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Abstract—Due to the limited resources available in the wireless ad hoc networking
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Therest of the paper isorganized asfollows. In Section |I, wereview

nodes, the scalability is crucial for network operations. One effective approach is to the definitions of several well-known geometry structures. We formally

maintain only a sparse spanner of a linear number of links while still preseving the
power-efficient route for any pair of nodes. For any spannerQ, its power stretch
factor is defined as the maximum ratio of the minimum power needed to support any

link in this spanner to the least necessary. In this paper, we first consider several well-

known proximity graphs including relative neighborhood graph, Gabriel graph and

define the power stretch factor and introduce several basic propertiesin
Section Il1. In Section IV, we study several geometry structures that
may be used for network topology control. We then give an algorithm
that constructs a sparse and power-efficient spanner with bounded de-

Yao graph. These graphs are sparse and can be constructed locally in an efficient way. gree. We conclude our paper in section V by discussing some possible
We show that the power stretch factor of Gabriel graph is always one, and the power fyture works.

stretch factor of Yao graph is bounded by a constant while the power stretch factor of

relative neighborhood graph could be as large as the network size minus one. Notice
that all of these graphs do not have constant degrees. We further propose another
sparse spanner that has both constant degree and constant power stretch factor. An

efficient local algorithm is presented for the construction of this spanner.
Keywords— Wireless ad hoc networks, topology control, power consumption, net-
work optimization.

. INTRODUCTION

We consider awireless ad hoc network consisting of a set of nodes
distributed in a two-dimensional plane. Each node has an omnidirec-
tional antenna. In the most common power-attenuation model, the
power needed to support a link v is ||uv||?, where ||uv|| is the dis-
tance between » and v, 3 is a constant between 2 and 4 dependent on
the wireless transmission environment. By proper scaling, all nodes
have maximum transmission range equal to one unit. These nodes de-
fine a unit disk graph in which there is an edge between two nodes if
and only if their distance is a most one. The number of edgesin the
unit disk graph could be as large as the square order of the number of
network nodes. The routing over this unit disk graph is unscalable.

Recently, Rodoplu and Meng [1] described a distributed protocol to
construct aspanner, aconnected subgraph of the unit disk graph, which
is guaranteed to contain the minimum energy consumption path con-
necting any pair of nodes. However, their protocol isnot time and space
efficient. In the worst case, the time complexity of each node isin the
cubic order of the number of its neighbors. Recently, improvement on
their result was made in [2] to construct a sparser spanner more effi-
ciently. The constructed spanner has alinear number of edges and also
preserve the path of the minimum power for any pair of nodes.

A further trade-off can be made between the sparseness and the
power efficiency of the spanner. The power efficiency of any spanner is
measured by its power stretch factor, which is defined as the maximum
ratio of the minimum power needed to support any link in this spanner
to the least necessary. Recently, Wattenhofer et al. [3] try to address
this trade-off. Unfortunately, their algorithm is problematic and their
result is erroneous which will be discussed in detail later.

In this paper, wefirst consider several well-known proximity graphs
including relative neighborhood graph, Gabriel graph and Yao graph.
These graphs are sparse and can be constructed locally in an efficient
way. We show that the power stretch factor of Gabriel graph is always
one, and the power stretch factor of Yao graph is bounded by a constant
while the power stretch factor of relative neighborhood graph could be
as large as the network size minus one. Notice that al of these graphs
do not have constant degrees. We further propose another sparse topol-
ogy that has both constant degree and constant power stretch factor. An
efficient local algorithm is presented for constructing this topol ogy.
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Il. GEOMETRY STRUCTURES

Let V' be aset of n wireless nodes distributed in a two-dimensional
plane. These nodes induce a unit disk graph UDG(V') in which there
isan edge between two nodesif and only if their distanceisat most one.
Various proximity subgraphs of the unit disk graph can be defined.

