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Abstract—Wireless sensor networks (WSNs) consist of a large number of battery-powered wireless sensor nodes, and one key issue in

WSNs is to reduce the energy consumption while maintaining the normal functions of WSNs. Data aggregation, as a typical operation in

data gathering applications, can cause a lot of energy wastage since sensor nodes, when not receiving data, may keep in the listen state

during the data collection process. To save this energy wastage, sleep scheduling algorithms can be used to turn the nodes to the sleep state

when their radios are not in use and wake them up when necessary. In this paper, we identify the contiguous link scheduling problem in

WSNs, in which each node is assigned consecutive time slots so that the node can wake up only once in a scheduling period to fulfil its

data collection task. The objective of the problem is to find an interference-free link scheduling with the minimum number of time slots

used. In virtue of the contiguous link scheduling, the energy consumption caused by nodes’ state transitions can be reduced. We prove

the contiguous link scheduling problem in WSNs to be NP-complete, and then present efficient centralized and distributed algorithms with

theoretical performance bounds in both homogeneous and heterogeneous networks. We also conduct simulation experiments that corroborate

the theoretical results and demonstrate the efficiency of our proposed algorithms.

Index Terms—Energy efficient algorithms, sleep scheduling, contiguous link scheduling, data aggregation, wireless sensor networks.
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1 INTRODUCTION

WIRELESS sensor networks (WSNs) consist of thou-

sands of tiny, inexpensive and battery-powered wire-

less sensor devices that organize themselves into multihop

radio networks. Data aggregation [1] is a typical task in

WSN-based data gathering applications, in which an inter-

mediate node could first collect data from its children nodes,

process the received data to an aggregated value (e.g., the

highest temperature), and then forward the aggregated data

to its parents nodes.

As the batteries of most sensor nodes are non-

rechargeable, one key issue is to schedule the activities of

nodes to reduce the energy consumption. A major source

of energy wastage in WSNs is the idle listening state in

the radio modules, which in fact consumes almost as much

energy as receiving [2]. Therefore, nodes are generally

scheduled to sleep when the radio is not in use, and wake up

when necessary [3]. By using such a sleep scheduling, nodes

could operate in a low-duty-cycle mode, and periodically

start up to check the channel for activity.

Effective sleep scheduling methods should allow every

node to start up and transmit/receive its messages without

interferences. One popular way to achieve this is to adopt

the time division multiple access (TDMA) MAC protocols,

which can directly support the low-duty-cycle operations

and have the natural advantages of having no contention-

introduced overhead or collisions [2]. Moreover, the TDMA

MAC protocols can guarantee a deterministic delay bound.
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Thus, we are interested in designing an efficient TDMA

sleep scheduling for WSNs.

In the TDMA MAC protocols, time is divided into

equal intervals referred to as time slots, and a time slot

is long enough to transmit one data packet. In order to

be interference-free, a simple approach is to assign each

communication link a time slot, and then, the number of

time slots assigned is equal to the number of communication

links of the network. This link scheduling scheme results

in many more time slots than necessary, considering that

multi-hop networks are able to make space reuse in the

shared channel and multiple transmissions can be scheduled

in one time slot without any interference. By reducing the

time slots assigned, the channel utilization and network

throughput can be improved. The TDMA link scheduling

aims to minimize the number of time slots assigned while

producing an interference-free link scheduling, and it has

been proven to be NP-complete [4]. Several approximation

algorithms have been proposed for the link scheduling

problem [5], [6], [7], [8], [9], [10], [11], [12].

After a TDMA link scheduling, each communication link

is assigned a time slot to transmit. To comply with the sleep

scheduling, a node needs to start up to transmit or receive in

the assigned time slot and turn to sleep after the time slot.

This TDMA link scheduling only considers the different

energy consumptions of a node in different states (transmit,

receive, listen and sleep), but does not take into account

the energy consumed by the node’s state transitions, for

example, from the sleep state to the transmit/receive/listen

state or vice versa. If a node has multiple neighbors to

communicate with, it may start up numerous times in a

scheduling period T . If a node starts up frequently, it not

only needs extra startup time, but also consumes extra en-

ergy for state transitions. Notice that the typical startup time
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is on the order of milliseconds, while the transmission time

may be less than the startup time if the packets are small.

Consequently, the transient energy consumption during the

startup process can be higher than the energy consumption

during the actual transmission. An interesting problem is

that whether each node can be scheduled consecutive time

slots so that it only needs to start up once to fulfil all

its tasks. In virtue of this, each intermediate node can

easily collect the data from all its children nodes and

then immediately compute the aggregated value in the data

aggregation, rather than waiting for a long delay until all the

data can be received and computed. Moreover, the energy

consumed in the state transitions can be saved.

In this paper, we use a new energy model, where the

energy consumption caused by the nodes’ state transitions

is considered. We identify the contiguous link scheduling

problem in WSNs, in which links incident to one node are

scheduled together to obtain consecutive time slots so that

the node can start up only once to monitor the channel in

a scheduling period T . Especially, for the data aggregation,

if the network topology is a tree, each intermediate node

needs to start up only twice in a period, once for receiving

data from its children nodes and once for transmitting its

data to its parent node. The objective of the contiguous link

scheduling problem in WSNs is to find a link scheduling

with the minimum period, i.e. the number of time slots used

in a period, by maximizing the spatial reuse of concurrent

transmissions without interferences. This can increase the

network throughput and reduce the latency of the data

aggregation.

