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ABSTRACT

This paper introduces a new approach to database disk buffering, called the  LRU–K method. The
basic idea of LRU–K is to keep track of the times of the last K references to popular database pages,
using this information to statistically estimate the interarrival time of such references on a page by
page basis.  Although the LRU–K approach performs optimal statistical inference under relatively
standard assumptions, it is fairly simple and incurs little bookkeeping overhead. As we demonstrate
with simulation experiments, the LRU–K algorithm surpasses conventional buffering algorithms in
discriminating between frequently and infrequently referenced pages. In fact, LRU–K can approach
the behavior of buffering algorithms in which page sets with known access frequencies are manually
assigned to different buffer pools of specifically tuned sizes. Unlike such customized buffering algo-
rithms however, the LRU–K method is self–tuning, in the sense that it does not rely on external hints
about workload characteristics.  Furthermore, the LRU–K algorithm adapts in real time to changing
patterns of access.

The paper develops the details of the LRU–K method, and provides a probabilistic analysis of the
behavior of the LRU–K algorithm.  In particular, it is proven that LRU–K is essentially optimal
among all replacement algorithms that are solely based on stochastic information about past refer-
ences. The LRU–K algorithm achieves significant savings in terms of cost–performance, compared
to the classical LRU algorithm and its variants, and these savings are demonstrated with simulation.

1. Introduction

1.1Problem Statement

All database systems retain disk pages in memory buffers for a period of time after they have been
read in from disk and accessed by a particular application.  The purpose is to keep popular pages
memory resident and reduce disk I/O.  In their ”Five Minute Rule”, Gray and Putzolu pose the fol-
lowing tradeoff:  We are willing to pay more for memory buffers up to a certain point, in order to
reduce the cost of disk arms for a system ([GRAYPUT], see also [CKS]).  The critical buffering deci-
sion  arises when a new buffer slot is needed for a page about to be read in from disk, and all current
buffers are in use:  What current page should be dropped from buffer?  This is known as the page
replacement policy, and the different buffering algorithms take their names from the type of replace-
ment policy they impose (see, for example, [COFFDENN], [EFFEHAER]).  The algorithm utilized
by almost all commercial systems is known as LRU, for Least Recently Used.  When a new buffer is
needed, the LRU policy drops the page from buffer that has not been accessed for the longest time.
LRU buffering was developed originally for patterns of use in instruction logic (for example, [DEN-
NING], [COFFDENN]), and does not always fit well into the database environment, as was noted
also in [REITER], [STON], [SACSCH], and [CHOUDEW].  In fact, the LRU buffering algorithm
has a problem which is addressed by the current paper:  that it decides what page to drop from buffer
based on too little information, limiting itself to only the time of last reference.  Specifically, LRU is
unable to differentiate between pages that have relatively frequent references and pages that have
very infrequent references until the system has wasted a lot of resources keeping infrequently refer-
enced pages in buffer for an extended period.
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Example 1.1.  Consider a multi–user database application, which references randomly chosen cus-
tomer records through a clustered B–tree indexed key, CUST–ID, to retrieve desired information (cf.
[TPC–A]). Assume simplistically that 20,000 customers exist, that a customer record is 2000 bytes
in length, and that space needed for the B–tree index at the leaf level, free space included, is 20 bytes
for each key entry.  Then if disk pages contain 4000 bytes of usable space and can be packed full, we
require 100 pages to hold the leaf level nodes of the B–tree index (there is a single B–tree root node),
and 10,000 pages to hold the records.  The pattern of reference to these pages (ignoring the B–tree
root node) is clearly:  I1, R1, I2, R2, I3, R3, . . ., alternate references to random index leaf pages and
record pages.  If we can only afford to buffer 101 pages in memory for this application, the B–tree
root node is automatic; we should buffer all the B–tree leaf pages, since each of them is referenced
with a probability of .005 (once in each 200 general page references), while it is clearly wasteful to
displace one of these leaf pages with a data page, since data pages have only .00005 probability of
reference (once in each 20,000 general page references).  Using the LRU algorithm, however, the
pages held in memory buffers will be the hundred most recently referenced ones.  To a first approxi-
mation, this means 50 B–tree leaf pages and 50 record pages.  Given that a page gets no extra credit
for being referenced twice in the recent past and that this is more likely to happen with B–tree leaf
pages, there will even be slightly more data pages present in memory than leaf pages. This is clearly
inappropriate behavior for a very common paradigm of disk access.

Example 1.2.  As a second scenario where LRU retains inappropriate pages in cache, consider a mul-
ti–process database application with good ”locality” of shared page reference, so that 5000 buffered
pages out of 1 million disk pages get 95% of the references by concurrent processes.  Now if a few
batch processes begin ”sequential scans” through all pages of the database, the pages read in by the
sequential scans will replace commonly referenced pages in buffer with pages unlikely to be refer-
enced again.  This is a common complaint in many commercial situations:  that cache swamping by
sequential scans causes interactive response time to deteriorate noticeably.  Response time deterio-
rates because the pages read in by sequential scans use disk arms to replace pages usually held in
buffer, leading to increased I/O for pages that usually remain resident, so that long I/O queues build
up.

To reiterate the problem we see in these two examples, LRU is unable to differentiate between pages
that have relatively frequent reference and pages that have very infrequent reference.  Once a page
has been read in from disk, the LRU algorithm guarantees it a long buffer life, even if the page has
never been referenced before.  Solutions to this problem have been suggested in the literature.  The
previous approaches fall into the following two major categories.

• Page Pool Tuning:
Reiter, in his Domain Separation algorithm [REITER], proposed that the DBA give better hints
about page pools being accessed, separating them essentially into different buffer pools. Thus
B–tree node pages would compete only against other node pages for buffers, data pages would
compete only against other data pages, and the DBA could limit the amount of buffer space avail-
able for data pages if re–reference seemed unlikely. Such “pool tuning” capabilities are sup-
ported by some commercial database systems and are used in applications with high perfor-
mance requirements (see, e.g., [TENGGUM, DANTOWS, SHASHA]). The problem with this
approach is that it requires a great deal of human effort, and does not properly handle the problem
of evolving patterns of hot–spot access (locality within the data page pool, changing over time).

• Query Execution Plan Analysis:
Another suggestion was that the query optimizer should provide more information about the type
of use envisioned by a query execution plan, so that the system will know if re–reference by the
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plan is likely and can act accordingly (see the Hot Set Model of [SACSCH], the DBMIN algo-
rithm of [CHOUDEW]) and its extensions [FNS, NFS, YUCORN], the hint–passing approaches
of [CHAKA, HAAS, ABG, JCL, COL] and the predictive approach of [PAZDO]).  This ap-
proach can work well in circumstances where re–reference by the same plan is the main factor in
buffering.  In Example 1.2 above, we would presumably know enough to drop pages read in by
sequential scans.  The DBMIN algorithm would also deal well with the references of Example
1.1 if the entire reference string were produced by a single query.  However, the query plans for
the simple multi–user transactions of Example 1.1 give no preference to retaining B–tree pages
or data pages in buffer, since each page is referenced exactly once during the plan.  In multi–user
situations, query optimizer plans can overlap in complicated ways, and the query optimizer advi-
sory algorithms do not tell us how to take such overlap into account.  A more global page replace-
ment policy must exist to make such a decision.