« The constrained relative neighborhood graph, denoted by RNG(V'),
consistsof all edgesuv suchthat ||uv|| < 1andthereisnopointw € V
such that ||uw|| < [Juv||, and ||wv|| < ||uv]|.

« The constrained Gabriel graph, denoted by GG(V'), consists of all
edges uwv such that ||uv|| < 1 and the open disk using uv as diameter
does not contain any node from V.

« The constrained Yao graph with an integer parameter k& > 6, de-
noted by ﬁk(V), is defined asfollows. At each node , any k equal-
separated rays originated at « defined k cones. In each cone, choose
the closest node v to u with distance at most one, if there is any, and
add a directed link u?. Ties are broken arbitrarily. Let Y Gy (V') bethe
undirected graph by ignoring the direction of each link in ﬁk(V).
See the left figure of Figure 1 for an illustration.

Fig. 1. Left: The narrow regions are defined by 8 equal cones and the closest node in each
cone isaneighbor of «; Right: Node w inthe RN G has degree n.

These graphs extend the conventional definitions of correspond-
ing ones for the completed Euclidean graph. It is well-known that
RNG(V) isasubgraph of GG(V') and Y G (V) [4], [5], [6]. In ad-
dition, all these graphs contain the Euclidean minimum spanning tree
EMST(V) as asubgraph. These graphs are sparse: |RNG (V)| <
3n — 10,|GG(V)| < 3n — 8, and [Y G (V)] < kn.

The sparseness implies that the average node degree is bounded by a
constant. However the maximum degree could be aslargeasn — 1 as
shown in the right figure of Figure 1. The instance consists of n points
lying on the unit circle centered at anode v € V. Thus, each edge uv;
belongstothe RNG(V), GG(V) and Y G (V).

The configuration given by the right figure of Figure 1 shows that
no geometry structure with constant degree bound contains the least
energy consumption path for all pairs of nodes. Notice that if such
structure exists, node u has to maintain the connection wv; because uv;
is the minimum energy consumption path for « and v;.



The length stretch factor (Some researchers call it dilation ratio,
spanning ratio) of a graph G is defined as the maximum ratio of the
shortest path length connecting any pair of nodesin G to their distance.
Bose et al. [7] showed that the length stretch factor of RNG(V) isat
most n— 1 and the length stretch factor of GG(V') isat most 222=2,
Several papers showed that the Yao graph Y G (V') has length stretch
factor at most —;=

T_9oaipn T *
1—2sin *

I1l. POWER STRETCH FACTOR

Consider any unicast path =(u, v) in G (could be directed) from a
node u € V to another node v € V, say m(u,v) = w1 - - - Up—1Un,
where u = vo, v = v,. The total transmission power p(m) consumed
by this path 7 isp(7) = Z?:l llvic1vi]|®. Let pa(u,v) be the least
energy consumed by all paths connecting nodes » and v in G. The path
connecting u, v and consuming the energy pc (u, v) is called the least-
energy pathin G for v and v. When itisclear from the context, we will
omit the subscript G in pa (u, v).

Let H be asubgraph of G. The power stretch factor of agraph H
with respect to G isthen defined as

_ bu (uv 11)
pir(G) = 2% ptu,v)

If G isaunit disk graph, we use px (V') instead of pu (G). Let

pu(n) = sup pu(V).
|V]=n

When the graph H isclear from the context, it isdropped from notation.
In this section, we present some basic properties of power stretch factor.

Lemma 1. For a constant 4, pr(G) < ¢ iff for any link v;v; in
graph G but not in H, py (v, v;) < 8]|viv; ||°.
Proof. The necessary part is obvious. We only concentrate on the suf-
ficient part. Consider any two nodes « and v. Consider the least power
consumption path g (u, v) = vovi - - - vp—1vp, Where u = vo, v =
vy, Then for each link v;v;41, thereis a path wg (vs, vi41) in H with
energy consumption at most ||v; vi+1||®. Consider the path formed by

concatenating al paths 7 (vi, vi41),i =0, --- , h— 1. Its power con-
sumption isat most o7, p(mr (vi,vit1)) < S (Slloivita ||°) =
0 - pa(u,v). Then the lemmafollows.

