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Power Efficient and Sparse Spanner for Wireless Ad Hoc
Networks

Xiang-Yang Li� Peng-Jun Wan� Yu Wang�

Abstract—Due to the limited resources available in the wireless ad hoc networking
nodes, the scalability is crucial for network operations. One effective approach is to
maintain only a sparse spanner of a linear number of links while still preseving the
power-efficient route for any pair of nodes. For any spannerG, its power stretch
factor is defined as the maximum ratio of the minimum power needed to support any
link in this spanner to the least necessary. In this paper, we first consider several well-
known proximity graphs including relative neighborhood graph, Gabriel graph and
Yao graph. These graphs are sparse and can be constructed locally in an efficient way.
We show that the power stretch factor of Gabriel graph is always one, and the power
stretch factor of Yao graph is bounded by a constant while the power stretch factor of
relative neighborhood graph could be as large as the network size minus one. Notice
that all of these graphs do not have constant degrees. We further propose another
sparse spanner that has both constant degree and constant power stretch factor. An
efficient local algorithm is presented for the construction of this spanner.

Keywords—Wireless ad hoc networks, topology control, power consumption, net-
work optimization.

I. INTRODUCTION

We consider a wireless ad hoc network consisting of a set of nodes
distributed in a two-dimensional plane. Each node has an omnidirec-
tional antenna. In the most common power-attenuation model, the
power needed to support a link uv is kuvk� , where kuvk is the dis-
tance between u and v, � is a constant between 2 and 4 dependent on
the wireless transmission environment. By proper scaling, all nodes
have maximum transmission range equal to one unit. These nodes de-
fine a unit disk graph in which there is an edge between two nodes if
and only if their distance is at most one. The number of edges in the
unit disk graph could be as large as the square order of the number of
network nodes. The routing over this unit disk graph is unscalable.

Recently, Rodoplu and Meng [1] described a distributed protocol to
construct a spanner, a connected subgraph of the unit disk graph, which
is guaranteed to contain the minimum energy consumption path con-
necting any pair of nodes. However, their protocol is not time and space
efficient. In the worst case, the time complexity of each node is in the
cubic order of the number of its neighbors. Recently, improvement on
their result was made in [2] to construct a sparser spanner more effi-
ciently. The constructed spanner has a linear number of edges and also
preserve the path of the minimum power for any pair of nodes.

A further trade-off can be made between the sparseness and the
power efficiency of the spanner. The power efficiency of any spanner is
measured by its power stretch factor, which is defined as the maximum
ratio of the minimum power needed to support any link in this spanner
to the least necessary. Recently, Wattenhofer et al. [3] try to address
this trade-off. Unfortunately, their algorithm is problematic and their
result is erroneous which will be discussed in detail later.

In this paper, we first consider several well-known proximity graphs
including relative neighborhood graph, Gabriel graph and Yao graph.
These graphs are sparse and can be constructed locally in an efficient
way. We show that the power stretch factor of Gabriel graph is always
one, and the power stretch factor of Yao graph is bounded by a constant
while the power stretch factor of relative neighborhood graph could be
as large as the network size minus one. Notice that all of these graphs
do not have constant degrees. We further propose another sparse topol-
ogy that has both constant degree and constant power stretch factor. An
efficient local algorithm is presented for constructing this topology.
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The rest of the paper is organized as follows. In Section II, we review
the definitions of several well-known geometry structures. We formally
define the power stretch factor and introduce several basic properties in
Section III. In Section IV, we study several geometry structures that
may be used for network topology control. We then give an algorithm
that constructs a sparse and power-efficient spanner with bounded de-
gree. We conclude our paper in section V by discussing some possible
future works.

II. GEOMETRY STRUCTURES

Let V be a set of n wireless nodes distributed in a two-dimensional
plane. These nodes induce a unit disk graph UDG(V ) in which there
is an edge between two nodes if and only if their distance is at most one.
Various proximity subgraphs of the unit disk graph can be defined.