1.2 Contribution of the Paper

Both of the above categories of solutions take the viewpoint that, since LRU does not discriminate
well between frequently and infrequently referenced pages, it is necessary to have some other agent
provide hints of one kind or another.  The contribution of the current paper is to derive a new self–re-
liant page–replacement algorithm that takes into account more of the access history for each page, to
better discriminate pages that should be kept in buffer.  This seems a sensible approach since the page
history used by the LRU algorithm is quite limited:  simply the time of last reference.

In this paper we carefully examine the idea of taking into account the history of the last two refer-
ences, or more generally the last K references, K ≥ 2.  The specific algorithm developed in this paper
that takes into account knowledge of the last two references to a page is named LRU–2, and the natu-
ral generalization is the LRU–K algorithm;  we refer to the classical LRU algorithm within this tax-
onomy as LRU–1.  It turns out that, for K > 2, the LRU–K algorithm provides somewhat improved
performance over LRU–2 for stable patterns of access, but is less responsive to changes in access
patterns, an important consideration for some applications.

Despite the fact that the LRU–K algorithm derives its benefits from additional information about
page access frequency, LRU–K is fundamentally different from the Least Frequently Used (LFU)
replacement algorithm. The crucial difference is that LRU–K has a built–in notion of “aging”, con-
sidering only the last K references to a page, whereas the LFU algorithm has no means to discrimi-
nate recent versus past reference frequency of a page, and is therefore unable to cope with evolving
access patterns.  LRU–K is also quite different from more sophisticated LFU–based buffering algo-
rithms that employ aging schemes based on reference counters.  This category of algorithms, which
includes, for example, GCLOCK and variants of LRD [EFFEHAER], depends critically on a careful
choice of various workload–dependent parameters that guide the aging process.  The LRU–K algo-
rithm, on the other hand, does not require any manual tuning of this kind.

The LRU–K algorithm has the following salient properties:
• It discriminates well between page sets with different levels of reference frequency (e.g., index

pages vs. data pages). Thus, it approaches the effect of assigning page sets to different buffer
pools of specifically tuned sizes. In addition, it adapts itself to evolving access patterns.

• It detects locality of reference within query executions, across multiple queries in the same trans-
action, and also locality across multiple transactions in a multi–user environment.

• It is self–reliant in that it does not need any external hints.
• It is fairly simple and incurs little bookkeeping overhead.

The remainder of this paper has the following outline.  In Section 2, we present the basic concepts of
the LRU–K approach to disk page buffering.  In Section 3 we give some mathematical underpin-
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nings, and demonstrate that the LRU–K algorithm is optimal in a certain well defined sense, given
knowledge of the most recent K references to each page.  In Section 4, we present simulation perfor-
mance results for LRU–2 and LRU–K in comparison with LRU–1.  Section 5 has concluding re-
marks.

2. Concepts of LRU–K Buffering

In the current paper we take a statistical view of page reference behavior, based on a number of the
assumptions from the Independent Reference Model  for paging, in Section 6.6 of [COFFDENN].
We start with an intuitive formulation;  the mathematical development will be covered in greater
detail in Section 3.  Assume we are given a set  N = {1, 2, . . ., n} of disk pages, denoted by positive
integers, and that the database system under study makes a succession of references to these pages
specified by the reference string:   r1, r2, . . . , rt, . . ., where  rt = p  (p ∈ N)  means that term numbered t in
the references string refers to disk page p.  Note that in the original model of [COFFDENN], the ref-
erence string represented the page references by a single user process, so the assumption that the
string reflects all references by the system is a departure.  In the following discussion, unless other-
wise noted, we will measure all time intervals in terms of counts of successive page accesses in the
reference string, which is why the generic term subscript is denoted by ’t’.  At any given instant t, we
assume that each disk page p has a well defined probability, βp, to be the next page referenced by the
system:  Pr( rt+1 = p ) = βp, for all p ∈ N.  This implies that the reference string is probabilistic, a se-
quence of random variables, but we leave this as an informal idea until Section 3.  Changing access
patterns may alter these page reference probabilities, but we assume that the probabilities  βp have
relatively long periods of stable values, and start with the assumption that the probabilities are un-
changing for the length of the reference string;  thus we assume that βp is independent of t.

Clearly, each disk page p has an expected reference interarrival time, Ip, the time between successive
occurrences of p in the reference string, and we have:  Ip = βp

–1.  We intend to have our database sys-
tem use an approach based on Bayesian statistics to estimate these interarrival times from observed
references.  The system then attempts to keep in memory buffers only those pages that seem to have
an interarrival time to justify their residence, i.e. the pages with shortest access interarrival times, or
equivalently greatest probability of reference.  This is a statistical approximation to the A0 algorithm
of [COFFDENN], which was shown to be optimal.  The LRU–1 (classical LRU) algorithm can be
thought of as taking such a statistical approach, keeping in memory only those pages that seem to
have the shortest interarrival time;  given the limitations of LRU–1 information on each page, the
best estimate for interarrival time is the time interval to prior reference, and pages with the shortest
such intervals are the ones kept in buffer.

Definition 2.1.  Backward K–distance bt(p,K).  Given a reference string known up to time t, r1, r2, . .
. , rt, the backward K–distance bt(p,K) is the distance backward to the Kth most recent reference to the
page p:

    bt(p,K) =  x, if rt–x has the value p and there have been exactly K–1 other values i
with t – x < i  ≤ t , where  ri = p,

        = ∞, if p does not appear at least K times in r1, r2, . . . , rt 

Definition 2.2.  LRU–K Algorithm.  The LRU–K Algorithm specifies a page replacement policy
when a buffer slot is needed for a new page being read in from disk: the page p to be dropped (i.e.,
selected as a replacement victim) is the one whose Backward K–distance, bt(p,K), is the maximum of
all pages in buffer.  The only time the choice is ambiguous is when more than one page has bt(p,K) =
∞.  In this case, a subsidiary policy may be used to select a replacement victim among the pages with
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infinite Backward K–distance;  for example, classical LRU could be employed as a subsidiary
policy. Note that LRU–1 corresponds to the classical LRU algorithm.