The above lemma implies that it is sufficient to analyze the power
stretch factor of H to each link in G but notin H.

Lemma 2: For any H C G with length stretch factor 4, its power
stretch factor is at most 6 for any graph G.
Proof. From Lemma 1, it is sufficient to show pz (u, v) < 67| uv||®
for any link wv in G but not in H. Thereis a path wg (u,v) in H
with length a most ¢||uv||. The lemma follows from p(7w (u,v)) =

B
ZEGT\'H(H,U) ||e||ﬂ S (ZEETFH(u,’U) ”6”) S (JHUU”)B

Therefore a geometry structure H with a constant length stretch fac-
tor § implies that its power stretch factor is no more than 6°. In par-
ticular, a graph with a constant length stretch factor must aso have a
constant power stretch factor. But the reverse is not necessarily true.
Finally, the power stretch factor has the following monotonic property,
i.e, H C H» C Gthenpu, (G) > pu,(G).

IV. RESULTS

In this section, we study the power stretch factor of several sparse
geometry structures for unit graph athough our results usually hold for
general graphs. At the end, we give a method to construct a sparse
network with bounded degree and bounded stretch factor.

A. Relative Neighborhood Graph

Since the relative neighborhood graph has the length stretch factor as
large as n — 1, then the Lemma 2 implies that its power stretch factor
isat most (n — 1)2. In this section, we show that it is actually n — 1.

Theorem3: prna(n) =n —1.
Proof. First we prove that prya(n) isa most n — 1. Consider the
path between v and v in EM ST (V). This path contains at most n — 1
edges and each edge haslength at most ||uw||. Thus, itstotal power con-
sumption isat most (n — 1)||uv||®. Notice EMST(V) C RNG(V)
if UDG(V') isconnected. From Lemmal, prvg(n) < n — 1.

Then we show that prve(n) > n — 1 — ¢ for any small positive e
by constructing an exampleillustrated in Figure 2.
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Fig. 2. The Euclidean minimum spanning tree has large stretch factor.

We consider two cases. We first consider even n, say n = 2m. The
construction of the point set V' is shown in Figure 2 (1), which was
usedin[7]. Leta = § + 26,0 = § — 4, where ¢ is a sufficiently
small positive number which will be fixed later. The m points with
odd subscripts v1, vs, vs, - - - , v2m—1 aecollinear, so are the m points
with even subscripts va, v4, v, - - -, vVam. Asprovedin [7], RNG (V')
isapath vi,vs,vs, - ,Vam—1,V2m, -+ , Ve, V4,v2. AS§ —> 0, the
length of each edgein RNG (V') tends to ||viv2|| from below, which
impliesm%ﬁj‘)’“) — n—1. Sowecanfind asufficiently small § > 0

such that 2ax6Let) > 1 —¢, whichimplies prn g (n) > n—1—e.
When n is odd, the construction is shown in Figure 2 (2) and the
existence can be proved by asimilar argument.

The above proof also shows that any graph contains the Euclidean
minimum spanning tree has the power stretch factor at most n — 1.

B. Gabriel Graph
The Gabriel graph has length stretch factor in between 4 and
4m/Zn=117]. From Lemma 2, its power stretch factor is at most
- 2
(4’“7 V§"‘4> . We show that pec (n) = 1 by giving astronger result.
Theorem 4: The power stretch factor of any Gabriel graph isone.
Proof. Consider any link uv in any least energy path in UDG(V).