The main contributions of this paper are summarized as

follows: (1) We address the scheduling problem using a new

energy model, which is closer to realistic sensor nodes.

(2) We identify the contiguous link scheduling problem

in WSNs and prove that the problem is NP-complete.

(3) We present centralized and distributed algorithms that

have theoretical performance bounds to the optimum in

homogeneous and heterogeneous networks. (4) We conduct

simulations to show the efficiency of the proposed algo-

rithms in terms of total energy consumption, throughput,

and time delay.

This paper has several additional advances compared

to the preliminary work [13]: First, the contiguous link

scheduling problem in WSNs is extended from homoge-

neous networks to heterogeneous networks. Second, the

complete proof of the NP-completeness of the contiguous

link scheduling problem in WSNs is provided. Third, the

theoretical bounds of the proposed algorithms are derived

along with their complexity analysis. Finally, the perfor-

mance of the proposed algorithms for heterogeneous net-

works are evaluated and analyzed.

The remainder of this paper is organized as follows.

Section 2 describes the system model and formulates the

contiguous link scheduling problem in WSNs. Section 3

presents the centralized algorithms and Section 4 presents

the distributed algorithms for the problem. Section 5 gives

the performance analysis of our algorithms. Section 6 de-

scribes and analyzes the simulation results of the proposed

algorithms. Section 7 concludes the paper. Additional sec-

tions have been added in the supplementary file, including

related work, NP-completeness proof, performance analysis,

and more simulation results.

2 SYSTEM MODEL AND PROBLEM FORMU-
LATION

In this section, we first present the system model consisting

of a network model, an interference model and an energy

model, then we formulate the contiguous link scheduling

problem in WSNs.

2.1 System Model

Network Model. We assume that a WSN has n static sensor

nodes, which are all equipped with single omni-directional

antennas, and there exists a sink node to collect the data

from other sensor nodes. The network is represented as a

communication graph G = (V, E), where V = {v1, v2, · · · , vn}
denotes the set of nodes, and E denotes the set of edges

referred to the communication links. In the network, each

node vi has a transmission range ri. If there is a link li, j
(i.e. the link from vi to v j) in E, node v j is located within

the transmission range of node vi. Similar to most TDMA

protocols, we assume that the time is synchronized in the

network and the clock drift of a node can be overlooked.

We consider two types of network topologies in this

paper, data gathering tree and directed acyclic graph (DAG),

which are commonly used for data aggregation in WSNs.

A data gathering tree is a tree rooted at a sink node, where

each intermediate node collects the data from its children

nodes and then forwards the data to its parent node [14]. A

DAG is a graph with no directed cycles, that is, there is no

path that starts and ends at the same node. The depth of a

node in a DAG is the length of the longest path from that

node to the sink [15].

Interference Model. In wireless networks, the packets

transmitted by a node may be received by all the nodes

within its transmission range due to the broadcast nature of

the wireless medium. Therefore, the transmission of one link

may interfere with the reception of another link. We consider

both primary interference and secondary interference [5] in

this paper. The primary interference occurs when a node

has more than one communication task in a single time slot.

The secondary interference occurs when a node tuned to a

particular transmitter is also within the transmission range

of another transmission intended for other nodes.

We suppose the interference range of a node vi is Ri,

and the ratio of the interference range to the transmission

range is denoted as γi =
Ri
ri

. In practice, 2 ≤ γi ≤ 4. We

define γmax = max
1≤i≤n
γi and γmin = min

1≤i≤n
γi. The maximum

transmission range, the minimum transmission range, the

maximum interference range and the minimum interference

range in a network are denoted as rmax = max
1≤i≤n

ri, rmin =

min
1≤i≤n

ri, Rmax = max
1≤i≤n

Ri and Rmin = min
1≤i≤n

Ri respectively. The

ratio of the maximum transmission range to the minimum

transmission range is denoted as σ = rmax
rmin

.
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Fig. 1: The energy model: (a) Before active time slots

merged, (b) After active time slots merged.

The interference between two links in the network de-

pends on the interference model, and in this paper we use

the protocol model [16], [17], in which a transmission from

vi to v j is considered successful if any node vk located within

a distance Rk from v j is not transmitting during the same

time interval.

Energy Model. In our energy model, we assume that each

node operates in three states: active state (transmit, receive

and listen), sleep state, and transient state [18], [19]. A node

in any active state consumes the power at the same level,

compared to the extreme low power consumption in the

sleep state.

The transient state of a sensor node comprises two

processes: startup (from the sleep state to the active state),

and turndown (from the active state to the sleep state). The

startup process includes radio initialization, radio and its

oscillator startup, and radio switching to receive/transmit

state [20], and it is slow due to the feedback loop in

the phase-locked loop (PLL), and a typical setting time

of the PLL-based frequency synthesizer is on the order of

milliseconds. Compared to the startup, the turndown process

is rapid enough to be negligible. Therefore, we only consider

the startup process in the transient state in this paper.

