

• This ensures that if two cluster heads are just
close for a short time when they are on a move,
cluster re-formation does not happen.

Adjacent Cluster Discovery

• For a member node neighboring cluster head is
the one that is two hops away. i.e. one that can
be reached via an intermediate node. This node
is called a Gateway node.

• A node can find out about its neighboring
cluster heads by looking at the neighbor tables
of its neighbors received in the HELLO messages.

Adjacent Cluster Discovery

3

8
4

1

5

2

6

7

9

10

11

Nodes also broadcasts their CAT in the HELLO message.

Cluster heads can learn about other cluster head that are
three hops away by looking at the CAT they receive.

e.g. 4’s Cluster Adjacency Table

Adj cluster ID Gateway

8 9

6 2

Route Discovery

• When a node say A wants to discover route to a node say D
it broadcasts a RREQ packet.

• This packet contains a list of host and neighboring clusters
heads. For neighboring cluster heads even the gateway
nodes are mentioned.

• The idea is only cluster heads should forward the packet
further.

• If a member node receives RREQ packet it simply drops it.

• However if a member node is listed as a Gateway node it
unicasts the RREQ to the cluster head for which it is a
Gateway node.

Route Discovery

• When a cluster head receives RREQ, it adds itself on the partial
route contained in the packet.

• It adds the neighboring cluster heads to which the packet is to be
forwarded from its own CAT along with their gateway nodes and
then re-broadcasts their packet.

• Thus the RREQ passes through a number of cluster heads and
eventually reaches D.

• D upon receiving the RREQ sends and RREP back.

• The RREP travels the same set of cluster heads that the RREQ
traveled.

• On the way entire hop-by-hop path is added to the RREP along with
the Gateway nodes.

Source S “floods” all clusterheads with Route Request Packets (RREQ) to

discover destination D

[3]

[3,1,8,11]

1

2

4

5 6
7

8

9

10

3

11

3 (S)

11 (D)

[3,1]

[3,1,6]

[3,1,8]

Route Discovery

 Route reply packet (RREP) is sent back to source along

reversed “loose source route” of clusterheads.
 Each clusterhead along the way incrementally compute a

hop-by-hop strict source route.

1

2

4

5 6
7

8

9

10

3

11

3 (S)

11 (D)

the reversed

loose source route of

RREP: [11,8,1,3]
[11] [11,9]

[11,9,4]

[11,9,4,3]

the computed

strict source route of

3->11 is: [11,9,4,3]

[11,9,4]

Route Reply

 Route reply packet (RREP) is sent back to source along

reversed “loose source route” of clusterheads.
 Each clusterhead along the way incrementally compute a

hop-by-hop strict source route.

1

2

4

5 6
7

8

9

10

3

11

3 (S)

11 (D)

the reversed

loose source route of

RREP: [11,8,1,3]

the computed

strict source route of

3->11 is: [11,9,4,3]

Route Reply

1

2

4

5 6
7

8

9

10

3

11

3 (S)

11 (D)

 Use source routing for actual packet forwarding

 A forwarding node sends a Route Error Message (ERR) to
packet source if the next hop in source route is unreachable

Source route header of data
packet: [3,4,9,11]

Route error (ERR)
down link: {9->11}

Route Error Detection

Problems with CBRP

• Pitfalls with uni-directional links

– Discovery of (dead) uni-directional links

• Source Routing, overhead bytes per packet.

• Clusters small, 2 levels of hierarchy, scalable to

an extend.

Other Routing

• Multipath Routing

• Energy-Conserving Routing

• Security-Aware Routing

Energy-efficient unicast: Goals

• Particularly interesting performance metric: Energy efficiency

C

1

4

A

3

D

4

H

4

F

2

E

2

B

1

1

1

2

2

2

3

3

 Goals
 Minimize energy/bit

 Example: A-B-E-H

 Maximize network lifetime

 Time until first node failure, loss of
coverage, partitioning

 Seems trivial – use
proper link/path
metrics (not hop
count) and standard
routing

Example: Send data from node A to node H

Basic options for path metrics

• Maximum total available
battery capacity
– Path metric: Sum of battery

levels

– Example: A-C-F-H

• Minimum battery cost routing
– Path metric: Sum of

reciprocal battery levels

– Example: A-D-H

• Conditional max-min battery
capacity routing
– Only take battery level into

account when below a given
level

• Minimize variance in power
levels

• Minimum total transmission
power

C

1

4

A

3

D

4

H

4

F

2

E

2

B

1

1

1

2

2

2

3

3

A non-trivial path metric

• Previous path metrics do not perform
particularly well

• One non-trivial link weight:
– wij weight for link node i to node j

– eij required energy, some constant, i fraction of
battery of node i already used up