Then v itself is the least energy path between » and v. Therefore,
the open disk using » and v as diameter is empty of wireless nodes. It

implies that edge uv remainsin the Gabriel graph GG(V).
C. Yao Graph
The Yao graph Y G (V) has length stretch factor . Lemma

2 implies its power stretch factor is no more than ( 8. We

prove astronger result.

1
—
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Theorem5: The power stretch factor of the Yao graph Y G (V) is

1
ot most 75ty



Proof. From Lemmal, it issufficient to show that for any nodes « and
v with ||uv|| < 1, thereisa path connecting « and v in Y G, (V') with
energy consumption at most WHMHB. Lets = W
We construct a path u ~» v connecting » and v in Y G (V). If link
vu € YGi(V), then set the path u ~~ v asthe link wv. Otherwise,
there must exist another node w in the same cone as v, which is a
neighbor of » in YG,(V). Then u ~» v is set as the concatenation
of the link ww and path w ~~ v. Notice that the angle 6 of each cone
section is 2X. When k > 6, then § < Z. Itis easy to show that
[|wv|| < |luv||. Consequently each node appears at most once in the
path u ~» v. We prove by induction that the path v ~~ v has cost
p(u ~» v) a most §||uv||® on the number of its edges.

If u ~ v = uw, p(u ~ v) = ||uw]|’ < §|luv||’. Assume that the
claim is true for any path with [ edges. Then consider a path v ~~ v
with I + 1 edges, which is the concatenation of edge uw and the path
w ~> v with [ edges. We consider two cases.

Case 1. the angle Zuww is not acute. We have |juw||® + ||wvl]]® <

||luv||?. Noticethat 1v2ll < 1 and 122l < 1. 1t implies that

[ [Tuoll

B B 2 2
(Iluwll> N <|vall> < <|Iuwll) N <|vall> <1
[[uv]| [|uv]| [|uv]| [|uv]|
Therefore, ||uwl||® + ||wv||® < ||uv||? for any 8 > 2. Notice that
[lwv|| < |Juv|| < 1, which implies that we can apply induction on the
path w ~~ v aso. See the left figure of Figure 3. Thus, p(w ~ v) <

8||ww||® by induction. Then
pu~ ) = |luw||® + p(w ~ v) < [luw||® + §llwol|® < bljuv]l”.

Fig. 3. Left: Theangle Zuww isnot acute; Right: Theangle Zuww is acute.

Case 2: the angle Zuwwv is acute. See the right figure of Figure
3. Notice ||uw|| < ||uv]| and Zwuv < @ because of the definition
of the neighbors in the narrow region graph. The maximum length of
vw is achieved when ||juw| = ||uv|| because the angle Zuww is acute.
Therefore [Jwv|| < 2sin £|luv|]| = 2sin Z|luv||. By induction, we
have p(u ~ v) < |luw||® 4 6|jwv||®, which is at most

1
1— (2sin

1

B
1—(2sin ¥)# el

.
Jluvl” + (2smE)B||uv||B =

%)’
This finishes the proof.

We end this section by commenting a result by Wattenhofer et al.
[3]. Their two-phased approach consists of avariation of the Yao graph
followed by a variation of the Gabriel graph. They try to prove that
the constructed spanner has constant power stretch factor and the node
degree is bounded by a constant. Unfortunately, there are some bugs
in their proof of the constant power stretch factor and their result is
erroneous. Their algorithm can be interpreted as follows.

« The first phase constructs a variation of the Yao graph. For two
nodes » and v with ||luv|| < 1, define the cone cone(u,v,0) as
the wedge with angle 6§ and uv as the bisector. Each node u
maintains a neighbors set N(u) which is initidized to empty. A
node v is added to N(u) if cone(u,v,6) is not fully contained
in Uyen)cone(u,w,d). The construction ends either al neigh-
bors are scanned or the U, ¢ v (u)cone(u, w, #) cover the entire two-
dimensiona space, whichever comes first. Then nodev € N(u) aso
puts » in its neighbor set.

