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Suppose that for all i except i∗: θ ′
i = θ1, γ ′

i = γi, while i∗ is
the overestimated channel, i.e., it falls into one of the following
three conditions: 1) θ ′

i∗ > θi∗ , γ ′
i∗ = γi∗ ; 2) θ ′

i∗ = θi∗ , γ ′
i∗ > γi∗ ;

and 3) or θ ′
i∗ > θi∗ , γ ′

i∗ > γi∗ . Then, we have

V〈�′,�′〉
{�′,ϒ ′} > V〈�,�〉

{�,ϒ} > V〈�′,�′〉
{�,ϒ} (13)

The statement that channel i∗ would never be observed under
the strategy 〈�′, �′〉 is equivalent to that, the s-SPA process
would stop before arriving channel i∗. If so, we have

V〈�′,�′〉
{�,ϒ} = V〈�′,�′〉

{�′,ϒ ′} > V〈�,�〉
{�,ϒ}

which contradicts the inequality (13). Hence, we can conclude
that the statement is false. In other words, the overestimated
channel would be observed with probability 1 as time goes on.�

We now prove Theorem 1 using Corollary 1 and Lemma 2.
Since sub-optimal convergence only happens when there

exists at least one inaccurately estimated channel, where the
statistics of this channel would never be updated again. Suppose
that user converges to a state, i.e., a s-SPA solution, where the
maximum number of achievable steps in each slot is k. Then,
according to Lemma 2, the state is sub-optimal if and only if
there exists some underestimated channel in remaining N − k
channels.

For the sake of convenient description, we denote the set
of remaining channels as Sr = {k + 1, k + 2, . . . , N}. For each
i ∈ Sr, pi = Pr[θ ′

i ≤ θi or γ ′
i ≤ γi. As in IE-OSP, we treat θ ′

i =
θu

i = θ̂i +
√

− log δ

2ns
i

and γ ′
i =γ u

i = γ̂i + qmax

√
− log δ

2np
i

), according

to Corollary 1, we have that Pr [θ ′
i ≤θi]≤δ, Pr [γ ′

i ≤γi]≤δ.
Thus, for all i, pi ≤ p = 1 − (1 − δ)2. Then, the probability
Psub−opt that system converges to a sub-optimal solution is
bounded by

Psub−opt ≤ C1
N−kp (1 − p)N−k−1 + C2

N−kp2 (1 − p)N−k−2

+ · · · + CN−k−1
N−k pN−k−1 (1 − p) + pN−k

= [
p + (1 − p)

]N−k − (1 − p)N−k

= 1 − (1 − δ)2(N−k) (14)

Consequently, the probability that system could converges to
optimal solution is bounded by

Popt ≥ (1 − δ)2(N−k) (15)

As user needs to sense and probe at least one channel in each
slot, thus k ≥ 1, then we can derive the following probability of
optimal convergence.

Popt ≥ (1 − δ)2(N−1) (16)

Particularly, when all the channel idle probabilities are less
than 1, which means that when system converges to a state, all
the K channels in the sensing order will be observed as time
goes on (since the probability of all channel are busy is bigger
than zero). In such case, we have the following statement.

Popt ≥ t(1 − δ)2(N−K) (17)

This completes the proof of Theorem 1. �

Fig. 3. Comparison on expected throughput with respect to time.

VI. PERFORMANCE EVALUATIONS

In this section, we evaluate and analyze the performance of
the proposed online sequential accessing algorithm via sim-
ulations. We run our simulation code with Matlab, and an
IBM X210 laptop. Our experiment settings are as follows. The
idle probabilities and SNR means of independent channels are
randomly generated respectively in range [0, 1] and [0, 15] dB
for each round. Then, the states of channels (i.e. availability
and link quality) in each slot are generated independently
according to the idle probability vector as well as SNR mean
vector. The channel bandwidth is set to be 6 MHz, and three
channels are considered here. The normalized channel sensing/
probing cost β = 0.1. The results are averaged from 1000
rounds of independent experiments, where each run lasts at
least 1500 time slots.