• Path metric: Sum of link weights
– Use path with smallest metric

• Properties: Many messages can be send, high
network lifetime
– With admission control, even a competitive ratio

logarithmic in network size can be shown

Multipath unicast routing

• Instead of only a single path, it can be useful to compute multiple paths

between a given source/destination pair

Source Sink

Disjoint paths

Primary path

Secondary path

Source Sink

Disjoint paths

Primary path

Secondary path

Source Sink

Braided paths

Primary path
Source Sink

Braided paths

Primary path

 Multiple paths can
be disjoint or
braided

 Used
simultaneously,
alternatively,
randomly, …

WSN LOCALIZATION

511

Goals of this chapter

• Means for a node to determine its

physical position (with respect to some

coordinate system) or symbolic location

• Using the help of

– Anchor nodes that know their position

– Directly adjacent

– Over multiple hops

• Using different means to determine

distances/angles locally

What is Localization

• A mechanism for discovering

spatial relationships between

objects

Why is Localization Important?

• Large scale embedded systems introduce

many fascinating and difficult problems…

– This makes them much more difficult to use…

– BUT it couples them to the physical world

• Localization measures that coupling,

giving raw sensor readings a physical

context

– Temperature readings temperature map

– Asset tagging asset tracking

– “Smart spaces” context dependent

behavior

– Sensor time series coherent beamforming

Variety of Applications

• Two applications:

Passive habitat monitoring:

Where is the bird?

What kind of bird is it?

Asset tracking:

Where is the projector?

Why is it leaving the room?

Variety of Application Requirements

– Outdoor operation

• Weather problems

– Bird is not tagged

– Birdcall is characteristic

but not exactly known

– Accurate enough to

photograph bird

– Infrastructure:

• Several acoustic sensors,

with known relative

locations; coordination

with imaging systems

– Indoor operation

• Multipath problems

– Projector is tagged

– Signals from projector tag can

be engineered

– Accurate enough to track

through building

– Infrastructure:

• Room-granularity tag

identification and localization;

coordination with security

infrastructure

 Very different requirements!

Multidimensional Requirement Space

• Granularity & Scale

• Accuracy & Precision

• Relative vs. Absolute Positioning

• Dynamic vs. Static (Mobile vs. Fixed)

• Cost & Form Factor

• Infrastructure & Installation Cost

• Communications Requirements

• Environmental Sensitivity

• Cooperative or Passive Target

Axes of Application Requirements

• Granularity and scale of measurements:

– What is the smallest and largest measurable

distance?

– e.g. cm/50m (acoustics) vs. m/25000km (GPS)

• Accuracy and precision:

– How close is the answer to “ground truth”

(accuracy)?

– How consistent are the answers (precision)?

• Relation to established coordinate

system:

– GPS? Campus map? Building map?

• Dynamics:

– Refresh rate? Motion estimation?

Axes of Application Requirements

• Cost:

– Node cost: Power? $? Time?

– Infrastructure cost? Installation cost?

• Form factor:

– Baseline of sensor array

• Communications Requirements:

– Network topology: cluster head vs. local

determination

– What kind of coordination among nodes?

• Environment:

– Indoor? Outdoor? On Mars?

• Is the target known? Is it cooperating?

Variety of Mechanisms

• We’ve seen a broad spectrum of

application requirements

• There are also a broad spectrum of

localization mechanisms appropriate

for different applications

Returning to our two Applications…

• Choice of mechanisms differs:

Passive habitat monitoring:

Minimize environ. interference

No two birds are alike

Asset tracking:

Controlled environment

We know exactly what tag is like

Variety of Localization Mechanisms

– Bird is not tagged

• Passive detection of bird presence

– Birdcall is characteristic but not

exactly known

– Bird does not have radio; TDOA

(Time Difference of Arrival)

measurement

– Passive target localization

• Requires

– Sophisticated detection

– Coherent beamforming

– Large data transfers

– Projector is tagged

• Projector might know it had moved

– Signals from projector tag can be

engineered

– Tag can use radio signal to enable TOF

(Time of Flight) measurement

– Cooperative Localization

• Requires

– Basic correlator

– Simple triangulation

– Minimal data transfers

 Very different mechanisms indicated!

Active Mechanisms

• Non-cooperative
– System emits signal, deduces target location from

distortions in signal returns

– e.g. radar and reflective sonar systems

• Cooperative Target
– Target emits a signal with known characteristics; system

deduces location by detecting signal

– e.g. ORL Active Bat, GALORE Panel, AHLoS

• Cooperative Infrastructure
– Elements of infrastructure emit signals; target deduces

location from detection of signals

– e.g. GPS, MIT Cricket

Target

Synchronization channel

Ranging channel

Passive Mechanisms

• Passive Target Localization
– Signals normally emitted by the target are detected

(e.g. birdcall)

– Several nodes detect candidate events and cooperate

to localize it by cross-correlation

• Passive Self-Localization
– A single node estimates distance to a set of beacons

(e.g. 802.11 bases in RADAR [Bahl et al.], Ricochet in

Bulusu et al.)