� The constrained relative neighborhood graph, denoted byRNG(V ),
consists of all edges uv such that kuvk � 1 and there is no pointw 2 V

such that kuwk < kuvk, and kwvk < kuvk.
� The constrained Gabriel graph, denoted by GG(V ), consists of all
edges uv such that kuvk � 1 and the open disk using uv as diameter
does not contain any node from V .
� The constrained Yao graph with an integer parameter k � 6, de-
noted by

��!
Y Gk(V ), is defined as follows. At each node u, any k equal-

separated rays originated at u defined k cones. In each cone, choose
the closest node v to u with distance at most one, if there is any, and
add a directed link �!uv. Ties are broken arbitrarily. Let Y Gk(V ) be the

undirected graph by ignoring the direction of each link in
��!
Y Gk(V ).

See the left figure of Figure 1 for an illustration.
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Fig. 1. Left: The narrow regions are defined by 8 equal cones and the closest node in each
cone is a neighbor of u; Right: Node u in theRNG has degree n.

These graphs extend the conventional definitions of correspond-
ing ones for the completed Euclidean graph. It is well-known that
RNG(V ) is a subgraph of GG(V ) and Y Gk(V ) [4], [5], [6]. In ad-
dition, all these graphs contain the Euclidean minimum spanning tree
EMST (V ) as a subgraph. These graphs are sparse: jRNG(V )j �

3n� 10; jGG(V )j � 3n� 8; and j
��!
Y Gk(V )j � kn.

The sparseness implies that the average node degree is bounded by a
constant. However the maximum degree could be as large as n � 1 as
shown in the right figure of Figure 1. The instance consists of n points
lying on the unit circle centered at a node u 2 V . Thus, each edge uvi
belongs to the RNG(V ), GG(V ) and Y Gk(V ).

The configuration given by the right figure of Figure 1 shows that
no geometry structure with constant degree bound contains the least
energy consumption path for all pairs of nodes. Notice that if such
structure exists, node u has to maintain the connection uvi because uvi
is the minimum energy consumption path for u and vi.



The length stretch factor (Some researchers call it dilation ratio,
spanning ratio) of a graph G is defined as the maximum ratio of the
shortest path length connecting any pair of nodes in G to their distance.
Bose et al. [7] showed that the length stretch factor of RNG(V ) is at
most n�1 and the length stretch factor of GG(V ) is at most 4�

p
2n�4

3
.

Several papers showed that the Yao graph Y Gk(V ) has length stretch
factor at most 1

1�2 sin �
k

.

III. POWER STRETCH FACTOR

Consider any unicast path �(u; v) in G (could be directed) from a
node u 2 V to another node v 2 V , say �(u; v) = v0v1 � � � vh�1vh,
where u = v0, v = vh. The total transmission power p(�) consumed
by this path � is p(�) =

Ph

i=1
kvi�1vik

� . Let pG(u; v) be the least
energy consumed by all paths connecting nodes u and v in G. The path
connecting u; v and consuming the energy pG(u; v) is called the least-
energy path in G for u and v. When it is clear from the context, we will
omit the subscript G in pG(u; v).

Let H be a subgraph of G. The power stretch factor of a graph H

with respect to G is then defined as

�H(G) = max
u;v2V

pH(u; v)

pG(u; v)

If G is a unit disk graph, we use �H(V ) instead of �H(G). Let

�H(n) = sup
jV j=n

�H(V ):

When the graph H is clear from the context, it is dropped from notation.
In this section, we present some basic properties of power stretch factor.

Lemma 1: For a constant Æ, �H(G) � Æ iff for any link vivj in
graph G but not in H , pH(vi; vj) � Ækvivjk

� .
Proof. The necessary part is obvious. We only concentrate on the suf-
ficient part. Consider any two nodes u and v. Consider the least power
consumption path �G(u; v) = v0v1 � � � vh�1vh, where u = v0; v =

vh. Then for each link vivi+1, there is a path �H(vi; vi+1) in H with
energy consumption at most Ækvivi+1k

� . Consider the path formed by
concatenating all paths �H(vi; vi+1), i = 0; � � � ; h�1. Its power con-
sumption is at most

Ph

i=1 p(�H(vi; vi+1)) �
Ph

i=1(Ækvivi+1k
�) =

Æ � pG(u; v). Then the lemma follows.