Our energy model is illustrated in Fig. 1(a), and there is

a significant energy consumption and time overhead when

the sensor’s radio powers on. Fig. 1(b) shows that merging

the sensor’s active time slots together can reduce the startup

frequency so as to save both energy and time.

TABLE 1: Time and power consumption in the startup

process for a Tmote sky sensor [21].

Operation process Time Power consumption
Sleep — — Psleep 0.063mW
Radio initialization tinit 0.47ms Pinit 42mW
Turn on radio ton 1.42ms Pon 3mW
Switch to RX/TX state tsw 0.212ms Psw 42mW
Listen — — Pls 59.1mW
Receive 1 byte trx 0.032ms Prx 59.1mW
Transmit 1 byte ttx 0.032ms Ptx 52.2mW

Table 1 lists the typical values of time and power con-

sumption for a Tmote Sky sensor in the startup process. The

time to activate a sensor is tinit+ton+tsw ≈ 2.1ms, the energy

consumption to activate a sensor is Pinittinit+Ponton+Pswtsw ≈
32.9μJ, and the energy consumption to transmit a packet

(e.g. 36 bytes) is PtxttxLpacket ≈ 60.1μJ. We can see that the

transient energy consumption during the startup process is

over 50% compared to that of transmitting a packet.
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Fig. 2: Link scheduling and contiguous link scheduling: (a)

Communication graph, (b) Link scheduling, (c) Contiguous

link scheduling.

2.2 Problem Formulation
In a TDMA sleep scheduling, each link li, j is assigned

a time slot, in which both sender node vi and receiver

node v j should start up to communicate. After the allocated

time slot, nodes vi and v j change to the sleep state. When

using traditional link scheduling algorithms (e.g. [7], called

degree-based heuristic in this paper) which schedule the

communication links one by one, node v j may start up wj

times to monitor the channel in a period T , where wj is the

number of directed links incident to node v j. The frequent

startup would consume a large amount of extra energy and

time. Therefore, we assign consecutive time slots to all the

directed links incident to the same node so that the node

can start up only once to receive all the packets from its

neighbors.

Definition 1. The contiguous link scheduling problem in
WSNs is to find an interference-free link scheduling with

the minimum period, in which each link is assigned a

time slot to transmit and all the links incident to one

node are assigned consecutive time slots. A contiguous link

scheduling is said to be valid if all the links incident to one

node are assigned consecutive time slots.

Fig. 2 illustrates the link scheduling and contiguous

link scheduling. In Fig. 2(a), the given network is a data

gathering tree rooted at node v1, in which any two links

interfere with each other. Fig. 2(b) shows an interference-

free link scheduling, where a node starts up numerous times

in a period. Fig. 2(c) shows a contiguous link scheduling

that a node can start up only once for receiving data from its

neighbors. Note that the contiguous link scheduling can be

applied not only to trees, but also to other topologies, such

as DAGs. In particular, if the network is a data gathering

tree where each node has only one parent, a node just needs

to start up at most twice in a period, once for receiving data

from its children nodes and once for transmitting its data to

its parent node.

Given the protocol interference model, the interference

of the links in the communication graph G = (V, E) can be

represented as a conflict graph Gc [17]. Corresponding to

each directed link from node vi to node v j in G, the conflict

graph Gc contains a vertex li, j. There is an edge between

the two vertices in Gc if the corresponding links interfere

with each other in G. In [7], the link scheduling problem

is modeled as a vertex coloring of the conflict graph.
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Fig. 3: Conflict graph and merged conflict graph: (a) Com-

munication graph, (b) Conflict graph, (c) Merged conflict

graph. Dashed lines represent the interference relationship.

For the sample communication graph shown in Fig. 3(a),

where dashed lines represent the interference relationship,

the corresponding conflict graph is shown in Fig. 3(b).

To solve the contiguous link scheduling problem in

WSNs, we propose a merged conflict graph Gmc corre-

sponding to a graph G. We formulate the problem as an

interval vertex-coloring of the graph Gmc, where an interval
vertex-coloring is an assignment of wi consecutive colors

to wi nodes satisfying the constraint that no two adjacent

nodes share the same color. In Gmc, the wi directed links

incident to node vi in G correspond to a vertex Li(wi),

and wi is the weight of vertex Li(wi). There is an edge

between the two vertices Li(wi) and Lj(wj) in Gmc if and

only if at least one link incident to node vi interferes with

a link incident to node v j in G. We can see that Gmc is

a vertex-weighted graph. For the communication graph in

Fig. 3(a), the corresponding merged conflict graph is shown

in Fig. 3(c). For example, the two links l3,2 and l4,2 incident

to node v2 shown in Fig. 3(a) correspond to vertex L2(2)

in Fig. 3(c). Similarly, link l6,4 corresponds to vertex L4(1).

There is one edge between L2(2) and L4(1) in Fig. 3(c)

since l6,4 interferes with l3,2 and l4,2 in Fig. 3(b). From the

communication graph in Fig. 3(a) and the merged conflict

graph in Fig. 3(c), we can see that the number of vertices

in Gmc is equal to the number of receiving nodes in G.

The following theorem states the NP-completeness of the

contiguous link scheduling problem in WSNs.

Theorem 1. The contiguous link scheduling problem in
WSNs is NP-complete.