• Blind Localization
– Passive localization without a priori knowledge of

target characteristics

– Acoustic “blind beamforming” (Yao et al.)

?

Target

Synchronization channel

Ranging channel

Active vs. Passive

• Active techniques tend to work best
– Signal is well characterized, can be engineered for noise and

interference rejection

– Cooperative systems can synchronize with the target to enable

accurate time-of-flight estimation

• Passive techniques
– Detection quality depends on characterization of signal

– Time difference of arrivals only; must surround target with sensors or

sensor clusters

• TDOA requires precise knowledge of sensor positions

• Blind techniques
– Cross-correlation only; may increase communication cost

– Tends to detect “loudest” event.. May not be noise immune

Active and Cooperative Ranging

• Measurement of distance between two points

– Acoustic

• Point-to-point time-of-flight, using RF synchronization

• Narrowband (typ. ultrasound) vs. Wideband (typ. audible)

– RF

• RSSI from multiple beacons

• Transponder tags (rebroadcast on second frequency), measure round-trip time-

of-flight.

• UWB ranging (averages many round trips)

• Psuedoranges from phase offsets (GPS)

• TDOA to find bearing, triangulation from multiple stations

– Visible light

• Stereo vision algorithms

– Need not be cooperative, but cooperation simplifies the problem

Passive and Non-cooperative Ranging

• Generally less accurate than active/cooperative
– Acoustic

• Reflective time-of-flight (SONAR)

• Coherent beamforming (Yao et al.)

– RF

• Reflective time-of-flight (RADAR systems)

• “Database” techniques

– RADAR (Bahl et al.) looks up RSSI values in database

– “RadioCamera” is a technique used in cellular infrastructure;

measures multipath signature observed at a base station

– Visible light

• Laser ranging systems

– Commonly used in robotics; very accurate

– Disadvantages: directionality, expense, no positive ID of target

Using RF for Ranging

• RF TOF techniques
– Accurate, deterministic transponders hard to build

• Temperature-dependence problems in timing of path from receiver
to transmitter

• But, you can use “RBS” techniques… (compare receptions)

– Measuring TOF requires fast, synchronized clocks to achieve high
precision (c 1 ft/ns)

• Fast synchronized clocks generally at odds with low power

• Trade-off: synchronized infrastructure vs. nodes (e.g. GPS)

• Ultra wide-band ranging for sensor nets?
– Current research focus in RF community

– Based on very short wideband pulses, measure RTT to fixed, surveyed
base stations

– FCC licensing?

Practical Difficulties with RSSI

• RSSI is extremely problematic for fine-

grained, ad-hoc applications

– Path loss characteristics depend on

environment (1/rn)

– Shadowing depends on environment

– Short-scale fading due to multipath adds

random high frequency component with

huge amplitude (30-60dB) – very bad

indoors

• Mobile nodes might average out fading.. But

static nodes can be stuck in a deep fade

forever

– The relative orientation of antennas among

nodes makes difference.

• Potential applications

– Approximate localization of mobile

nodes, proximity determination

– “Database” techniques (RADAR)

Distance

R
S

S
I

Path loss

Shadowing

Fading

Ref. Rappaport, T, Wireless Communications

Principle and Practice, Prentice Hall, 1996.

Using Acoustics for Ranging

• Key observation: Sound travels slowly!

– Tight synchronization easily achieved using RF signaling

– Slow clocks are sufficient (v = 1 ft/ms)

– With LOS, high accuracy can be achieved cheaply

– Coherent beamforming can be achieved with low sample rates

• Advantages

– Acoustics have lower path loss than RF near the ground, because ground

reflections in acoustics don’t cancel

– Audible acoustics have very wide range of wavelengths

• Disadvantages

– Poor penetration detector picks up reflections in Non-LOS

– Audible sound: good channel properties, but often inappropriate

Typical Time-of-Flight AR System

• Radio channel is used to synchronize the sender and receiver (or use a

service like RBS!)

• Coded acoustic signal is emitted at the sender and detected at the

emitter. TOF determined by comparing arrival of RF and acoustic signals

CPU

Speaker

Radio

CPU

Microphone

Radio

Localization System Components

• Generally speaking, what is involved with a

“localization system”?

Coordinate System

Synthesis

Parameter

Estimation

Filtering

Parameter

Estimation

Filtering

Parameter

Estimation

Filtering

Parameters might include:

•Range between nodes

•Angle between nodes

•Psuedorange to target (TDOA)

•Bearing to target (TDOA)

•Absolute orientation of node

•Absolute location of node (GPS)

Coordinate System

Synthesis

Parameter

Estimation

Filtering

Parameter

Estimation

Filtering

Parameter

Estimation

Filtering

Stitching and

Refinement

This step applies to distributed

construction of large-scale coordinate

systems

This step estimates target coordinates

(and often other parameters

simultaneously)

Example of a Localization System

• SHM system, developed at Sensoria Corp.