The LRU–2 algorithm significantly improves on LRU–1 because by taking into account the last two
references to a page, we are able for the first time to estimate Ip by measurement of an actual interarri-
val between references, rather than estimating simply by a lower bound of the time back to the most
recent reference.  We are using more information and our estimates are immensely improved as a
result, especially as regards pages that have long reference interarrival time and should therefore be
dropped from buffer quickly.  Note that we make no general assumptions about the probabilistic dis-
tribution of Ip.  In Section 3, we will assume an exponential distribution for Ip to demonstrate op-
timality of the LRU–K algorithm.  As already mentioned, we model βp and therefore Ip as having the
potential for occasional changes over time, only assuming that changes are infrequent enough that a
statistical approach to future page access based on past history is usually valid.  These assumptions
seem justified for most situations that arise in database use.

2.1.  Realistic Assumptions In Database Buffering

The general LRU–K algorithm has two features, peculiar to the cases where K ≥ 2, that require care-
ful consideration to ensure proper behavior in realistic situations.  The first, known as Early Page
Replacement, arises in situations where a page recently read into memory buffer does not merit
retention in buffer by standard LRU–K criteria, for example because the page has a bt(p,K) value of
infinity.  We clearly want to drop this page from buffer relatively quickly, to save memory resources
for more deserving disk pages.  However we need to allow for the fact that a page that is not generally
popular may still experience a burst of correlated references shortly after being referenced for the
first time.  We deal with this concern in Section 2.1.1.  A second feature that we need to deal with in
cases where K ≥  2, is the fact that there is a need to retain a history of references for pages that are not
currently present in buffer.  This is a departure from current page replacement algorithms, and will be
referred to as the Page Reference Retained Information Problem, covered below in Section 2.1.2.  A
pseudo–code outline of the LRU–K buffering algorithm which deals with the concerns mentioned
above is given in Section 2.1.3.

2.1.1.  Early Page Replacement and the Problem of Correlated References

To avoid the wasteful use of memory buffers seen in Examples 1.1 and 1.2, LRU–K makes a decision
whether to drop a page p from residence after a short time–out period from its most recent reference.
A canonical period might be 5 seconds.  To demonstrate the need for such a time–out, we ask the
following question:  What do we mean by the last two references to a page?  We list below four ways
that a pair of references might take place to the same disk page;  the first three of these are called
correlated reference pairs, and are likely to take place in a short span of time.

(1) Intra–Transaction.  A transaction accesses a page, then accesses the same page again before
committing.  This is likely to happen with certain update transactions, first reading a row and later
updating a value in the row.

(2) Transaction–Retry.  A transaction accesses a page, then aborts and is retried, and the retried
transaction accesses the page again for the same purpose.

(3) Intra–Process.  A transaction references a page, then commits, and the next transaction by the
same process accesses the page again.  This pattern of access commonly arises in batch update ap-
plications, which update 10 records in sequence, commit, then start again by referencing the next
record on the same page.
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(4) Inter–Process.  A transaction references a page, then a (frequently different) process references
the same page for independent reasons.  (At least while we do not have a great deal of communication
between processes where information is passed from one process to the other in database records we
can assume references by different processes are independent.)

Recall that our purpose in buffering disk pages in memory is to retain pages with relative long–term
popularity to save disk I/O.  An example of such long–term popularity is given in Example 1.1,
where the 100 B–tree leaf pages are frequently referenced by concurrently acting transactions.  The
point about correlated reference–pair types (1) through (3) above is that if we take these reference
pairs into account in estimating interarrival time Ip, we will often arrive at invalid conclusions.  For
example, reference–pair type (1) may be a common pattern of access, so if we drop a page from buff-
er right away after the first reference of type (1) because we have not seen it before, we will probably
have to read it in again for the second reference.  On the other hand, after the second reference, with
the transaction committed, if we say that this page has a short interarrival time and keep it around for
a hundred seconds or so, this is likely to be a mistake;  the two correlated references are insufficient
reason to conclude that independent references will occur.  There are several obvious ways to ad-
dress the problems of correlated references, the most basic of which is this:  the system should not
drop a page immediately after its first reference, but should keep the page around for a short period
until the likelihood of a dependent follow–up reference is minimal;  then the page can be dropped.  At
the same time, interarrival time should be calculated based on non–correlated access pairs, where
each successive access by the same process within a time–out period is assumed to be correlated:  the
relationship is transitive.  We refer to this approach, which associates correlated references, as the
Time–Out Correlation method; and we refer to the time–out period as the Correlated Reference Peri-
od  The idea is not new;  in [ROBDEV] an equivalent proposal is made in Section 2.1, under the
heading:  Factoring out Locality.

The implication of a Correlated Reference Period of this kind on the mathematical formulation is
simply this.  The reference string, r1, r2, . . . , rt, is redefined each time the most recent reference rt

passes through the time–out period, in order to collapse any sequence of correlated references to a
time interval of zero.  If a reference to a page p is made several times during a Correlated Reference
Period, we do not want to penalize or credit the page for that.  Basically, we estimate the interarrival
time Ip by the time interval from the end of one Correlated Reference Period to the beginning of the
next.  It is clearly possible to distinguish processes making page references;   for simplicity, however,
we will assume in what follows that references are not distinguished by process, so any reference
pairs within the Correlated Reference Period are considered correlated.

Another alternative is to vary the Time–Out Correlation approach based on more knowledge of sys-
tem events.  For example, we could say that the time–out period ends after the transaction that ac-
cessed it and the following transaction from the same process commit successfully (to rule out cases
(1) and (3) above), or else after a retry of the first transaction has been abandoned (to rule out case
(2));  however there might be other correlated reference pair scenarios not covered by these three
cases.  Another idea is to allow the DBA to override a default Correlated Reference Period by setting
a parameter for a particular table being processed.

2.1.2.  The Page Reference Retained Information Problem

We claim that there is a need in the LRU–K algorithm, where K ≥ 2, to retain in memory a history of
references for pages that are not themselves present in buffer, a departure from most buffer replace-
ment algorithms of the past.  To see why this is so, consider the following scenario in the LRU–2
algorithm.  Each time a page p is referenced, it is made buffer resident (it might already be buffer
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resident), and we have a history of at least one reference.  If the prior access to page p was so long ago
that we have no record of it, then after the Correlated Reference Period we say that our estimate of
bt(p,2) is infinity, and make the containing buffer slot available on demand.  However, although we
may drop p from memory, we need to keep history information about the page around for awhile;
otherwise we might reference the page p again relatively quickly and once again have no record of
prior reference, drop it again, reference it again, etc.  Though the page is frequently referenced, we
would have no history about it to recognize this fact.  For this reason, we assume that the system will
maintain history information about any page for some period after its most recent access.  We refer to
this period as the Retained Information Period.

If a disk page p that has never been referenced before suddenly becomes popular enough to be kept in
buffer, we should recognize this fact as long as two references to the page are no more than the Re-
tained Information Period apart.  Though we drop the page after the first reference, we keep informa-
tion around in memory to recognize when a second reference gives a value of bt(p,2) that passes our
LRU–2 criterion for retention in buffer.  The page history information kept in a memory resident data
structure is designated by HIST(p), and contains the last two reference string subscripts i and j, where
ri = rj = p, or just the last reference if only one is known.  The assumption of a memory resident infor-
mation structure may require a bit of justification.  For example, why not keep the information about
the most recent references in the header of the page itself?  Clearly any time the information is need-
ed, the page will be buffer resident.  The answer is that such a solution would require that the page
always be written back to disk when dropped from buffer, because of updates to HIST(p);  in applica-
tions with a large number of read–only accesses to infrequently referenced pages, which could other-
wise simply be dropped from buffer without disk writes, this would add a large amount of overhead
I/O.