The complete proof of Theorem 1 is given in the supple-

mentary file. As the contiguous link scheduling problem in

WSNs is NP-complete, it is impossible to find a polynomial

time algorithm with the optimal solution if P � NP. In

the following two sections, we propose both centralized

and distributed approximation algorithms with performance

bounds.

3 CENTRALIZED ALGORITHMS

In this section, we propose the centralized contiguous

link scheduling algorithms, centralized scheduling and

centralized scheduling with spatial reuse (recursive back-
tracking and minimum conflicts heuristic).

3.1 Centralized Scheduling
We first propose a centralized scheduling algorithm for the

contiguous link scheduling problem in WSNs. Instead of

scheduling a time slot individually for each communication

link, the links incident to a node are scheduled consecutive

time slots, and then each node can start up only once to

receive all the data from its neighbors. The centralized

scheduling algorithm is described in Algorithm 1: We

first construct a merged conflict graph Gmc based on the

communication graph G, and each vertex Li(wi) in Gmc has a

weight of wi. The scheduling is proceeded in the decreasing

order of the weights, i.e., the node which has more incident

links is scheduled earlier. In the assignment, each node vi

is assigned the smallest wi consecutive time slots using the

first-fit heuristic, and these time slots are not yet assigned

to any node v j if Lj(wj) is adjacent to Li(wi) in Gmc. After

that, the wi time slots are assigned sequentially to the wi

links incident to vi.

Algorithm 1 Centralized scheduling (Centralized)

Input: A communication graph G = (V, E).

Output: A valid contiguous link scheduling.

1: Construct the merged conflict graph Gmc, and initialize

an empty stack S .

2: Push the vertices in Gmc in the non-decreasing order of

weights to the stack S .

3: while S is not empty do
4: Pop a vertex Li(wi) from S . Assign the smallest wi

consecutive time slots to node vi, which are not yet

assigned to any node v j if Lj(wj) is adjacent to Li(wi)

in Gmc.

5: Schedule the wi time slots sequentially to the wi links

that are incident to node vi in G.

Example 1. The sample network, as shown in Fig. 4(a), is

a directed acyclic graph (DAG) where dashed lines represent

the interference relationship. The corresponding merged

conflict graph of the network is shown in Fig. 4(b). When

using the centralized scheduling algorithm (Algorithm 1),

all the nodes that have incident links (i.e., nodes v1, v2,

v5, v7 and v9) will be scheduled according to their weights.

Since the weights of nodes v1, v2, v5, v7 and v9 are 4, 1,

1, 4 and 5 respectively, the scheduling order is v9, v1, v7,

v2 and v5. As L1(4), L7(4) and L9(5) are pair-wise adjacent

in the merged conflict graph Gmc as shown in Fig. 4(b),

v9 is assigned consecutive time slots from t1 to t5, v1 is

assigned consecutive time slots from t6 to t9, and v7 is

assigned consecutive time slots from t10 to t13. For v2 and

v5, they are assigned time slots t1 and t10, respectively. After

the scheduling, the total number of time slots assigned is 13.

The time slot assigned to each link is indicated in Fig. 4(a).

3.2 Centralized Scheduling with Spatial Reuse
The contiguous link scheduling allows the links incident to

vi and v j to have some time slots overlapped when Li(wi)

and Lj(wj) are adjacent in Gmc, as long as the same time

slots assigned to different links do not cause interferences.
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Fig. 4: Contiguous link scheduling: (a) Centralized scheduling, (b) Merged conflict graph, (c) Centralized scheduling

with spatial reuse, (d) Distributed scheduling with efficient delay. t1, t2, · · · , t13 are assigned time slots, and dashed lines

represent the interference relationship.

A sample is illustrated in Fig. 4(c). In Gmc, L1(4) is adjacent

to L7(4) as shown in Fig. 4(b) because l2,1 interferes with

l6,7. But l3,1, l4,1 and l5,1 do not interfere with l6,7, l11,7, l12,7

and l13,7, so v1 can still be assigned time slots from t4 to t6
when v7 are assigned time slots from t3 to t6. By this way, we

could get another valid contiguous link scheduling using 8

time slots (as shown in Fig. 4(c)), which is fewer than that

in the centralized scheduling. Based on this observation,

we propose a centralized scheduling with spatial reuse to

enhance the centralized scheduling algorithm.

Algorithm 2 describes the centralized scheduling with

spatial reuse. It calls either the recursive backtracking algo-

rithm (Algorithm 3) or minimum conflict heuristic algorithm

(Algorithm 4) in its process. The minimum conflict heuristic

algorithm is designed to improve the time complexity of

the recursive backtracking. The centralized scheduling with

spatial reuse works as follows: It first constructs a merged

conflict graph Gmc based on the communication graph

G, and construct a so-called interference matrix (see in

Definition 2) for each node vi. It then assigns time slots to

nodes in the decreasing order of their weights. It assigns the

smallest wi available consecutive time slots to node vi using

either the recursive backtracking or the minimum conflict

heuristic. After the links incident to node vi are assigned

time slots, vi will broadcast the information to all the nodes

whose incident links interfere with the links incident to vi.

Then each node in the network would know the time slots

that its incident links could not use.