The above lemma implies that it is sufficient to analyze the power
stretch factor of H to each link in G but not in H .

Lemma 2: For any H � G with length stretch factor Æ, its power
stretch factor is at most Æ� for any graph G.
Proof. From Lemma 1, it is sufficient to show pH(u; v) � Æ

�kuvk�

for any link uv in G but not in H . There is a path �H(u; v) in H

with length at most Ækuvk. The lemma follows from p(�H(u; v)) =P
e2�H (u;v) kek

� �
�P

e2�H (u;v) kek
��

� (Ækuvk)� .

Therefore a geometry structure H with a constant length stretch fac-
tor Æ implies that its power stretch factor is no more than Æ

� . In par-
ticular, a graph with a constant length stretch factor must also have a
constant power stretch factor. But the reverse is not necessarily true.
Finally, the power stretch factor has the following monotonic property,
i.e., H1 � H2 � G then �H1(G) � �H2(G).

IV. RESULTS

In this section, we study the power stretch factor of several sparse
geometry structures for unit graph although our results usually hold for
general graphs. At the end, we give a method to construct a sparse
network with bounded degree and bounded stretch factor.

A. Relative Neighborhood Graph

Since the relative neighborhood graph has the length stretch factor as
large as n � 1, then the Lemma 2 implies that its power stretch factor
is at most (n� 1)2. In this section, we show that it is actually n� 1.

Theorem 3: �RNG(n) = n� 1.
Proof. First we prove that �RNG(n) is at most n � 1. Consider the
path between u and v in EMST (V ). This path contains at most n� 1

edges and each edge has length at most kuvk. Thus, its total power con-
sumption is at most (n � 1)kuvk� . Notice EMST (V ) � RNG(V )

if UDG(V ) is connected. From Lemma 1, �RNG(n) � n� 1.
Then we show that �RNG(n) � n� 1 � " for any small positive "

by constructing an example illustrated in Figure 2.
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Fig. 2. The Euclidean minimum spanning tree has large stretch factor.

We consider two cases. We first consider even n, say n = 2m. The
construction of the point set V is shown in Figure 2 (1), which was
used in [7]. Let � = �

3
+ 2Æ; � = �

3
� Æ, where Æ is a sufficiently

small positive number which will be fixed later. The m points with
odd subscripts v1; v3; v5; � � � ; v2m�1 are collinear, so are the m points
with even subscripts v2; v4; v6; � � � ; v2m. As proved in [7], RNG (V )

is a path v1; v3; v5; � � � ; v2m�1; v2m; � � � ; v6; v4; v2. As Æ �! 0, the
length of each edge in RNG (V ) tends to kv1v2k from below, which
implies pRNG(u;v)

p(u;v)
�! n�1. So we can find a sufficiently small Æ > 0

such that pRNG(u;v)

p(u;v)
> n�1��, which implies �RNG(n) > n�1��.

When n is odd, the construction is shown in Figure 2 (2) and the
existence can be proved by a similar argument.

The above proof also shows that any graph contains the Euclidean
minimum spanning tree has the power stretch factor at most n� 1.

B. Gabriel Graph

The Gabriel graph has length stretch factor in between
p
n

2
and

4�
p
2n�4

3
[7]. From Lemma 2, its power stretch factor is at most�

4�
p
2n�4

3

�2
. We show that �GG(n) = 1 by giving a stronger result.

Theorem 4: The power stretch factor of any Gabriel graph is one.
Proof. Consider any link uv in any least energy path in UDG(V ).
Then uv itself is the least energy path between u and v. Therefore,
the open disk using u and v as diameter is empty of wireless nodes. It
implies that edge uv remains in the Gabriel graph GG(V ).