12 cm

Microphone

Speaker

Each node has 4 speaker/

microphone pairs, arranged along the

circumference of the enclosure. The

node also has a radio system and an

absolute orientation sensor that

senses magnetic north.

System Architecture

• Ranging between nodes based on detection of coded acoustic signals, with

radio synchronization to measure time of flight

• Angle of arrival is determined through TDOA and is used to estimate bearing,

referenced from the absolute orientation sensor

• An onboard temperature sensor is used to compensate for the effect of

environmental conditions on the speed of sound

System Architecture

• Nodes periodically emit acoustic pulses. Other nodes detect these pulses and compute a

range and angle of arrival.

• Range data, angle data, and absolute orientation are broadcast N hops away.

• Based on this table of ranges, angles, and orientations, each node applies a

multilateration algorithm with iterative outlier rejection to compute a consistent

coordinate system.

Range, Angular Data

Range, Angular Data

Range, Angular Data

Multilat Engine

Multilat Engine

Multilat Engine

Overview

• Basic approaches

• Trilateration

• Multihop schemes

Localization & positioning

• Determine physical position or logical location
– Coordinate system or symbolic reference

– Absolute or relative coordinates

• Options
– Centralized or distributed computation

– Scale (indoors, outdoors, global, …)

– Sources of information

• Metrics
– Accuracy (how close is an estimated position to the real

position?)

– Precision (for repeated position determinations, how often is

a given accuracy achieved?)

– Costs, energy consumption, …

Main approaches (information sources)

• Proximity

– Exploit finite range of wireless
communication

– E.g.: easy to determine location
in a room with infrared room
number announcements

• (Tri-/Multi-)lateration and angulation

– Use distance or angle estimates, simple
geometry to compute position estimates

• Scene analysis

– Radio environment has characteristic
“signatures”

– Can be measured beforehand, stored,
compared with current situation

Length known

Angle 1

Angle 2

(x = 2, y = 1)

(x = 8, y = 2)

(x = 5, y = 4)

r1

r2

r3

Estimating distances – RSSI

• Received Signal Strength Indicator
– Send out signal of known strength, use received signal strength and path

loss coefficient to estimate distance

– Problem: Highly error-prone process – Shown: PDF for a fixed RSSI

Distance Distance Signal strength

P
D

F

P
D

F

Estimating distances – other means

• Time of arrival (ToA)
– Use time of transmission, propagation speed, time of arrival

to compute distance

– Problem: Exact time synchronization

• Time Difference of Arrival (TDoA)
– Use two different signals with different propagation speeds

– Example: ultrasound and radio signal

• Propagation time of radio negligible compared to

ultrasound

– Compute difference between arrival times to compute

distance

– Problem: Calibration, expensive/energy-intensive hardware

Determining angles

• Directional antennas
– On the node

– Mechanically rotating or electrically “steerable”

– On several access points

• Rotating at different offsets

• Time between beacons allows to compute angles

Some range-free, single-hop localization techniques

• Overlapping connectivity: Position is

estimated in the center of area where

circles from which signal is heard/not

heard overlap

• Approximate point in triangle
– Determine triangles of anchor nodes where node is

inside, overlap them

– Check whether inside a given triangle – move node

or simulate movement by asking neighbors

– Only approximately correct

?

?

A

B

C

D

F

G

E

Overview

• Basic approaches

• Trilateration

• Multihop schemes

Trilateration

• Assuming distances to three points with known

location are exactly given

• Solve system of equations (Pythagoras!)
– (xi,yi) : coordinates of anchor point i, ri distance to anchor i

– (xu, yu) : unknown coordinates of node

– Subtracting eq. 3 from 1 & 2:

– Rearranging terms gives a linear equation in (xu, yu)!

Trilateration as matrix equation

• Rewriting as a matrix equation:

• Example: (x1, y1) = (2,1), (x2, y2) = (5,4), (x3, y3)

= (8,2),

 r1 = 100.5 , r2 = 2, r3 = 3

 ! (xu,yu) = (5,2)

Trilateration with distance errors

• What if only distance estimation ri
0 = ri + i

available?

• Use multiple anchors, overdetermined system of

equations

• Use (xu, yu) that minimize mean square error,

i.e,

Minimize mean square error

• Look at square of the of Euclidean norm

expression (note that for all vectors

v)

Look at derivative with respect to x, set it equal to

0:

– Normal equation

– Has unique solution (if A has full rank), which gives desired

minimal mean square error

• Essentially similar for angulation as well

Overview

• Basic approaches

• Trilateration

• Multihop schemes

Multihop range estimation

• How to estimate range to a node to which no

direct radio communication exists?
– No RSSI, TDoA, …

– But: Multihop communication is possible

• Solutions:
– Idea 1: Count number of hops, assume length of one hop is

known (DV-Hop)

• Start by counting hops between anchors, divide known

distance

– Idea 2: If range estimates between neighbors exist, use them

to improve total length of route estimation in previous

method (DV-Distance)

• Then, in presence of range estimates and a

sufficient number of neighbors, a node can

actually try to compute its true Euclidean

distance to a faraway anchor.