We introduce the interference matrix to indicate whether

a link can use a time slot or not, which is defined as follows:

Definition 2. An interference matrix of node vi is a t × wi
matrix M = (mj,k)t×wi (1 ≤ j ≤ t, 1 ≤ k ≤ wi) that indicates
whether a time slot could be assigned to a link lk incident
to vi without interferences, where

mj,k =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

− : link lk cannot use time slot t j (inter f erence);
0 : link lk can use time slot t j (inter f erence- f ree);
1 : link lk selects time slot t j (selection).

Here, “−” denotes that assigning the link to this time slot

will interfere with the already-scheduled links, “0” denotes

that assigning the link to this time slot will be interference-

free, and “1” denotes that the link has been assigned this

time slot. Note that in the interference matrix, the number

of columns wi is equal to the number of links incident to

node vi, and the number of rows t is the number of time

Algorithm 2 Centralized scheduling with spatial reuse

Input: A communication graph G = (V, E).

Output: A valid contiguous link scheduling.

1: Construct the merged conflict graph Gmc, construct an

interference matrix for each node vi, and initialize an

empty stack S .

2: Push the vertices in Gmc in the non-decreasing order of

weights to the stack S .

3: while S is not empty do
4: Pop a vertex Li(wi) from S . Assign the smallest

wi consecutive time slots to node vi, using recur-

sive backtracking (Algorithm 3) or minimum conflict

heuristic (Algorithm 4).

5: Schedule the wi time slots sequentially to the wi links

that are incident to node vi in G.

6: vi broadcasts the time slot assignment to the nodes

whose incident links interfere with the links incident

to vi, then the informed nodes update their interfer-

ence matrices.

slots already assigned in the scheduling.

Definition 3. An interference submatrix is a wi ×wi matrix

M′ = (mj,k)wi×wi , which consists of wi consecutive rows in

the interference matrix M.

Example 2. In Fig. 4(c), nodes v7 and v9 have already

been scheduled time slots {t3, t4, t5, t6} and {t1, t2, t3, t4,

t5} respectively. Node v1 that has 4 incident links {l2,1, l3,1,

l4,1, l5,1} is to be scheduled. The time slots used by the

links that interfere with links l2,1, l3,1, l4,1 and l5,1 are {t2,

t3, t4, t5, t6}, {t2}, {t2} and {t1, t2, t3, t4, t5}, respectively.

The interference matrix of node v1 is shown as M0 and one

interference submatrix of M0 is shown as M′0.

M0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

l2,1 l3,1 l4,1 l5,1

t1 0 0 0 −
t2 − − − −
t3 − 0 0 −
t4 − 0 0 −
t5 − 0 0 −
t6 − 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,M′0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

l2,1 l3,1 l4,1 l5,1

t1 0 0 0 −
t2 − − − −
t3 − 0 0 −
t4 − 0 0 −

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

An assignment in the interference matrix M = (mj,k)t×wi

of node vi is said to be valid if (1) there is one and only
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one “1” in each row and each column, and (2) there are wi

consecutive rows that have “1” in each row in the matrix.

The links incident to vi could be scheduled wi consecutive

time slots by obtaining a valid assignment in the interference

matrix.
In order to reduce the time slots used in the scheduling,

we propose the recursive backtracking algorithm, as shown

in Algorithm 3. The algorithm first finds the smallest wi

consecutive rows that have at least one “0” in each row in

the interference matrix M, and constructs an interference

submatrix M′ which consists of the wi rows. Then it starts

the first selection in the first row, and the second selection in

the second row without interferences to the selection in the

first row. The algorithm continues the selection in the next

row until a valid assignment is found. During the process

of each selection in a row, there may be several candidates

“0”. In these candidates, the selected one is referred to as

predecessor, and the candidates “0” in the next row are

referred to as successors of the predecessor. If one successor

fails in the selection, it then executes the backtracking
procedure: the algorithm checks whether the next successor

of the predecessor satisfies the condition that there is only

one “1” in each column. If the successors are exhausted,

the algorithm backtracks to the previous predecessor and

tries the next successor of the previous predecessor. If there

are no more predecessors, the algorithm adds a new time

slot interference-free to all the links incident to vi, and the

corresponding interference matrix adds a zero row vector

(0)1×wi in the last row.

Algorithm 3 Recursive backtracking

Input: An interference matrix M = (mj,k)t×wi .

Output: A valid assignment in M.

1: Construct an interference submatrix M′ consisting of

the smallest wi consecutive rows that have at least one

“0” in each row.

2: while a valid assignment is not obtained do
3: Start the first selection in the first row.

4: Continue the selection in the next row satisfying the

condition that there is only one “1” in each column,

until a valid assignment is obtained.

5: if a selection fails to obtain a valid assignment then
6: Execute the backtracking procedure.

7: if the recursive backtracking fails then
8: Update M′ by deleting the first row of M′ and

adding a zero row vector (0)1×wi in the last row of

M′.