A. Throughput Analysis

In this subsection, four policies are running under the same
environment for performance comparison, briefly described as
follows.

• p-SPA with UCB1: existing online learning solution for
opportunistic channel access, in which user selects one
channel to sense/access in each slot according to UCB1
[27] algorithm. Such learning policy is proved to be
order-optimal in p-SPA system [26];

• s-SPA without learning: an intuitive method in s-SPA
system without learning. User sequentially senses/probes
with a random sensing order and access the first idle
channel for transmission;

• s-SPA with IE-OSP: our proposed method, where user
sequentially senses, probes and accesses according to
online algorithm IE-OSP;

• s-SPA with perfect stat.: an ideal s-SPA strategy derived
with perfect channel statistics, which leads to maximum
achievable throughput.

We first study the system throughput as a function of time in
Fig. 3. As depicted in Fig. 3,

1) both learning algorithms are effective in improving system
throughput. This is clearly shown in the figure, where the
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Fig. 4. Comparison on accumulated reward in the first L slots.

expected throughput of both p-SPA with UCB1 and s-SPA
with IE-OSP are increasing with time.

2) there is still a considerable gap compared with the maxi-
mum achievable throughput (i.e., the achievable through-
put obtained by s-SPA with perfect stat.) by using existing
solutions. On one hand, compare the throughput of exist-
ing learning method p-SPA with UCB1 with that of s-SPA
with perfect stat. It shows about 3 Mbps throughput loss
even at the time t = 1500, where the learning algorithm
converges almost to the optima status. Such a gap mainly
arises from the fact that existing learning method is incom-
patible with temporary opportunity exploitation. On the
other hand, the intuitive algorithm for exploiting diversity,
i.e., s-SPA without learning, shows a constant gap of about
2 Mbps, comparing with the ideal strategy.

3) our proposed algorithm IE-OSP bridges the through-
put gap effectively. As shown in figure, the obtained
throughput of IE-OSP algorithm approaches to the ideal
goal in about 500 slot.

We further investigate the accumulated reward of the three
algorithms. Accumulated award in the first L slots is defied as
the total transmitted bits from the beginning time, i.e., j = 1,
to the instant j = L. Actually, the accumulated reward is the
most concerned metric from the perspective of the user. The
results are shown in Fig. 4. Here, we leverage the average
throughput in the first L slots to characterize the real value
of accumulated reward, which is mathematically defined as
1
L

∑L
j=1 r(j). In the figure, the average throughputs of the three

practical schemes with different Ls are given. It clearly shows
that, our proposed method outperforms the other two schemes
in almost any time, with respect to the accumulated reward.
The advantage of our proposed algorithm in time from 200 to
1400 are apparently shown in the figure. More precisely, our
learning method outperforms s-SPA without learning as soon as
j = 50, and outperforms p-SPA with UCB1 in arbitrary time. In
other words, applying our proposed scheme earn profits, even
in where the communication session duration is relatively short.
Moreover, as the gap between the average throughputs of the
three schemes are tending towards stability, it is no doubt that
user would gain more by applying our proposed scheme as the
session duration increases.

Fig. 5. Comparison on accumulated reward with respect to number of
channels.

All the above results are derived from the scenario with
a constant number of channels (N = 3). As the number of
channels is almost the most important attribute of a wireless
network and relates much to the system performance, we eval-
uate the three schemes in scenarios with different channels in
the following part of this subsection, so as to investigate the
impact of channel number. We adopt the accumulated reward
in the first 1500 slots as the main metric to show the impact of
channel number. Similarly, we leverage ‘average throughput’
to characterize the real value of accumulated reward. With
the number of channels ranging from 1 to 7, we depict the
results as shown in Fig. 5. All the three curves are increasing
with the number of channels; however, with different rising
characteristics:

1) s-SPA without learning scheme, it shows to be a rapid
growth within N ≤ 3 (higher increasing rate compared
with p-SPA with UCB1 scheme). Such growth in through-
put comes from the fact that, as the number of channels
increases, it is more likely to find an available channel
to use by sequentially observing channels in a slot. In
other words, the increasing channels enrich diversity in
temporary channel status, and thus benefit the scheme
with opportunity exploitation. However, due to lack of ad-
vanced accessing control strategy, the s-SPA without learn-
ing scheme would fail to exploit temporary opportunity
efficiently. This is why the increasing trend flattens soon
when N > 4.