To size the Retained Information Period, we suggest using the Five Minute Rule of [GRAYPUT] as a
guideline.  The cost/benefit tradeoff for keeping a 4 Kbyte page p in memory buffers is an interarrival
time Ip of about 100 seconds.  Returning to discussion of LRU–2, a little thought suggests that the
Retained Information Period should be about twice this period, since we are measuring how far back
we need to go to see two references before we drop the page.  So a canonical value for the Retained
Information Period could be about 200 seconds. We believe that this is a reasonable rule of thumb for
most database applications. High–performance applications may, however, choose to increase the
buffer pool beyond the economically oriented size that would follow from the Five Minute Rule. In
such applications, the Retained Information Period should be set higher accordingly. To determine a
reasonable value, consider the maximum Backward K–distance of all pages that we want to ensure to
be memory–resident. This value is an upper bound for the Retained Information Period, because no
conceivable string of new references to a page after this period will enable the page to pass the criteri-
on for retention in buffer.
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Procedure to be invoked upon a reference to page p at time t:

if p is already in the buffer
then

/* update history information of p */
if t – LAST(p) > Correlated Reference Period
then

/* a new, uncorrelated reference */
correlation_period_of_referenced_page := LAST(p) – HIST(p,1)
for i := 2 to K do

HIST(p,i) := HIST(p,i–1) + correlation_period_of_referenced_page
od
HIST (p,1) := t
LAST(p) := t

else
/* a correlated reference */
LAST(p) := t

fi
else

/* select replacement victim */
min := t
for all pages q in the buffer do

if t – LAST(q) > Correlated Reference Period /*eligible for replacement*/
   and HIST(q,K) < min /* maximum Backward K–distance so far */
then

victim := q
min := HIST(q,K)

fi
od
if victim is dirty then write victim back into the database fi
/* now fetch the referenced page */
fetch p into the buffer frame that was previously held by victim
if HIST(p) does not exist
then

/* initialize history control block */
allocate HIST(p)
for i := 2 to K do HIST(p,i) := 0 od

else
for i := 2 to K do HIST(p,i) := HIST(p,i–1) od

fi
HIST(p,1) := t
LAST(p) := t

fi

   Figure 2.1. Pseudo–code Outline of the LRU–K Buffering Algorithm, Explained in Section
2.1.3

2.1.3.  Schematic Outline of the LRU–K Buffering Algorithm

The LRU–K algorithm of Figure 2.1 is based on the following data structures:

• HIST(p) denotes the history control block of page p; it contains the times of the K most recent
references to page p, discounting correlated references:  HIST(p,1) denotes the last reference,
HIST(p,2) the second to the last reference, etc.

• LAST(p) denotes the time of the most recent reference to page p, regardless of whether this is a
correlated reference or not.



–9–

These two data structures are maintained for all pages with a Backward K–distance that is smaller
than the Retained Information Period. An asynchronous demon process should purge history control
blocks that are no longer justified under the retained information criterion.

Based on these data structures, a conceptual outline of the LRU–K algorithm in pseudo–code form is
given in Figure 2.1. Note that this outline disregards I/O latency;  a real implementation would need
more asynchronous units of work.  Also, to simplify the presentation, the outline disregards addition-
al data structures that are needed to speed up search loops; for example, finding the page with the
maximum Backward K–distance would actually be based on a search tree.  Despite the omission of
such details, it is obvious that the LRU–K algorithm is fairly simple and incurs little bookkeeping
overhead.

3. Mathematical Analysis

In this section, we demonstrate that the LRU–2 algorithm provides essentially optimal buffering be-
havior based on the information given;  the proof generalizes easily to LRU–K.  In our analysis, we
will assume for simplicity that the Correlated Reference Period is zero, and that this causes no ill
effects;  essentially we assume that correlated references have been factored out.

As before, we take as a starting point for our analysis the Independent Reference Model for paging,
presented in Section 6.6 of [COFFDENN].  We take our notation from this reference and make a few
departures from the model presented there.  We begin with a set  N = {1, 2, . . ., n} of disk pages and a
set  M = {1, 2, . . ., m} of memory buffers, 1 ≤ m ≤ n.  A system’s paging behavior over time is de-
scribed by its (page) reference string:  r1, r2, . . . , rt, . . ., where  rt = p  means that disk page p, p ∈ N, is
referenced by the system at time t. According to the independent reference assumption, the reference
string is a sequence of independent random variables with the common stationary distribution {β1,
β2, . . . , βn}, one probability for each of the n disk pages, where  Pr(rt = p) = βp, for all p ∈ N and all
subscripts t.  Let the random variable dt(p) denote the time interval forward to the next occurrence of
p in the reference string after rt;  from the assumptions above, dt(p) has the stationary geometric dis-
tribution:

(3.1) Pr(dt(p) = k) =   βp (1 – βp)k–1, k = 1, 2, . . .

with mean value Ip = 1/βp.  Note that because of the stationary assumption, Pr(dt(p) = k) is indepen-
dent of t.  Further note that the independent reference assumption imposes a probability distribution
p(ω) on all reference strings of any given length T.  If ω = r1, r2, . . . , rT, then p(ω) = βr1

. βr1
. . . . . βrT , the

product of the probabilities of the individual references making up reference string ω.

Definition 3.1.  The A0 Buffering Algorithm.  Let A0 denote the buffering algorithm that replaces
the buffered page p in memory whose expected value Ip is a maximum, i.e., the page for which βp is
smallest.

Theorem 3.2. (Theorem 6.3 in [COFFDENN].)  Algorithm A0 is optimal with respect to the proba-
bility distribution p(ω) of reference strings implied by the independent reference assumption.

Proof.  See [COFFDEN], [ADU]

The A0 algorithm can be described as an optimal strategy with probabilistic information but without
an oracle.  Alternatively, Belady’s algorithm [BELADY], designated as B0 in [ADU] and [COFF-
DENN], assumes complete knowledge of a specific reference string ω, and takes the strategy of re-
taining in memory those pages that will be re–referenced again the shortest time in the future.  Refer-
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ring to Example 1.1, there will clearly be occasional circumstances where it is preferable to drop one
of the 100 index pages from buffer in favor of retaining one of the 10,000 data pages, because the data
page in question will be re–referenced sooner.  However, to make a prediction such as this, Belady’s
algorithm requires an oracle that can look into the future;  complete knowledge of all details of the
probabilistic situation will not allow us to arrive at such conclusions.  For this reason we claim that
Belady’s optimal strategy is unapproachable in real situations, and that we should use the A0 strategy
as the proper measure of how closely a strategy approaches optimal behavior.  This assumption is
reflected in interpreting the experiments of Section 4.