X

B

A

C

Iterative multilateration

• Assume some nodes

can hear at least

three anchors (to

perform

triangulation), but not

all

• Idea: let more and

more nodes compute

position estimates,

spread position

knowledge in the

network

– Problem: Errors

accumulate

(2,10)

(8,0)

(18,20)

(38,5)

(?,?)

(?,?)

(?,?)

A B

C

(2,10)

(8,0)

(18,20)

(38,5)

(?,?)

(?,?)

(?,?)

A B

C

(2,10)

(8,0)

(18,20)

(38,5)

(?,?)

(?,?)

(?,?)

A B

C

(2,10)

(8,0)

(18,20)

(38,5)

(?,?)

(?,?)

(12,14)

A B

C

(2,10)

(8,0)

(18,20)

(38,5)

(?,?)

(?,?)

(12,14)

A B

C

(2,10)

(8,0)

(18,20)

(38,5)

(?,?)

(?,?)

(12,14)

A B

C

(2,10)

(8,0)

(18,20)

(38,5)

(?,?)

(30,12)

(12,14)

A B

C

(2,10)

(8,0)

(18,20)

(38,5)

(?,?)

(30,12)

(12,14)

A B

C

(2,10)

(8,0)

(18,20)

(38,5)

(?,?)

(30,12)

(12,14)

A B

C

(2,10)

(8,0)

(18,20)

(38,5)

(22,2)

(30,12)

(12,14)

A B

C

(2,10)

(8,0)

(18,20)

(38,5)

(22,2)

(30,12)

(12,14)

A B

C

(2,10)

(8,0)

(18,20)

(38,5)

(22,2)

(30,12)

(12,14)

A B

C

I: II:

III: IV:

Probabilistic position description

• Similar idea to previous one, but accept problem

that position of nodes is only probabilistically

known
– Represent this probability explicitly, use it to compute

probabilities for further nodes

Connectivity in multihop networks

What if the distances between nodes are know?

Can we compute a coordinate system without beacons

(or anchors)?

Yes, one possible way is to use MDS…

Obtaining a Coordinate System from Distance Measurements:

Introduction to MDS

MDS maps objects from a high-dimensional space to a

low-dimensional space,

while preserving distances between objects.

 similarity between objects coordinates of points

Classical metric MDS:

• The simplest MDS: the proximities are treated as distances in an

Euclidean space

• Optimality: LSE sense. Exact reconstruction if the proximity data are

from an Euclidean space

• Efficiency: singular value decomposition, O(n3)

The basic MDS-MAP algorithm:

1. Given connectivity or local distance measurement, compute

shortest paths between all pairs of nodes.

2. Apply multidimentional scaling (MDS) to construct a relative

map containing the positions of nodes in a local coordinate

system.

3. Given sufficient anchors (nodes with known positions), e.g, 3 for

2-D or 4 for 3-D networks, transform the relative map and

determine the absolute positions of the nodes.

It works for any n-dimensional networks, e.g., 2-D or 3-D.

LOCALIZATION USING MDS-MAP

(Shang, et al., Mobihoc’03)

Applying Classical MDS

1. Create a proximity matrix of distances D

2. Convert into a double-centered matrix B

3. Take the Singular Value Decomposition of B

4. Compute the coordinate matrix X (2D coordinates will be in the

first 2 columns)

 U

N
IDU

N
I

11

2

1
-B 2

NxN matrix of 1s

NxN matrix of 1s

NxN identity matrix

TVAVB

2

1

VAX

The basic MDS-MAP algorithm:

1. Compute shortest paths between all pairs of nodes.

2. Apply classical MDS and use its result to construct a relative map.

3. Given sufficient anchor nodes, transform the relative map to an absolute

map.

Example: Localization Using Multidimensional

Scaling (MDS) (Yi Shang et. al)

MDS-MAP ALGORITHM

1. Compute all-pair shortest paths. O(n3)

Assigning values to the edges in the connectivity graph:

Known connectivity only: all edges have value 1 (or R/2)

Known neighbor distances: the edges have the distance values

2. Apply classical MDS and use its result to construct a 2-D (or 3-D)

 relative map. O(n3)

3. Given sufficient anchor nodes, convert the relative map to an

 absolute map via a linear transformation. O(n+m3)

• Compute the LSE transformation based on the positions of anchors.

O(m3), m is the number of anchors

• Apply the transformation to the other unknown nodes. O(n)

MDS-MAP (P) – The Distributed Version

1. Set-up the range for local maps Rlm (# of hops to consider in a map)

2. Compute maps of individual nodes

1. Compute shortest paths between all pairs of nodes

2. Apply MDS

3. Least-squares refinement

3. Patch the maps together

• Randomly pick a node and build a local map, then merge the

neighbors and continue until the whole network is completed

4. If sufficient anchor nodes are present, transform the relative map to an

absolute map

MDS-MAP(P,R) – Same as MDS-MAP(P) followed by a refinement phase

The basic MDS-MAP works well on regularly shaped networks, but

not on irregularly shaped networks.