2) for the p-SPA with UCB1 scheme, the growth comes from
the increasing diversity of channels’ statistics. Specifi-
cally, as the expected reward of the single statistic-optimal
channel is increasing with the total number of the chan-
nels, user gains more as the number of channels increases,
since it could learn to converge to the optimal channel by
using p-SPA with UCB1. Moreover, the average through-
put of p-SPA with UCB1 increases more slowly than that of
s-SPA without learning within few channels, e.g., 14 with
sustained growth.

3) our proposed s-SPA with IE-OSP scheme increases with
the number of channels more rapidly and lasting. By
using s-SPA with IE-OSP, user sequentially senses/probes
and accesses with near-optimal strategy soon by learning.
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Fig. 6. Throughput gain of s-SPA with IE-OSP over the other two schemes.

The temporary opportunity among channels are fully and
efficiently exploited. As a result, the throughput gap be-
tween our proposed policy and the existing policies is
increasing with number of channels, e.g., about 5 Mbps
throughput improvement is attained at N = 7.

To further investigate the throughput improvement of our
proposed scheme over the other two schemes, we depict the
throughput gain as a function of the number of channels. The
throughput gain is defined as the ratio between average through-
put in the first 1500 slots of s-SPA with IE-OSP scheme over
that of p-SPA with UCB1 or s-SPA without learning, respec-
tively. As depicted in Fig. 6, with the increasing number of
channels, the candidate channels are more than ever, thus the
potential channel quality improvement is expected, since the
probability of probing a high quality channel could be larger
than ever. Specifically, we learn from this figure that:

1) the throughput gain of our opposed scheme over the other
two schemes are increasing with the number of channels,
which means that the proposed policy would benefit more
in the scenarios with more channels.

2) at least 9.5% improvement in average throughput is
achieved with our proposed scheme. This value is attained
at N = 2 comparing with s-SPA without learning. When
compared with p-SPA with UCB1, it exceeds 15%.

3) 25∼30% throughput improvement can be obtained in
most scenarios, as almost all existing OSA networks are
equipped with more than 5 channels.

B. Convergence Analysis

In this subsection, we evaluate the convergence property of
our proposed learning algorithm by analyzing regret. Regret is
an important metric for online policies, where the definition4

of regret is presented in Eqn. (2). An online learning algorithm
with higher regret means more throughput loss during learning
process. Moreover, it has been proven by Lai and Robbins [40]
that no policy can do better than logarithmic increasing regret

4As in our simulation, regret is the accumulated throughput loss of applying
s-SPA with IE-OSP, comparing with always using s-SPA with perfect stat.

Fig. 7. Regret with respect to time.

Fig. 8. Regret vs. increased number of channels.

in time. In other words, an online policy with logarithmic regret
in time is order-optimal.

In Fig. 7, we depict the regret of IE-OSP policy as a function
of slot index, so as to study the increasing rate of regret over
time. To show more widely, we present all the curves with N
ranging from 2 to 5. Intuitively, we find from the upper part
of this figure that, all the curves of regret show a logarithmic
increasing trend over time. To further verify this logarithmic
increasing property, we re-plot the regret curves in the lower
part of this figure, where X-axis ranges from 100 to 1500 and
is in a logarithmic form. The transformed curves show almost
linear increasing trend. This verifies that, the regret is in at
least asymptotically logarithmic rate, even if it is not in optimal
logarithmic rate