« The second phase constructs a variation of the Gabriel graph over the
graph constructed from the first phase. For any node u, if there are two

nodes v and w with v, w € N(u) and w € N(v) such that

p(u,v) + p(v,w) < q-plu,w)

for a constant ¢, where ¢ is a parameter chosen by the algorithm,
then remove w from N (u) (and by symmetry, w aso removes u from
N(w)). If there is more than one node v satisfies the power inequal-
ity for node w, then choose the node with the minimum distance to .
Their algorithm traversesthe neighbor nodes in the order of the distance
to u. This makes sure that node v will stay.

They proved that after the first phase, the power stretch factor of the
constructed graph is at most 1 + 2sin§. Their proof contains several
bugs and therefore fail to obtain the claimed power stretch factor. The
bound 1 + 25in% also appears to be erroneous. Using our approach,
we can fix this bug and obtain a power stretch factor m

We also observe that the second phase of the algorithm is not well-
defined and contain serious bugs that can not be fixed. The algorithm
depends on the relative order of removing edges.

Y U Uy Uy

Fig. 4. Thealgorithm may beill-functional.

Consider the instance shown in Figure 4. It consists of n =
2m nodes V. = {u;:1<i<m} U {v;:1<i<m}. Nodes
{ui: 1 <i<m}and{v; : 1 <i < m} aredistributed in two parallel
lineswith

[|luivi|]| = 1,2 <i<m—1; and ||ujvit1]| = 1,1 <i <m—1;
luivivill| =1,1 <i <m —1; and [lv1vz]| = [[um—1um|| = a + €
lluivitr|| = |lvigrvige|| = a,1 <i <m —1;

where q is a parameter satisfying a® < ¢ — 1, and € is a positive
parameter such that a + ¢ < 1. After the first phase, the YG (V)
consists of solid lines shown in Figure 4.

During the second phase, al the horizontal edges will survive. The
other edges may be removed in the following order. Node u; will re-
move edge u; v due to the presence of node u». Node v» then remove
the edge v2u2 due to the presence of node v3. Node u» then remove
edge u»2vs due to the presence of node us. The process continues until
all slant edges except the edge wum,—1v,. The resulting graph consists
of al the horizontal links plus the edge w,,—1v.. In this graph, the
unigue path from w; to v, hastotal power consumption 2(m—2)a” +1.
Then the power stretch factor isat least 2(m—2)a” 41, whichincreases
linearly with the number of nodes.

The key mistake in the algorithm is that each node may eliminate
both incoming links and outgoing links.

D. Bounded Degree Graph

Notice that even the directed graph Y_Csk(V) has bounded stretch
ratio and bounded out-degree k for each node, some nodes may have
very large in-degree. The nodes configuration given by the right fig-
ure of Figure 1 will result avery large in-degree for node u. Bounded
out-degree gives us advantages when apply several routing algorithms.
However, unbounded in-degree at node u will often cause large over-
head at . Thereforeit is often imperative to construct a sparse network
topology such that both the in-degree and the out-degree are bounded
by aconstant whileit is still power-efficient.



Arya et al. [8] had given an ingenious technique to generate a
bounded degree graph with constant length stretch factor. We apply the
same technique to construct a sparse network topology with bounded
degree and bounded power stretch factor. The technique is to replace
the directed star consisting of all links towards a node « by a directed
tree T'(u) of abounded degree with u as the sink. Tree T'(u) is con-
structed recursively.

First, we compute the graph Y_Csk (V). Each node u will have a set

of in-coming nodes I(u) = {v | vt € ﬁk(v)}. Choose the same
k equal-sized cones centered at u: C;(u),C2(u), - - Ck(u). In each of
the k£ cones, node « finds the nearest node y; € I(u), 1 < i < k, if
thereisany. Link 7% is added to T'(u) and y; is removed from I(u).
For any newly added v inthe order of their appearancein T'(u), let w be
itsparent in T'(u) and choose the nearest node of I (u)NC;(w)—{v}in
the cone C;(v), 1 < i < k, centered at v. Then create adirected links
from the found nodes to v and remove the found nodes from I (). The
process is terminated when I (u) becomes empty. Here u can construct
the tree T'(w) and then broadcast the structure of 7'(u) to al nodesin
T'(u). Figure 5 illustrates a directed star centered at « and the directed
tree T'(u) constructed to replace the star.