3.1Estimating Page Reference Probability Based on History

In the development that follows, we take as a given that the independent reference model holds for
our reference string  ω = r1, r2, . . . , rt, . . ., with some reference probability vector  β = {β1, β2, . . . , βn} for
the n disk pages of N.  To reflect the normal state of ignorance concerning reference probabilities
with which a buffering algorithm starts, we do not assume foreknowledge of the proper ordering of
the pages, i = 1, 2, . . . n,  where the probability P(i) of a reference to page i obeys:  P(i) = βi.  Rather, we
simply assume there is some permutation mapping, x: N –> N, initially unknown to us, such that  P(i)
= βx(i).  In what follows, we attempt to statistically estimate P(i) for each page i, based on a history of
references to the page and a knowledge of the vector β.  Realistically, the buffering algorithm will
also have no knowledge of the probability vector β, but it turns out that the analysis to derive a statisti-
cal estimate of P(i) allows us to derive certain ordinal properties of these quantities. In particular,
given any reference probability vector β with at least two distinct values, we are able to conclude that
for any two disk pages x and y, if bt(x,K) < bt(y,K), then the page x has a higher estimate P(x) for
probability of reference.

As we recall from Definition 2.1, bt(i,K) stands for the backward K–distance at time t to the Kth most
recent reference to page i.  In addition, we use the following notation.

H(K,t) History data:  designates a conjunction of events, a list of the times of the most recent K
references to all pages i ∈ N, as of time t  in the reference string ω.

E(P(i) | bt(i,K) = k):  an estimate (expected value) at time t of the probability P(i) based on the refer-
ence probability vector β and given knowledge of the event bt(i,K) = k.

We are assuming for simplicity that all pages i ∈ N have been referenced at least K times as of time t.
If we denote by H(0,0) an empty history at time t = 0, then all n pages will have equal a priori proba-
bilities of reference: E(P(i) | NO INFORMATION) = 1/n.  As we gain more information about refer-
ences to the various pages, we will use Bayesian statistical inference [HODLEH] to conclude that a
page i, which seems to be more frequently referenced than all other pages (i.e., bt(i,K) is smaller than
bt(j,K) for other pages j), is more likely to correspond to the larger βv values.  From this we conclude
that the estimate of the probability, E(P(i)| bt(i,K) = k) for page i, is larger than the estimate for other
pages.  Note that we are imposing a rather artificial restriction on our knowledge H(K,t), that we
remember only the most recent K references to all pages at time t, not the entire history of references;
at time t+1 after another reference to some page i has occurred, we will have forgotten the oldest
reference to page i.  The justification for this definition is that page reference probabilities might
change over time;  the stationary reference probability assumption is only an approximation to the
real situation, and so we want to weight recent references more heavily than older ones.  However, no
justification is needed to prove our result mathematically, given the definition of H(K,t).

Lemma 3.3, Basic Lemma for LRU–2.  We are given a permutation mapping, x:  N –> N unknown
to us, such that for each page i ∈ N, the probability of reference, P(i), is given by βx(i),  and a priori, we
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assume that all possible permutation mappings x have equal probabilities.  For any page i and any
subscript v of component βv, we may calculate the probability that x(i) = v, given that the second most
recent reference to i, bt(i,2), has the value k, by the formula:

(3.2)          P(x(i) = v | bt(i,2) = k)  =  
�v

2 (1 – �v)k–1

�
1�j�n

�j
2 (1 – �j)

k–1

Proof.  We use Bayesian statistics to prove this result.  Let  Aj for an arbitrary subscript j of  βj be the
event that x(i) = j.  Since all permutations x have equal a priori probabilities and the events Aj parti-
tion the permutations into n sets of equal cardinality, the a priori probabilities P(Aj) are all equal to
1/n.  Let the reference string ω = r1, r2, . . . , rt, be given through time t, and assume that references have
been taking place for sufficient time that all pages have been referenced twice. Let the event B repre-
sent the fact that bt(i,2) = k.  Bayes’ Theorem tells us that we can calculate P(Av | B), the probability
that x(i) = j given that bt(i,2) = k, by the formula:

(3.3)       P(Av|B) = 
P(B|Av)P(Av)

�
j

P(B|Aj)P(Aj)

See Section 4.4 of [HODLEH] for an explanation of Bayes Law.  Now P(Av) and P(Aj) (a priori prob-
abilities with no prior history) are all equal, as explained above. To calculate P(B|Av), we need to
evaluate the probability that the page p with reference probability βv has bt(p,2) = k.  To do this we
start by specifying the last two references to page i, k and h, and evaluate the probability that the page
p with reference probability βv had its last two references in positions rt–k and rt–h, where  t – k < t – h.
To give this event a name, we call it Xh (all other factors are fixed, the page i, the value k, the subscript
v, but h ranges between t–k+1 and t), and evaluate P(Av|Xh), for specific h:

(3.4)  P(Xh|Av) =  βv
2 (1 – �v )k–1

We see this is true because there are two specified positions in ω where the page p with reference
probability  βv must be referenced, and k – 1 positions where it must not be referenced.  Now the event
B that bt(i,2) = k is really a union of the disjoint events Xh, as h ranges from t–k+1 to t, and thus we can
express P(B|Av) as k times the value of  P(Xh|Av), given in (3.4).

 (3.5) P(B|Av)   =  P(bt(i,2) = k | x(i) = v)   =   k  βv
2 (1 – �v )k–1

The formula (3.5) holds for arbitrary values v = j, and the desired result of the Lemma, equation (3.2),
follows by substituting (3.5) in (3.3).  Note that the value for h has disappeared in (3.5), a rather sur-
prising fact known as the memoryless property, implying that intermediate references to a page i do
not add to the information given by bt(i,2) in a distribution with exponential arrival distribution. Nat-
urally, the information must be kept anyway, because intermediate reference times become in their
turn the oldest reference as new references to a page occur.

Lemma 3.3 generalizes, from LRU–2 to  LRU–K.

Lemma 3.4, Basic Lemma for LRU–K.  With the same assumptions given in Lemma 3.3, except
that the Kth most recent reference to i, bt(i,K), is given by the value k, we have:

(3.6)          Pr(x(i) = v | bt(i,K) = k)  =  
�v

K (1 – �v)k–K+1

�
1�j�n

�j
K (1 – �j)

k–K+1



–12–

We omit the proof, which is analogous to Lemma 3.3.
 
Now with Lemma 3.4, we can evaluate the a posteriori probability for a specific page i, given its
history over the last K references, that x(i) = v, i.e. P(i) = βv. Since the page i must be mapped onto
exactly one of the β indices j by the permutation x, and we know the probability P(i) of reference in
each case, it seems clear that we can evaluate the expected value of P(i) for any given history of refer-
ences, given the last K references to the page i.