MDS-MAP(P) (or MDS-MAP based on patches of local maps)

1. For each node, compute a local relative map using MDS

2. Merge/align local maps to form a big relative map

3. Refine the relative map based on the relative positions (optional).

(When used, referred to as MDS-MAP(P,R))

4. Given sufficient anchors, compute absolute positions

5. Refine the positions of individual nodes based on the absolution

positions (optional)

MDS-MAP(P) (Shang and Ruml, Infocom’04)

1. For each node, compute a local relative map using MDS

• Size of local maps: fixed or adaptive

2. Merge/align local maps to form a big relative map

• Sequential or distributed; scaling or not

3. Refine the relative map based on the relative positions

• Least squares minimization: what information to use

4. Given sufficient anchors, compute absolute positions

• Anchor selection; centralized or distributed

5. Refine the positions of individual nodes based on the absolution

positions

• Minimizing squared errors or absolute errors

SOME IMPLEMENTATION DETAILS OF MDS-MAP(P)

AN EXAMPLE OF C-SHAPE GRID NETWORKS

MDS-MAP(P) without both optional refinement steps.

Known 1-hop distances with

5% range error
Connectivity information only

2 4 6 8 10

2

4

6

8

10

2 4 6 8 10

2

4

6

8

10

 RANDOM UNIFORM PLACEMENT

 200 nodes; 4 random anchors

Connectivity information only Known 1-hop distances with 5%

range error

5 10 15 20 25 30 35
0

50

100

150

200

Connectivity

M
e

a
n
 e

rr
o

r
(%

R
)

MDS-MAP(P)
MDS-MAP(P,R)
DV-hop

 RANDOM C-SHAPE PLACEMENT

160 nodes; 4 random anchors

Connectivity information only Known 1-hop distances with 5%

range error

5 10 15 20 25 30
0

50

100

150

200

Connectivity

M
e

a
n
 e

rr
o

r
(%

R
)

MDS-MAP(P)
MDS-MAP(P,R)
DV-hop

Where is the challenge?

• The results are numerically correct based on the

used measurement model

• Two main assumptions
– Hops are proportional to distance

– Error represented as a function of distance

• Is that the case in practice?

Back to the Physical Layer: RSSI In

Node Localization

Ultrasound ToA RSSI in football field

Max range 3m, accuracy 2cm Max range 20m, accuracy 7m

Power levels: 7,10

Conclusions

• Determining location or position is a vitally

important function in WSN, but fraught with

many errors and shortcomings
– Range estimates often not sufficiently accurate

– Many anchors are needed for acceptable results

– Anchors might need external position sources (GPS)

– Multilateration problematic (convergence, accuracy)

WSN SYNCHRONIZATION

567

Time Synchronization

• Time sync is critical at many layers in sensor nets

– Coordination of wake-up and sleep times

– TDMA schedules

– Ordering of sensed events in habitat environments

– Estimation of position information

– …

• Scope of a Clock Synchronization Algorithm

– Packet delay/latency

– Offset between clocks

– Drift between clocks

Ref: based on slides by J. Elson

Up to 40 microsecond drift per

second in Mica platform

Conventional Approaches

• GPS at every node
– E.g. some GPSs provide 1 pps @ O(10ns) accuracy

– But
• doesn’t work everywhere

• cost, size, and energy issues

• NTP
– some well known “primary time servers” are synchronized via GPS,

atomic clock etc.

– pre-defined server hierarchy (stratums)

– nodes synchronize with one of a pre-specified list of time servers

– Problems:
• potentially long and varying paths to time-servers due to multi-hopping and

short-lived links

• delay and jitter due to MAC and store-and-forward relaying

• discovery of time servers

– Perfectly acceptable for most cases
• E.g. Internet (coarse grain synchronization)

• Inefficient when fine-grain sync is required
– e.g. sensor net applications: localization, beamforming, TDMA etc

Network Time Protocol

Tiered architecture

NTP [mills 1995] defines an architecture

for a time service and a protocol to

distribute time information over the

Internet

Broadcast mode: least accurate

Procedure call: medium accuracy

Peer-to-peer mode: higher level servers use this

for max accuracy

Time

server

P2P mode of NTP

Let Q’s time be ahead of P’s time by . Then

T2 = T1 + TPQ +

T4 = T3 + TQP -

RTT y = TPQ + TQP = T2 +T4 -T1 -T3

 = (T2 -T4 -T1 +T3) / 2 -(TPQ - TQP) / 2

Ping several times, and obtain the smallest value
of y. Use it to calculate

T2

T1 T4

T3
Q

P

x Between y/2 and -y/2

Limitations of What Exists

• Existing work is a critical building block

BUT…

• Energy

– e.g., we can’t always be listening or using CPU!