Fig. 5. Left: The directed star formed by all links towards to w; Right: The directed tree
T'(w) sinked at u.

The union of al trees T'(u) is called the sink structure ﬁ;(V).
We prove that its power stretch factor is at most ( L )? and its

1—(2sin £)P
degreeisbounded by (k + 1) — 1.

Theorem 6: The power stretch factor of the graph ﬁ,ﬁ(V) is at
most ( L )2. The maximum degree of the graph Y'G; (V) is

at most (k +1)* — 1.

Proof. Using the same argument as Lemma 5, we can prove that

for each node v € I(u), there is a direct path 7 (y)(v,w) in T'(u)

such that the power consumption of mwp(,)(v,w) is no more than
L G [lvw||?. It impliesthat the power stretch factor of the graph

1—(2sin I
)/_C$;(V) isat most (m)z.

Notice that the snk geometry structure does not change the out-
degree of anode. One directed edge il implies that there is also one
directed edge v in the sink T'(u) for some w € I(u). Moreover,
because each node v at most participates in at most & + 1 sink trees
(it will at most participate k sink trees for some other nodes and it-
self will also have one sink tree T'(v)) and v participates in one sink
tree will introduce at most k& in-degree, the total in-degree is there-
fore at most k(k + 1). Consequently, the total degree is at most
E(k+1)+k=(k+1)>—1.

Noticethat the snk structure and the Yao graph structure do not have
to have the same number of cones. For setting up a power-efficient
wireless networking, each node u finds al its neighbors in Y G (V),
which can be done in linear time proportional to the number of nodes
within its transmission range.

A post-processing can be used to further reduce the number of edges.
We apply the Gabriel graph structure to the constructed Yao graph

ﬁk(V): an edge ud in ﬁk(V) survives if and only if there is no
edge u and w? in ﬁk(V) and max(|luwl|, ||luw||) < |Juv|. The

constructed spanner still have the same power stretch factor and also
with bounded out-degree k. Figure 6 illustrates different topologies de-
fined in this paper for the unit disk graph illustrated by the first figure
of Figure 6.

v . UV
W

N AT

NG X v (5
il vy AN

L BN
SIS RN
o N i
W= AR Y A (/]
YG() YG (V) GGYG(V))

Fig. 6. Different topologies generated from the same unit disk graph UDG (V).

V. SUMMARY AND FUTURE WORK

In this paper, we consider how to maintain a simple network topol-
ogy that is power-efficient. We summarize our results about the power
stretch factors and some previous results about the length stretch factors
by Tablel.

Length Power Degree
RNG | n—1 n—1 n—1
GG | imin=t 1 n—1
T T —

YC | ToamE 1—(sinZ)P k,n—1

2 2
* 1 1 2
[ i —— L R
TABLEI

THE DILATION RATIO OF DIFFERENT GRAPHS.

A nodein Yao graph Y_ka (V') has out-degree at most k, whileitsin-
degree could beaslargeasn—1. Graph Y G* (V') hasabounded degree
and a constant power stretch factor. It is easy to give examples that the
relative neighborhood graph, the Gabriel graph, the Yao graph and the
sink struture could consume arbitrarily larger total energy by all nodes
than the minimum total energy necessary to maintain the connectivity
of the network. We leave it as a future work to design an agorithm to
construct a connected topology with total energy consumption being a
constant factor of the minimum necessary while achieving a bounded
degree and a constant power stretch factor.
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