Lemma 3.5, A Posteriori Estimate of P(i).  We use the notation Et(P(i)) for short, to stand for E(P(i)
| bt(i,K) = k), the expected value of P(i) given bt(i,K) = k.  We have the following formula.

(3.7) Et(P(i)) = �
1�v�n

�v Pr(x(i)=v | bt(i, K)=k)  =    

�
1�j�n

�j
K+1(1– �j)k–K+1

�
1�j�n

�j
K (1– �j)k–K+1

The proof is immediate from Equation (3.6).

Note that this estimate of P(i) is an expected value of probabilities based on the underlying reference
probability vector β, and therefore is a probability itself;  indeed it is our best guess at P(i) based on
the history of references to page i and a knowledge of the values of β.  Normally we do not know the βv

values, and therefore cannot evaluate formula (3.7) precisely.  However we have the following re-
sult,

Lemma 3.6.  If bt(x,K) < bt(y,K), then Et(P(x)) > Et(P(y)), for any underlying reference probability
vector β with at least two unequal values.

Proof.  We claim that the expression of Lemma 3.5 for Et(P(i)) is monotonically decreasing in k,
unless all the βv are identical.  Consider the βj values in the expression as points in the β–interval [0,1].
Then the full expression is the center of mass of a set of n point masses with values βj

K.(1– βj)k–K+1

located at the points βj.  Increasing k by one multiplies the masses each by (1– βj), which more signifi-
cantly decreases the masses at points further from zero and thus moves the center of mass to the left.

Lemma 3.5 gives us a statistical best estimate for all page reference probabilities P(i), given the his-
tory H(K,t), in terms of component values of the vector β.  These estimates, Et(P(i)), form a perfectly
good reference probability distribution in their own right.  Although we do not know the component
values of β, Lemma 3.6 shows that the page i with largest bt(i,K) value will have the smallest value for
Et(P(i)).  Since the algorithm A0 provides optimal behavior by always dropping from buffer the page
of lowest probability, this would seem to imply that the LRU–K algorithm which drops the page with
largest bt(i,K) is optimal (using the best P(i) distribution we can derive with the given history infor-
mation).  However, the proof of A0 optimality in [ADU] makes an additional assumption (the Almost
Stationary Case) that the relative probabilities of page reference maintain their relative order with
respect to time.  Unfortunately, this assumption fails for the Et(P(i)) estimates we have derived, so we
must be satisfied with a slightly less encompassing result.  We start with a relatively straightforward
definition, based on [ADU].

Definition 3.7.   Given a page reference probability vector β, and a paging algorithm A which re-
sponds to reference string ω = r1, r2, . . . , rt, . . ., by making the set of pages St buffer resident at time t,
|St| = m, we define the Expected Cost at time t for the algorithm A to be:

(3.8) C(A, St, ω) = 1 – �
i�St

�i
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This is the probability that the next page referenced is not in buffer, and thus represents the expected
number of disk I/Os on the next reference (clearly less than one).

Theorem 3.8.  Under the independent page reference assumption, given knowledge H(K,t) at time t,
the expected cost resulting from the LRU–K algorithm acting with m memory buffers is less than
that resulting from any other algorithm A acting with m–1 memory buffers.  Thus LRU–K acts opti-
mally in all but (perhaps) one of its m buffer slots, an insignificant cost increment for large m.

Proof.  It can easily be demonstrated under the model we have developed that the expected cost,
given knowledge H(K,t), of algorithm A with the set of pages St buffer resident at time t, is:

(3.9) C(A, St, ω) = 1 – �
i�St

Et(P(i)),

where the underlying (unknown) probabilities in (3.8) have been replaced by the best estimates,
Et(P(i)), given knowledge H(K,t).  Now it is easily seen by induction that at any time t, the LRU–K
algorithm will have in buffer: (1) the most recent page p to be brought in from disk, and (2) aside from
p, the m–1 pages with minimum values for bt(i,K).  In particular, LRU–K will always have the m–1
pages with minimum bt(i,K), and therefore the m–1 pages with maximum values Et(P(i)). Clearly no
other algorithm A with m–1 buffer pages can improve on this to achieve lesser cost, since the mini-
mum value of (3.9) is achieved for |St| = m–1 with these precise pages.

Note that all LRU–K results apply equally to LRU–1.  In particular, the LRU algorithm is seen to act
optimally (under the independent page reference assumption), given the limited knowledge it has of
the most recent reference time.

4.  Performance Characteristics.

A prototype implementation of the LRU–2 algorithm was funded by the Amdahl Corporation to in-
vestigate optimal alternatives for efficient buffer behavior in the Huron database product.  Minor
alterations in the prototype permitted us to simulate LRU–K behavior, K ≥ 1, in several situations of
interest.  We investigated three types of workload situations:

• a synthetic workload with references to two pools of pages that have different reference frequen-
cies, modeling Example 1.1,

• a synthetic workload with random references to a set of pages with a Zipfian distribution of refer-
ence frequencies, and

• a real–life OLTP workload sample with random, sequential, and navigational references to a
CODASYL database.

These three experiments are discussed in the following three subsections.

4.1 Two Pool Experiment

We considered two pools of disk pages, Pool 1 with N1 pages and Pool 2 with N2 pages, with  N1  <
N2.  In this two pool experiment, alternating references are made to Pool 1 and Pool 2;  then a page
from that pool is randomly chosen to be the sequence element.  Thus each page of Pool 1 has a proba-
bility of reference  β1 = 1/(2N1) of occurring as any element of the reference string ω, and each page of
Pool 2 has probability  β2 = 1/(2N2).  This experiment is meant to model the alternating references to
index and record pages of Example 1.1:    I1, R1, I2, R2, I3, R3, . . ..  We wish to demonstrate how
LRU–K algorithms with varying K discriminate between pages of the two pools, and how well they
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perform in retaining the more frequently referenced pool pages (the hotter pool pages) in buffer.  The
buffer hit ratios for the various algorithms in identical circumstances give us a good measure of the
effectiveness of the LRU–K algorithm, for varying K.  The optimal algorithm A0 which automatical-
ly keeps the maximum possible set of pool 1 pages buffer resident was also measured.

The buffer hit ratio for each algorithm was evaluated by first allowing the algorithm to reach a quasi–
stable state, dropping the initial set of 10.N1 references, and then measuring the next  T = 30.N1 refer-
ences.  If the number of such references finding the requested page in buffer is given by h, then the
cache hit ratio C is given by:

C  =  h / T

In addition to measuring cache hit ratios, the two algorithms LRU–1 and LRU–2 were also compared
in terms of their cost/performance ratios, as follows.  For a given N1, N2 and buffer size B(2), if
LRU–2 achieves a cache hit ratio C(2), we expect that LRU–1 will achieve a smaller cache hit ratio.
But by increasing the number of buffer pages available, LRU–1 will eventually achieve an equiva-
lent cache hit ratio, and we say that this happens when the number of buffer pages equals B(1).  Then
the ratio B(1)/B(2), of buffer sizes which give the same effective hit ratio, is a measure of comparable
buffering effectiveness of the two algorithms.  We expect that  B(1)/B(2) > 1.0, and a value of 2.0, for
example, indicates that while LRU–2 achieves a certain cache hit ratio with B(2) buffer pages,
LRU–1 must use twice as many buffer pages to achieve the same hit ratio.