• Wide range of requirements within a single app; no method optimal on
all axes

• Cost and form factor: can disposable motes have GPS receivers,
expensive oscillators? Completely changes the economics…

• Needs to be fully decentralized, infrastructure-free

• Need microsecond synchronization in certain WSN applications

Ref: based on slides by J. Elson

Sources of time synchronization error
Common denominator: non-determinism

• Send time
– Kernel processing

– Context switches

– Transfer from host to NIC

• Access time
– Specific to MAC protocol

• E.g. in Ethernet, sender must
wait for clear channel

 Propagation time
 Dominant factor in WANs

 Router-induced delays

 Very small in LANs
 Asymmetric packet delays

 Receive time

Overview

• Protocols based on receiver/receiver

synchronization

• Protocols based on sender/receiver

synchronization

• Summary

New Sync Method: Reference Broadcast

• Reference-broadcast synchronization: Very high
precision sync with slow radios

– Beacons are transmitted, using physical-layer
broadcast, to a set of receivers

– Time sync is based on the difference between
reception times; don’t sync sender w/ receiver!

• Post-facto synchronization: Don’t waste energy on
sync when it is not needed

– Timestamp events using free-running clocks

– After the fact, reconcile clocks

• Peer-to-peer sync: no master clock

• Tiered Architectures: Range of node capabilities
Ref: based on slides by J. Elson

Traditional Sync

Sender Receiver

At the

tone: t=1

NIC

Physical Media

NIC

Send time

Access Time

Propagation Time

Receive Time

Problem: Many sources of unknown, nondeterministic

latency between timestamp and its reception

Ref: based on slides by J. Elson

Reference Broadcast Sync

Sender Receiver

NIC

Physical Media

NIC

Propagation Time

Receive Time

Sync 2 receivers with each other, NOT sender with receiver

Receiver

NIC
I saw it

at t=4 I saw it

at t=5

Ref: based on slides by J. Elson

RBS reduces error by removing much of it

from the critical path

NIC

 Sender

Receiver

Critical Path

NIC

 Sender

Receiver 1

Receiver 2

Critical Path

Time

Traditional critical path:

From the time the sender

reads its clock, to when the

receiver reads its clock

RBS: Only sensitive to the

differences in receive time

and propagation delay

Ref: based on slides by J. Elson

Observations about RBS

• RBS removes send and access time errors

• Broadcast is used as a relative time reference

• Each receiver synchronizing to a reference

packet

– Ref. packet was injected into the channel at the same

instant for all receivers

• Message doesn’t contain timestamp

– Almost any broadcast packet can be used, e.g ARP,

RTS/CTS, route discovery packets, etc

Ref: based on slides by J. Elson

Time Routing

1

3

2

A

4

8

C

5

7

6 B

10

D

11

9

1

3

2

4

8

5

7

6

10 11

 9

The physical topology can be easily

converted to a logical topology; links

represent possible clock conversions

Use shortest path search to find a “time route”;

Edges can be weighted by error estimates

External Standards (UTC)

1

3

2

A

4

8

C

5

7

6 B

10

D

9

1

3

2

4

8

5

7

6

10 11

 9

The multihop algorithm can also be easily used to sync

an RBS domain to an external standard such as UTC

GPS’s PPS generates a series of “fake broadcasts”:

“received” by node 11’s local clock and UTC

GPS 11
GPS

Overview

• Protocols based on receiver/receiver

synchronization

• Protocols based on sender/receiver

synchronization

• Summary

Time-sync Protocol for Sensor Networks

(TSPN)
• Traditional sender-receiver synchronization (RTT-based)

• Initialization phase: Breadth-first-search flooding
– Root node at level 0 sends out a level discovery packet

– Receiving nodes which have not yet an assigned level set
their level to +1 and start a random timer

– After the timer is expired, a new level discovery packet will
be sent

• Synchronization phase
– Root node issues a time sync packet which triggers a random

timer at all level 1 nodes

– After the timer is expired, the node asks its parent for
synchronization using a synchronization pulse

– The parent node answers with an acknowledgement

– Thus, the requesting node knows the round trip time and can
calculate its clock offset

– Child nodes receiving a synchronization pulse also start a
random timer themselves to trigger their own synchronization

Time-sync Protocol for Sensor Networks (TSPN)

• Time stamping packets at the MAC layer

• In contrast to RBS, the signal propagation time might be
negligible

• About “two times” better than RBS

• Again, clock drifts are taken into account using periodical
synchronization messages

TPSN Error Analysis

RBS Error Analysis

T

1 T

2
T

3

Flooding Time Sync Protocol (FTSP)

• Implemented on Mica platform

• ~1 Microsec accuracy

• MAC-layer timestamp

• Skew compensation with linear regression

(accounts for drift)