Example 3. We first construct an interference submatrix

M′1 of interference matrix M0. We then select m1,2 and m2,3

in the first two rows in M′1 (marked as “ 1©” in the matrix),

but it fails in the third row as shown in M′2. Then we use

the backtracking procedure, and select m1,3 and m2,2 in the

first two rows in M′1, but it fails again as shown in M′3. As

all the predecessors and successors are exhausted, we delete

the first row and add a zero vector (0)1×wi as the last row to

construct a new interference submatrix M′
4
. Finally, we can

get a valid assignment shown in M′
5
, i.e., links l2,1, l3,1, l4,1

and l5,1 are assigned time slots t7, t4, t5 and t6, respectively,

as shown in Fig. 4(c).

M′1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 0 0 −
− 0 0 −
− 0 0 −
− 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, M′2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1© 0 −
− 0 1© −
− 0 0 −
− 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

M′3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 0 1© −
− 1© 0 −
− 0 0 −
− 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, M′4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 0 0 −
− 0 0 −
− 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

M′5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1 0 −
− 0 1 −
− 0 0 1
1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The recursive backtracking algorithm is a brute-force

search algorithm, and the time complexity can be O(wi!)

in the worst case. To reduce the complexity, we present a

fast algorithm called minimum conflicts heuristic that tries

to minimize the number of conflicts in a so-called conflict
matrix, which is defined as follows:

Definition 4. A conflict matrix is a wi × wi matrix MC =

(c j,k)wi×wi that describes the number of conflicts in the

interference submatrix M′ = (mj,k)wi×wi , and each element

c j,k in the matrix is the number of conflicts, which is the

sum of the selections “1” in both the row j and column k
that have mj,k. That is, c j,k =

∑wi
l=1

ml,k +
∑wi

l=1
mj,l − mj,k, if

mj,k � −.

The minimum conflicts heuristic is a local search algo-

rithm in the constraint satisfaction problem [22], whose

main idea is to assign each variable a value in the initial

state and then change one variable at a time by selecting

the value that results in the minimum number of conflicts

with other variables.

Algorithm 4 describes the minimum conflicts heuristic

algorithm. It first constructs an interference submatrix M′
which consists of wi consecutive rows, and then starts with

a random initial configuration in M′, e.g., with one selection

per column. The algorithm then uses a heuristic to determine

how to reduce the conflicts by moving the selection “1”

with the largest number of conflicts to the position in the

same column where the number of conflicts is minimum in

the conflict matrix. It continues to reduce the conflicts until

there is no conflict or the initial configuration fails. If the

initial configuration fails, it will add a new time slot and

continue.

Example 4. We first construct the interference submatrix

M′1 of interference matrix M0, and one initial configuration

of matrix M′1 is shown as the matrix M′
6
, and the cor-

responding conflict matrix of matrix M′
6

is shown as the

matrix MC1
. For example, c1,3 = m1,2 + m2,3 + m3,3 = 3,

c2,3 = m2,3 + m3,3 = 2. As the largest number of conflicts

among the selections in MC1
is m2,3 and none of the numbers

of conflicts in the third column is smaller than m2,3, the

initial configuration M′
6

fails. Then we add a new time

slot, and get the interference submatrix M′4. One initial

configuration of matrix M′
4

is shown as the matrix M′
7
, and

the corresponding conflict matrix of matrix M′7 is shown as
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Algorithm 4 Minimum conflicts heuristic

Input: An interference matrix M = (mj,k)t×wi .

Output: A valid assignment in M.

1: Construct an interference submatrix M′ consisting of

the smallest wi consecutive rows that have at least one

“0” in each row.

2: while a valid assignment is not obtained do
3: Initialize the matrix M′ with a random configuration.

4: Count the number of conflicts in M′, and obtain the

conflict matrix MC .

5: Use a heuristic to reduce the interference until a valid

assignment is obtained, moving the selection “1” with

the largest number of conflicts to the position in

the same column, where the number of conflicts is

minimum.

6: if the minimum conflicts heuristic fails then
7: Update M′ by deleting the first row of M′ and

adding a zero row vector (0)1×wi in the last row of

M′.

the matrix MC2
. By moving the selection from m4,4 to m3,4

in M′7 according to the minimum conflicts heuristic, we can

obtain a valid assignment which is same with M′
5

in the

recursive backtracking.

M′6 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1 0 −
− 0 1© −
− 0 1 −
− 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, MC1

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1 3 −
− 2 2© −
− 2 2 −
− 2 3 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

M′7 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1 0 −
− 0 1 −
− 0 0 0©
1 0 0 1©

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, MC2

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1 2 −
− 2 1 −
− 1 1 1
2 3 3 2©

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

4 DISTRIBUTED ALGORITHMS

As wireless sensor networks are self-organized and dis-

tributed, centralized algorithms could not be used without a

predefined leader. Therefore, it is necessary to design effi-

cient and scalable distributed algorithms. In this section, we

propose two distributed algorithms, distributed scheduling
and distributed scheduling with efficient delay.

4.1 Distributed Scheduling
In the distributed scheduling, we use a random order rather

than a global decreasing order of the weights, and we

assume that there is a contention-based MAC (e.g. B-MAC

[20]) available for a node to compete for the channel and to

obtain an interference-free contiguous link scheduling. The

distributed scheduling is simple and efficient so that each

sensor node can run the scheduling with less computation.

The distributed scheduling is shown in Algorithm 5.