Further, we study the increasing trend of regret with respect
to the number of channels. As the regret increases infinitely
with the number of slots, we take three typical value of L to de-
termine the regret for comparison. Specifically, for each N, we
depict the value of L = 500, L = 1000, and L = 1500. The
results are presented in Fig. 8. It is intuitive that the regret
values increases when adds the number of channels. This is
reasonable, since the increasing number of channels extends
the learning space, and thus results in higher throughput loss
for learning. In spite of this, it is encouraging that the regret is
sub-linearly increasing with the number of channels. As shown
in the regret envelope curves, where the blue dots and red
dashed line sketches the increasing trace of ρ(500) and ρ(1500)
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Fig. 9. Comparison between simulation and theoretical results. (a) δ = 0.1 and N = 5; (b) δ = 0.5 and N = 5; (c) δ = 0.9 and N = 5.

respectively. Such desirable property makes the learning algo-
rithm scalable.

C. Discussion

1) Impact of Secondary User and Reliability: The chan-
nel probing failure and primary user occupancy will lead to
different results. In previous studies [41], [42], we discussed
the probability of channel probing failure and effects for the
statistical behavior of the primary users. Moreover, it is worth
noting that, in our scheme, when the channel probing failure
and primary user occupancy is stable, say, providing a proba-
bility or distribution for it, our IE-OSP policy could be adaptive
to such cases. Because the threshold value could be adjustable
according to this probabilistic distribution, which could be
further evaluated by the rewards.

2) Validating the Theoretical Analysis: To show the match-
ing effects of the proposed algorithm and theorem 1, we make
an extended experimental study on the comparisons between
the results we got from simulation study and theoretical analy-
sis. In our simulation study, we evaluate the matching rate of the
proposed algorithm and theoretical results. For each run, if the
result in simulation study equals to that of theoretical analysis,
the matching times could be increased by 1. And the overall
matching rate is the accumulated matching times to the total
number of running times.

As depicted in Fig. 9, the Y-axis denotes the matching rate
with probabilistic form. We set the parameter N, K, and δ with
different values, and evaluate the matching rate. To show the
trends, especially when the number of probing times increases,
we make observations for different values of K. This feature
also validates our basic idea, i.e., providing more opportunities
of probing could improve the throughput gain in temporarily
high SNR channels. Large-scale evaluation needs computa-
tional intensive operations, and the theoretical results could
guide us with the converging trends for the regret value. Fur-
thermore, Fig. 10 depicts the convergenc feature of our pro-
posed protocol, when the theoretical regret value is concerned.
In that, we observe the convergence property when the param-
eter δ is concerned. When the confidence interval is involved,
the convergence probability increases with the δ, which means,
the convergence probability could be higher than the case with
lower confidence interval. On the other hand, a theoretical
bound value with higher confidence interval could be more
difficult to achieve.

Fig. 10. Convergence property of the simulation results.

VII. CONCLUSION

In this work, channel learning and opportunity utilization
are jointly considered for maximizing system overall through-
put in an unknown environment. The sensing/probing order
and accessing rule are dynamically adapted slot by slot, so
as to achieve better tradeoff between maximizing diversity
exploitation in current slot and exploring more channels for re-
fining statistics. A near optimal online learning policy, so called
IE-OSP, is proposed, which balances the statistics exploration
and diversity exploitation by integrating confidence interval
estimation into the optimal stopping analytical framework. We
prove that, by using the proposed algorithm, system is guaran-
teed to converge to the optimal s-SPA strategy with a control-
lable probability. Simulation results further show that the regret
of IE-OSP is asymptotically logarithmic in time and sub-linear
in the number of channels, which respectively shows the op-
timality and scalability of our proposed learning policy. Com-
pared with existing solutions, our proposed algorithm achieves
more than 25% throughput gain in most scenarios.

In future work, we are to implement our policy to a cognitive
radio platform built on USRP [43], [44], and provide a working
system in real deployment [45] for validation.
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