C. Yao Graph

The Yao graph Y Gk(V ) has length stretch factor 1
1�2 sin �

k

. Lemma

2 implies its power stretch factor is no more than ( 1
1�2 sin �

k

)� . We

prove a stronger result.

Theorem 5: The power stretch factor of the Yao graph Y Gk(V ) is
at most 1

1�(2 sin �
k
)�

.



Proof. From Lemma 1, it is sufficient to show that for any nodes u and
v with kuvk � 1, there is a path connecting u and v in Y Gk(V ) with
energy consumption at most 1

1�(2 sin �
k
)�
kuvk� . Let Æ = 1

1�(2 sin �
k
)�

.

We construct a path u  v connecting u and v in Y Gk(V ). If link
vu 2 Y Gk(V ), then set the path u  v as the link uv. Otherwise,
there must exist another node w in the same cone as v, which is a
neighbor of u in Y Gk(V ). Then u  v is set as the concatenation
of the link uw and path w  v. Notice that the angle � of each cone
section is 2�

k
. When k > 6, then � <

�
3

. It is easy to show that
kwvk < kuvk. Consequently each node appears at most once in the
path u  v. We prove by induction that the path u  v has cost
p(u v) at most Ækuvk� on the number of its edges.

If u  v = uv, p(u  v) = kuvk� < Ækuvk� . Assume that the
claim is true for any path with l edges. Then consider a path u  v

with l + 1 edges, which is the concatenation of edge uw and the path
w  v with l edges. We consider two cases.

Case 1: the angle \uwv is not acute. We have kuwk2 + kwvk2 �

kuvk2 . Notice that kuwkkuvk � 1 and kwvk
kuvk � 1. It implies that

�
kuwk

kuvk

��
+

�
kwvk

kuvk

��
�

�
kuwk

kuvk

�2

+

�
kwvk

kuvk

�2

� 1

Therefore, kuwk� + kwvk� � kuvk� for any � � 2. Notice that
kwvk < kuvk � 1, which implies that we can apply induction on the
path w  v also. See the left figure of Figure 3. Thus, p(w  v) �
Ækwvk� by induction. Then
p(u v) = kuwk� + p(w v) � kuwk� + Ækwvk� � Ækuvk� :

w

u
v

w

u
v

Fig. 3. Left: The angle \uwv is not acute; Right: The angle\uwv is acute.

Case 2: the angle \uwv is acute. See the right figure of Figure
3. Notice kuwk � kuvk and \wuv < � because of the definition
of the neighbors in the narrow region graph. The maximum length of
vw is achieved when kuwj = kuvk because the angle \uwv is acute.
Therefore kwvk � 2 sin �

2
kuvk = 2 sin �

k
kuvk. By induction, we

have p(u v) � kuwk� + Ækwvk� , which is at most

kuvk� +
1

1� (2 sin �
k
)�

(2 sin
�

k
)
�kuvk� =

1

1� (2 sin �
k
)�
kuvk� :

This finishes the proof.

We end this section by commenting a result by Wattenhofer et al.
[3]. Their two-phased approach consists of a variation of the Yao graph
followed by a variation of the Gabriel graph. They try to prove that
the constructed spanner has constant power stretch factor and the node
degree is bounded by a constant. Unfortunately, there are some bugs
in their proof of the constant power stretch factor and their result is
erroneous. Their algorithm can be interpreted as follows.
� The first phase constructs a variation of the Yao graph. For two
nodes u and v with kuvk � 1, define the cone cone(u; v; �) as
the wedge with angle � and uv as the bisector. Each node u

maintains a neighbors set N(u) which is initialized to empty. A
node v is added to N(u) if cone(u; v; �) is not fully contained
in [w2N(u)cone(u;w; �). The construction ends either all neigh-
bors are scanned or the [w2N(u)cone(u;w; �) cover the entire two-
dimensional space, whichever comes first. Then node v 2 N(u) also
puts u in its neighbor set.
� The second phase constructs a variation of the Gabriel graph over the
graph constructed from the first phase. For any node u, if there are two

nodes v and w with v; w 2 N(u) and w 2 N(v) such that

p(u; v) + p(v;w) � q � p(u;w)

for a constant q, where q is a parameter chosen by the algorithm,
then remove w from N(u) (and by symmetry, w also removes u from
N(w)). If there is more than one node v satisfies the power inequal-
ity for node w, then choose the node with the minimum distance to u.
Their algorithm traverses the neighbor nodes in the order of the distance
to u. This makes sure that node v will stay.