In the distributed scheduling algorithm, a node vi first

competes to obtain the channel, then assigns the smallest

consecutive time slots for its incident links without inter-

ferences using the first-fit heuristic same as the centralized

Algorithm 5 Distributed scheduling (Distributed)

Input: A communication graph G = (V, E).

Output: A valid contiguous link scheduling.

1: while a valid contiguous link scheduling is not obtained

do
2: Each node vi that is not yet scheduled monitors and

competes for the channel.

3: if node vi obtains the channel then
4: vi assigns the smallest wi consecutive time slots

sequentially to its incident links which do not

interfere with the links that have already been

scheduled. Suppose link l j,i incident to vi is as-

signed time slot t j.

5: vi broadcasts the assignment information to the

nodes that are in the interference range of vi, and

these nodes could not transmit in the wi time slots

due to the interferences.

6: Each node v j adjacent to vi broadcasts the as-

signment information to the nodes that are in the

interference range of v j, and these nodes could not

receive in time slot t j due to the interferences.

7: else
8: vi waits for a random time.

scheduling. After that, vi and its neighbors should notify

the nodes in their interference ranges the time slots they

could not use. For node vi, it broadcasts the assignment

information to the nodes that are in the interference range

of vi, and these nodes could not transmit in these wi time

slots because their transmissions will interfere vi’s packet

reception in these wi time slots. For each link l j,i incident

to vi, time slot t j is assigned. Node v j then broadcasts

the assignment information to the nodes that are in its

interference range, and these nodes could not use time slot

t j to receive packets because their packet receiving will be

interfered by v j’s packet transmitting in time slot t j.

4.2 Distributed Scheduling with Efficient Delay

In the TDMA sleep scheduling, a node stays in the sleep

state for most time, and periodically starts up to check

for activity. As a forwarding node has to wait until its

next-hop neighbor starts up and is ready to receive, the

message delivery delay will increase. When packets are

forwarded from an incoming link to an outgoing link, they

could only be forwarded to the outgoing link in the next

period T if the incoming link is scheduled to be active

after the outgoing link. This kind of delay will accumulate

at every hop in the network, which may lead to a long

latency. A sample network is illustrated in Fig. 5(a). As

a line topology, the data is transmitted from v5 to v1

along the line. If links e1, e2, e3, e4 are assigned time slots

t1, t2, t3, t4 respectively (Schedule 1), the time delay for a

packet transmission from v5 to v1 is almost 3T , as shown in

Fig. 5(b). However, if links e1, e2, e3, e4 are assigned time

slots t4, t3, t2, t1 respectively (Schedule 2), v5 could transmit

the data to v1 in one period T . In order to reduce this delay,
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Fig. 5: Distributed scheduling with efficient delay: (a) Line

topology of 5 nodes, (b) Scheduling delay. Dashed lines

represent the interference relationship.

we schedule the links from bottom to top, that is, a node

with a higher depth should be scheduled earlier. Hence, a

node vi can only be scheduled until all the children nodes

of vi are already scheduled. The algorithm is described in

Algorithm 6.

Algorithm 6 Distributed scheduling with efficient delay

(Distributed-delay)

Input: A communication graph G = (V, E).

Output: A valid contiguous link scheduling.

1: while a valid contiguous link scheduling is not obtained

do
2: Each node vi that is not yet scheduled monitors and

competes for the channel if all the children nodes of

vi are already scheduled.

3: if node vi obtains the channel then
4: vi assigns the smallest wi consecutive time slots

sequentially to its incident links which do not

interfere with the links that have already been

scheduled. Suppose link l j,i incident to vi is as-

signed time slot t j.

5: vi broadcasts the assignment information to the

nodes that are in the interference range of vi, and

these nodes could not transmit in the wi time slots

due to the interferences.

6: Each node v j adjacent to vi broadcasts the as-

signment information to the nodes that are in the

interference range of v j, and these nodes could not

receive in time slot t j due to the interferences.

7: else
8: vi waits for a random time.

Example 5. A sample of the distributed scheduling with

efficient delay is as shown in Fig. 4(d). As the scheduling

is from bottom to top, the scheduling order is v9, v7, v2, v5

and v1. After the scheduling, v9 is assigned consecutive time

slots from t1 to t5, v7 is assigned consecutive time slots from

t3 to t6, v2 is assigned time slot t1, v5 is assigned time slot t6
and v1 is assigned consecutive time slots from t7 to t10. After

the scheduling, the total number of time slots assigned is 10.

The time slot assigned to each link is indicated in Fig. 4(d).

5 PERFORMANCE ANALYSIS

In this section, we analyze the theoretical performance of

our proposed algorithms. We first present the approximation

ratios of these algorithms as theorems, and then show their

time and message complexities. The details of the perfor-

mance analysis, including all the proofs and complexity

analysis of the algorithms, are given in the supplementary

file.

Theorem 2. The number of time slots used by the central-
ized scheduling algorithm is at most a constant factor of the
optimum.

Theorem 3. The number of time slots used by the central-
ized scheduling with spatial reuse algorithm is at most a
constant factor of the optimum.

Theorem 4. The number of time slots used by the dis-
tributed scheduling algorithm is at most Θ(K) times of
the optimum, where K = wmax

wmin
, wmax = max

1≤l≤L
wil and

wmin = min
1≤l≤L

wil .