• Periodic flooding – robust to failures and

topology changes

• Handles large scale networks

Mica2 experiment parameters

Remove Uncertainties

• Eliminate Send Uncertainty

– Get time in the MAC layer

• Eliminate Access Time

– Get time after the message has access to the channel

• Eliminate Receive Time

– Record local time message received at the MAC layer

Time Stamping

Reduce the jitter of the interrupt handling and encoding/

decoding times by recording multiple time stamps both

on the sender and receiver sides

Flooding Time Sync Protocol (FTSP)

• Root maintains global time for system

• All others sync to the root

• Nodes form an ad hoc structure rather than a

spanning tree

• Root broadcasts a timestamp for the

transmission time of a certain byte

• Every receiver time stamps reception of that

byte

• Account for deterministic times

• Differences are the clock offsets

Flooding Time Sync Protocol (FTSP)

• (Below) MAC-layer timestamp

• Correct sender timestamp to account delays

– Compute final offset error

• Result: 1.48 μsec accuracy for 1 hop

• Available in TinyOS

Telos Platform

Telos wireless platform
(revision A)

• Texas Instruments 16-bit MSP430F149
microcontroller (2KB RAM, 60KB ROM)

• Chipcon 2420, 250kbps, 2.4GHz, IEEE 802.15.4
compliant wireless transceiver
with programmable output power

• Integrated onboard antenna with 50m range
indoors
and 125m range outdoors

• Integrated humidity, temperature, and light
sensors

 http://www.ece.uah.edu/~milenka/docs/am_ssst05_synch.ppt

http://www.isis.vanderbilt.edu/projects/nest/people/brano/pubs/poster_timesync_TTX2.ppt

http://www.ece.uah.edu/~milenka/docs/am_ssst05_synch.ppt
http://www.isis.vanderbilt.edu/projects/nest/people/brano/pubs/poster_timesync_TTX2.ppt

Transmit Mode

FIFO

CC2420

FIFOP

CCA

SFD

CSn

SI

SO

SCLK

Timer Capture

MSP430

GIO1

Interrupt

GIO0

SPI

GIO2

MOSI

MOSO

SCLK

Data transmitted

over RF
Preamble SFD Length MAC Protocol Data

SFD Pin

Automatically

generated

preamble and SFD

Data fetched from TxFIFO CRC

Receive Mode

FIFO

CC2420

FIFOP

CCA

SFD

CSn

SI

SO

SCLK

Timer Capture

MSP430

GIO1

Interrupt

GIO0

SPI

GIO2

MOSI

MOSO

SCLK

Data received

over RF
Preamble SFD Length MAC Protocol Data

SFD Pin

FIFO

Mechanism for Time Synchronization

Propagation

Data transmitted

over RF
MAC Protocol Data Length SFD Preamble

SFD Capture Timer

Timestamp

MAC Protocol Data Length SFD Preamble Timestamp
Data received over

RF

SFD Capture Timer

Synchronize local time

(TinyOS)

Network

Coordinator

Process Send

Inserting the Timestamp

• Network coordinator

– Starts the transmission

(time sync header)

– Captures timer and converts

to a global timestamp

– Inserts it into the message

(sends over SPI)

• Is this enough time not to

underrun the TxFIFO in CC2420?

– Time capture and calculate

timestamp: 150 s

– Send timestamp: 300 s

– Sync message transmission:

 700 s

SFD

TinyOS Extensions

• nesC interface

– Get current global time

– Calculate how long until the next sync message

• Useful to put to motes to sleep mode

– Convert a local time to the global time

• Timestamps are based on 32768 Hz crystal

– Stable, but slow (limit the resolution)

• MSP430 can run up to 8MHz

– Internal DCO (Digitally Controlled Oscillator)

– Poor stability

Testing Environment

• Master node + slave nodes
connected to
a common signal

• Synchronize the network

• Nodes report the global
timestamp every time
the common signal changes
its state

• Compare the global time,
reported from the master,
versus global times reported
from slaves

Network

Coordinator

Results

Scenario A B C D

Sync message frequency (sec) 2 10 30 30

Total duration (min) 2 2 2 120

Average error (ticks) 0.49 0.61 0.81 0.67

Std. Deviations(ticks) 0.56 0.53 0.48 0.49

Overview

• Protocols based on receiver/receiver

synchronization

• Protocols based on sender/receiver

synchronization

• Summary

Summary

• Time synchronization is important for both WSN

applications and protocols

• Using hardware like GPS receivers is typically not an

option, so extra protocols are needed

• Post-facto synchronization allows for time-synchronization

on demand, otherwise clock drifts would require frequent

re-synchronization and thus a constant energy drain

• Some of the presented protocols take significant advantage

of WSN peculiarities like:

– small propagation delays

– the ability to influence the node firmware to

timestamp outgoing packets late, incoming packets

early

• Of course, there are many, many more schemes