They proved that after the first phase, the power stretch factor of the
constructed graph is at most 1 + 2sin�

2
. Their proof contains several

bugs and therefore fail to obtain the claimed power stretch factor. The
bound 1 + 2sin�

2
also appears to be erroneous. Using our approach,

we can fix this bug and obtain a power stretch factor 1

1�(2sin �
2
)�

.

We also observe that the second phase of the algorithm is not well-
defined and contain serious bugs that can not be fixed. The algorithm
depends on the relative order of removing edges.
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Fig. 4. The algorithm may be ill-functional.

Consider the instance shown in Figure 4. It consists of n =

2m nodes V = fui : 1 � i � mg [ fvi : 1 � i � mg. Nodes
fui : 1 � i � mg and fvi : 1 � i � mg are distributed in two parallel
lines with

kuivik = 1; 2 � i � m� 1; and kuivi+1k = 1; 1 � i � m� 1;

kui+1vik = 1; 1 � i � m� 1; and kv1v2k = kum�1umk = a+ �

kuiui+1k = kvi+1vi+2k = a; 1 � i � m� 1;

where a is a parameter satisfying a
�
< q � 1, and � is a positive

parameter such that a + � < 1. After the first phase, the Y G (V )

consists of solid lines shown in Figure 4.

During the second phase, all the horizontal edges will survive. The
other edges may be removed in the following order. Node u1 will re-
move edge u1v2 due to the presence of node u2. Node v2 then remove
the edge v2u2 due to the presence of node v3. Node u2 then remove
edge u2v3 due to the presence of node u3. The process continues until
all slant edges except the edge um�1vm. The resulting graph consists
of all the horizontal links plus the edge um�1vm. In this graph, the
unique path from u1 to v2 has total power consumption 2(m�2)a�+1.
Then the power stretch factor is at least 2(m�2)a�+1, which increases
linearly with the number of nodes.

The key mistake in the algorithm is that each node may eliminate
both incoming links and outgoing links.

D. Bounded Degree Graph

Notice that even the directed graph
��!
Y Gk(V ) has bounded stretch

ratio and bounded out-degree k for each node, some nodes may have
very large in-degree. The nodes configuration given by the right fig-
ure of Figure 1 will result a very large in-degree for node u. Bounded
out-degree gives us advantages when apply several routing algorithms.
However, unbounded in-degree at node u will often cause large over-
head at u. Therefore it is often imperative to construct a sparse network
topology such that both the in-degree and the out-degree are bounded
by a constant while it is still power-efficient.



Arya et al. [8] had given an ingenious technique to generate a
bounded degree graph with constant length stretch factor. We apply the
same technique to construct a sparse network topology with bounded
degree and bounded power stretch factor. The technique is to replace
the directed star consisting of all links towards a node u by a directed
tree T (u) of a bounded degree with u as the sink. Tree T (u) is con-
structed recursively.

First, we compute the graph
��!
Y Gk(V ). Each node u will have a set

of in-coming nodes I(u) = fv j �!vu 2
��!
Y Gk(V )g. Choose the same

k equal-sized cones centered at u: C1(u),C2(u),� � �Ck(u). In each of
the k cones, node u finds the nearest node yi 2 I(u), 1 � i � k, if
there is any. Link �!yiu is added to T (u) and yi is removed from I(u).
For any newly added v in the order of their appearance in T (u), letw be
its parent in T (u) and choose the nearest node of I(u)\Ci(w)�fvg in
the cone Ci(v), 1 � i � k, centered at v. Then create a directed links
from the found nodes to v and remove the found nodes from I(u). The
process is terminated when I(u) becomes empty. Here u can construct
the tree T (u) and then broadcast the structure of T (u) to all nodes in
T (u). Figure 5 illustrates a directed star centered at u and the directed
tree T (u) constructed to replace the star.

u u

Fig. 5. Left: The directed star formed by all links towards to u; Right: The directed tree
T (u) sinked at u.