Theorem 5. The number of time slots used by the dis-
tributed scheduling with efficient delay algorithm is at most
Θ(K) times of the optimum.

The time and message complexities of our algorithms are

shown in Table 2. Here, n denotes the number of nodes

in the network, Δ denotes the maximum number of links

incident to a node in the communication graph G, Δ′ denotes

the maximum degree in the corresponding merged conflict

graph Gmc, and ρ denotes the maximum number of k-hop

neighbors of a node in the network, where k = �γmax�.
TABLE 2: Time and message complexities of our algo-

rithms.

Algorithm Complexity
Time Message

Centralized O(n2) —

Recursive backtracking O(n2 + nΔ! + nΔ′Δ2) —

Minimum conflict heuristic O(n2 + nΔ′Δ2) —
Distributed O(Δn) O(Δρn)
Distributed-delay O(Δn) O(Δρn)

6 SIMULATION RESULTS

In this section, we evaluate the performance of our al-

gorithms using a simulator built in C++. The algorithms

compared in the simulation are the proposed centralized and

distributed algorithms (centralized, recursive backtracking,

minimum conflicts heuristic, distributed, distributed-delay),

and the degree-based heuristic [7] where the contiguous

link scheduling is not used and the communication links

are scheduled one by one. The performance metrics used

in the evaluation are total energy consumption, throughput,

and time delay. We show the simulation results of our al-

gorithms in heterogeneous networks here. The performance

comparison of these algorithms in homogeneous networks

is given in the supplementary file.

We adopt the time and power consumption in Table 1 in

the simulation. We assume the packet size is 36 bytes, the

data rate is 250kbps, a time slot is 4 ms. For each algorithm,

the network operates 10000 scheduling periods. We con-

struct a breadth first search (BFS) tree and a directed acyclic

graph (DAG) rooted at the sink node as the topologies of

the network.
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Fig. 6: Performance evaluation in heterogeneous networks.

For the heterogeneous networks, we randomly deploy 300

nodes in a square area of 100m × 100m, and we vary the

transmission range ratio of the maximal transmission range

to the minimal transmission range, σ = rmax
rmin

, from 1 to 3

with a step of 0.5. The transmission range of each node

follows a uniform distribution on the interval [rmin, rmax]

with an average of 15m, and the interference range of each

node is twice the transmission range. For each transmission

range ratio, 50 network topologies are generated, and the

average performances are reported. For each data point, we

also draw its 90% confidence interval.
Figs. 6 (a) and (b) show the total energy consumption

in heterogeneous networks. In both the BFS tree and DAG

topologies, the total energy consumption in the contiguous

link scheduling schemes is much less than in the degree-

based scheme. The total energy consumption does not vary

significantly as the transmission range ratio σ changes in

the BFS tree, while the total energy consumption increases

as the transmission range ratio σ increases in the DAG

topology.
Figs. 6 (c) and (d) show the average throughput in hetero-

geneous networks. In both the BFS tree and DAG topolo-

gies, the throughput decreases as the transmission range

ratio σ increases. This indicates that the heterogeneous

nodes are detrimental to the contiguous link scheduling.
In the contiguous link scheduling, the links incident

to one node are scheduled together to obtain consecutive

time slots to avoid frequent state transitions, and several

gaps are formed among the assigned time slots, which

decreases the channel utilization and requires more time

slots and hence decreases throughput. Figs. 6 (c) and (d)

show that the overhead is not high, and the recursive back-

tracking scheduling scheme has performance comparable to

the degree-based scheme. Although the minimum conflicts

heuristic may get stuck on a local optimum, it almost has the

same performance compared to recursive backtracking. If

the centralized scheduling with spatial reuse is not used, the

results would be a little worse, as shown in the centralized

scheduling. The two distributed algorithms have the worst

performance, due to the fact that they do not have the global

information.

Figs. 6 (e) and (f) show the average time delay in

heterogeneous networks. As the transmission range ratio σ
increases, the average time delay decreases in both the BFS

tree and DAG topologies because the depth of the network

topology reduces as σ increases. In heterogeneous networks,

the distributed scheduling with efficient delay scheme has

the best performance.

We summarize observations from the simulation results

as follows: (1) The proposed centralized and distributed

algorithms can achieve better energy efficiency due to

the reduction of the state transitions. (2) Our proposed

distributed algorithms can achieve performance comparable

to the centralized algorithms in both homogeneous and

heterogeneous networks. (3) The distributed scheduling with

efficient delay scheme can reduce the network delay. (4)

In heterogeneous networks, the throughput decreases as the

transmission range ratio σ increases, and the average time

delay decreases as σ increases.
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7 CONCLUSION

In this paper, we identify the contiguous link scheduling

problem in WSNs, in which a sensor node starts up only

once to receive all the data from its neighbors, and thus

can reduce the energy consumption and time overhead in

the state transitions. Especially, if the topology is a tree,

each node can start up only twice in one scheduling period.

We also propose centralized and distributed algorithms with

theoretical performance bounds to the optimum in both

homogeneous and heterogeneous networks. The simulation

results corroborate the theoretical analysis, and show the

efficiency of our algorithms in terms of total energy con-

sumption, throughput, and time delay.
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