The union of all trees T (u) is called the sink structure
��!
Y G

�
k(V ).

We prove that its power stretch factor is at most ( 1

1�(2 sin �
k
)�
)2 and its

degree is bounded by (k + 1)2 � 1.

Theorem 6: The power stretch factor of the graph
��!
Y G

�
k(V ) is at

most ( 1

1�(2 sin �
k
)�
)2. The maximum degree of the graph

��!
Y G

�
k(V ) is

at most (k + 1)2 � 1.
Proof. Using the same argument as Lemma 5, we can prove that
for each node v 2 I(u), there is a direct path �T (u)(v; u) in T (u)

such that the power consumption of �T (u)(v; u) is no more than
1

1�(2 sin �
k
)�
kvuk� . It implies that the power stretch factor of the graph

��!
Y G

�
k(V ) is at most ( 1

1�(2 sin �
k
)�
)2.

Notice that the snk geometry structure does not change the out-
degree of a node. One directed edge �!vu implies that there is also one
directed edge �!vw in the sink T (u) for some w 2 I(u). Moreover,
because each node v at most participates in at most k + 1 sink trees
(it will at most participate k sink trees for some other nodes and it-
self will also have one sink tree T (v)) and v participates in one sink
tree will introduce at most k in-degree, the total in-degree is there-
fore at most k(k + 1). Consequently, the total degree is at most
k(k + 1) + k = (k + 1)2 � 1.

Notice that the snk structure and the Yao graph structure do not have
to have the same number of cones. For setting up a power-efficient
wireless networking, each node u finds all its neighbors in Y Gk(V ),
which can be done in linear time proportional to the number of nodes
within its transmission range.

A post-processing can be used to further reduce the number of edges.
We apply the Gabriel graph structure to the constructed Yao graph
��!
Y Gk(V ): an edge �!uv in

��!
Y Gk(V ) survives if and only if there is no

edge �!uw and �!wv in
��!
Y Gk(V ) and max(kuwk; kuwk) < kuvk. The

constructed spanner still have the same power stretch factor and also
with bounded out-degree k. Figure 6 illustrates different topologies de-
fined in this paper for the unit disk graph illustrated by the first figure
of Figure 6.

UDG(V ) RNG(V ) GG(V )

Y G(V ) Y G
�(V ) GG(Y G(V ))

Fig. 6. Different topologies generated from the same unit disk graph UDG(V ).

V. SUMMARY AND FUTURE WORK

In this paper, we consider how to maintain a simple network topol-
ogy that is power-efficient. We summarize our results about the power
stretch factors and some previous results about the length stretch factors
by Table I.

Length Power Degree

RNG n� 1 n� 1 n� 1

GG
4�
p
2n�4

3
1 n � 1

YG 1
1�2 sin �

k

1

1�(2 sin �
k
)�

k; n� 1

YG�
�

1
1�2 sin �

k

�2 �
1

1�(2 sin �
k
)�

�2

(k + 1)2 � 1

TABLE I

THE DILATION RATIO OF DIFFERENT GRAPHS.

A node in Yao graph
��!
Y Gk(V ) has out-degree at most k, while its in-

degree could be as large as n�1. Graph Y G�(V ) has a bounded degree
and a constant power stretch factor. It is easy to give examples that the
relative neighborhood graph, the Gabriel graph, the Yao graph and the
sink struture could consume arbitrarily larger total energy by all nodes
than the minimum total energy necessary to maintain the connectivity
of the network. We leave it as a future work to design an algorithm to
construct a connected topology with total energy consumption being a
constant factor of the minimum necessary while achieving a bounded
degree and a constant power stretch factor.
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