The results of this simulation study are shown in Table 4.1, where N1 = 100 and N2 = 10,000.� � � � �
� � � � �       B

� � � � �
� � � � �   LRU–1

� � � �
� � � �   LRU–2

� � � � �
� � � � �   LRU–3

� � � � �
� � � � �A0

� � � � �
� � � � �B(1)/B(2)� � � � �

� � � � �60

� � � � �
� � � � �0.14

� � � �
� � � �0.291

� � � � �
� � � � �0.300

� � � � �
� � � � �0.300

� � � � �
� � � � �2.3� � � � �

� � � � �
80

� � � � �
� � � � �

0.18

� � � �
� � � �

0.382

� � � � �
� � � � �

0.400

� � � � �
� � � � �

0.400

� � � � �
� � � � �

2.6
� � � � �
� � � � �

100

� � � � �
� � � � �

0.22

� � � �
� � � �

0.459

� � � � �
� � � � �

0.495

� � � � �
� � � � �

0.500

� � � � �
� � � � �

3.0
� � � � �
� � � � �

120

� � � � �
� � � � �

0.26

� � � �
� � � �

0.496

� � � � �
� � � � �

0.501

� � � � �
� � � � �

0.501

� � � � �
� � � � �

3.3
� � � � �
� � � � �
� � � � �140

� � � � �
� � � � �
� � � � �0.29

� � � �
� � � �
� � � �0.502

� � � � �
� � � � �
� � � � �0.502

� � � � �
� � � � �
� � � � �0.502

� � � � �
� � � � �
� � � � �3.2

� � � � �
� � � � �
� � � � �160

� � � � �
� � � � �
� � � � �0.32

� � � �
� � � �
� � � �0.503

� � � � �
� � � � �
� � � � �0.503

� � � � �
� � � � �
� � � � �0.503

� � � � �
� � � � �
� � � � �2.8� � � � �

� � � � �180
� � � � �
� � � � �0.34

� � � �
� � � �0.504

� � � � �
� � � � �0.504

� � � � �
� � � � �0.504

� � � � �
� � � � �2.5� � � � �

� � � � �200
� � � � �
� � � � �0.37

� � � �
� � � �0.505

� � � � �
� � � � �0.505

� � � � �
� � � � �0.505

� � � � �
� � � � �2.3� � � � �

� � � � �250
� � � � �
� � � � �0.42

� � � �
� � � �0.508

� � � � �
� � � � �0.508

� � � � �
� � � � �0.508

� � � � �
� � � � �2.2� � � � �

� � � � �300
� � � � �
� � � � �0.45

� � � �
� � � �0.510

� � � � �
� � � � �0.510

� � � � �
� � � � �0.510

� � � � �
� � � � �2.0� � � � �

� � � � �350
� � � � �
� � � � �0.48

� � � �
� � � �0.513

� � � � �
� � � � �0.513

� � � � �
� � � � �0.513

� � � � �
� � � � �1.9� � � � �

� � � � �400

� � � � �
� � � � �0.49

� � � �
� � � �0.515

� � � � �
� � � � �0.515

� � � � �
� � � � �0.515

� � � � �
� � � � �1.9� � � � �

� � � � �450

� � � � �
� � � � �0.50

� � � �
� � � �0.517

� � � � �
� � � � �0.518

� � � � �
� � � � �0.518

� � � � �
� � � � �1.8

   Table 4.1.  Simulation results of the two pool experiment, with N1 = 100, N2 = 10,000

Consider B(1)/B(2) on the top row of Table 4.1. The B(2) value corresponds to the B of that row, 60,
where we measure LRU–2 having a cache hit ratio of 0.291;  to achieve the same cache hit ratio with
LRU–1 requires approximately 140 pages (therefore B(1) = 140), and so 2.3 = 140/60. LRU–2 out-
performs LRU–1 by more than a factor of 2 with respect to this cost/performance metric. We also
note from this experiment that the results of LRU–3 are even closer to those of the optimum policy
A0, compared to the results of LRU–2. In fact, it is possible to prove, with stable page access patterns,
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that LRU–K approaches A0 with increasing value of K.  For evolving access patterns, however,
LRU–3 is less responsive than LRU–2 in the sense that it needs more references to adapt itself to
dynamic changes of reference frequencies.  For this reason, we advocate LRU–2 as a generally effi-
cient policy. The general LRU–K with K > 2, could be of value for special applications, but this re-
quires further investigation.

For readers who feel that pools of 100 pages and 10,000 pages, as well as a buffer count B in the range
of 100 are unrealistically small for modern applications, note that the same results hold if all page
numbers, N1, N2 and B are multiplied by 1000.  The smaller numbers were used in simulation to save
effort.

4.2 Zipfian Random Access Experiment

The second experiment investigated the effectiveness of LRU–K for a single pool of pages with
skewed random access. We generated references to N = 1000 pages (numbered 1 through N) with a
Zipfian distribution of reference frequencies; that is, the probability for referencing a page with page
number less than or equal to i is (i / N) log α / log β with constants α and β between 0 and 1 [CKS,
KNUTH, p. 398]. The meaning of the constants α and β is that a fraction α of the references accesses
a fraction β of the N pages (and the same relationship holds recursively within the fraction β of hotter
pages and the fraction 1–β of colder pages). Table 4.2 compares the buffer hit ratios for LRU–1,
LRU–2, and A0 at different buffer sizes, as well as the equi–effective buffer size ratio B(1)/B(2) of
LRU–1 versus LRU–2 for α = 0.8 and β = 0.2 (i.e., 80–20 skew).� � � �

� � � �      B

� � � � �
� � � � � LRU–1

� � � �
� � � � LRU–2

� � � � �
� � � � �   A0

� � � �
� � � �B(1)/B(2)� � � �

� � � �40

� � � � �
� � � � �0.53

� � � �
� � � �0.61

� � � � �
� � � � �0.640

� � � �
� � � �2.0� � � �

� � � �60

� � � � �
� � � � �0.57

� � � �
� � � �0.65

� � � � �
� � � � �0.677

� � � �
� � � �2.2� � � �

� � � �80

� � � � �
� � � � �0.61

� � � �
� � � �0.67

� � � � �
� � � � �0.705

� � � �
� � � �2.1� � � �

� � � �
100

� � � � �
� � � � �

0.63

� � � �
� � � �

0.68

� � � � �
� � � � �

0.727

� � � �
� � � �

1.6
� � � �
� � � �

120

� � � � �
� � � � �

0.64

� � � �
� � � �

0.71

� � � � �
� � � � �

0.745

� � � �
� � � �

1.5
� � � �
� � � �

140

� � � � �
� � � � �

0.67

� � � �
� � � �

0.72

� � � � �
� � � � �

0.761

� � � �
� � � �

1.4
� � � �
� � � �

160

� � � � �
� � � � �

0.70

� � � �
� � � �

0.74

� � � � �
� � � � �

0.776

� � � �
� � � �

1.5
� � � �
� � � �
� � � �180

� � � � �
� � � � �
� � � � �0.71

� � � �
� � � �
� � � �0.73

� � � � �
� � � � �
� � � � �0.788

� � � �
� � � �
� � � �1.2� � � �

� � � �200
� � � � �
� � � � �0.72

� � � �
� � � �0.76

� � � � �
� � � � �0.825

� � � �
� � � �1.3� � � �

� � � �300
� � � � �
� � � � �0.78

� � � �
� � � �0.80

� � � � �
� � � � �0.846

� � � �
� � � �1.1� � � �

� � � �500
� � � � �
� � � � �0.87

� � � �
� � � �0.87

� � � � �
� � � � �0.908

� � � �
� � � �1.0

Table 4.2.  Simulation results of random access with Zipfian frequencies (N=1000)

As in the two pool experiment of Section 4.1, LRU–2 achieved significant improvements in terms of
the hit ratio at a fixed buffer size and also in terms of the cost/performance ratio.  Compared to the
results of Section 4.1, the gains of LRU–2 are a littler lower, because the skew of this Zipfian random
access experiment is actually milder than the skew of the two pool experiment.  (The two pool work-
load of Section 4.1 roughly corresponds to α = 0.5 and β = 0.01;  however, within the β and 1–β
fractions of pages, the references are uniformly distributed.)

4.3 OLTP Trace Experiment

The third experiment was based on a one–hour page reference trace of the production OLTP system
of a large bank. This trace contained approximately 470,000 page references to a CODASYL data-
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base with a total size of 20 Gigabytes. The trace was fed into our simulation model, and we compared
the performance of LRU–2, classical LRU–1, and also LFU. The results of this experiment, hit ratios
for different buffer sizes B and the equi–effective buffer size ratio B(1)/B(2) of LRU–1 versus
LRU–2, are shown in Table 4.3.

LRU–2 was superior to both LRU and LFU throughout the spectrum of buffer sizes. At small buffer
sizes (≤ 600), LRU–2 improved the buffer hit ratio by more than a factor of 2, compared to LRU–1.
Furthermore, the B(1)/B(2) ratios in this range of buffer sizes show that LRU–1 would have to in-
crease the buffer size by more than a factor of 2 to achieve the same hit ratio as LRU–2.

� � � �
� � � �     B

� � � �
� � � � LRU–1

� � � � �
� � � � � LRU–2

� � � �
� � � �  LFU

� � � � �
� � � � �B(1)/B(2)� � � �

� � � �100
� � � �
� � � �0.005

� � � � �
� � � � �0.07

� � � �
� � � �0.07

� � � � �
� � � � �4.5� � � �

� � � �200
� � � �
� � � �0.01

� � � � �
� � � � �0.15

� � � �
� � � �0.11

� � � � �
� � � � �3.25� � � �

� � � �300
� � � �
� � � �0.02

� � � � �
� � � � �0.20

� � � �
� � � �0.15

� � � � �
� � � � �3.0� � � �

� � � �400
� � � �
� � � �0.06

� � � � �
� � � � �0.23

� � � �
� � � �0.17

� � � � �
� � � � �2.75� � � �

� � � �500

� � � �
� � � �0.09

� � � � �
� � � � �0.24

� � � �
� � � �0.19

� � � � �
� � � � �2.4� � � �

� � � �600

� � � �
� � � �0.13

� � � � �
� � � � �0.25

� � � �
� � � �0.20

� � � � �
� � � � �2.16� � � �

� � � �800

� � � �
� � � �0.18

� � � � �
� � � � �0.28

� � � �
� � � �0.23

� � � � �
� � � � �1.9� � � �

� � � �1000

� � � �
� � � �0.22

� � � � �
� � � � �0.29

� � � �
� � � �0.25

� � � � �
� � � � �1.6� � � �

� � � �1200

� � � �
� � � �0.24

� � � � �
� � � � �0.31

� � � �
� � � �0.27

� � � � �
� � � � �1.66� � � �

� � � �
1400

� � � �
� � � �

0.26

� � � � �
� � � � �

0.33

� � � �
� � � �

0.30

� � � � �
� � � � �

1.5
� � � �
� � � �

1600

� � � �
� � � �

0.29

� � � � �
� � � � �

0.34

� � � �
� � � �

0.31

� � � � �
� � � � �

1.5
� � � �
� � � �

2000

� � � �
� � � �

0.31

� � � � �
� � � � �

0.36

� � � �
� � � �

0.33

� � � � �
� � � � �

1.3
� � � �
� � � �
� � � �3000

� � � �
� � � �
� � � �0.38

� � � � �
� � � � �
� � � � �0.40

� � � �
� � � �
� � � �0.39

� � � � �
� � � � �
� � � � �1.1� � � �

� � � �5000
� � � �
� � � �0.46

� � � � �
� � � � �0.47

� � � �
� � � �0.44

� � � � �
� � � � �1.05

Table 4.3.  Simulation results of the OLTP trace experiment

The performance of LFU was surprisingly good. The LFU policy to keep the pages with the highest
reference frequency is indeed the right criterion for stable access patterns. However, the inherent
drawback of LFU is that it never “forgets” any previous references when it compares the priorities of
pages; so it does not adapt itself to evolving access patterns. For this reason, LFU performed still
significantly worse than the LRU–2 algorithm, which dynamically tracks the recent reference fre-
quencies of pages. Note, however, that the OLTP workload in this experiment exhibited fairly stable
access patterns. In applications with dynamically moving hot spots, the LRU–2 algorithm would
outperform LFU even more significantly.

At large buffer sizes (≥ 3000), the differences in the hit ratios of the three policies became insignifi-
cant. So one may wonder if the superiority of LRU–2 at small buffer sizes is indeed relevant. The
answer to this question is in the characteristics of the OLTP trace (which is probably quite typical for
a large class of application workloads). The trace exhibits an extremely high access skew for the hot-
test pages: for example, 40% of the references access only 3% of the database pages that were ac-
cessed in the trace. For higher fractions of the references, this access skew flattens out: for example,
90% of the references access 65% of the pages, which would no longer be considered as heavily
skewed. An analysis of the trace showed that only about 1400 pages satisfy the criterion of the Five
Minute Rule to be kept in memory (i.e., are re–referenced within 100 seconds, see Section 2.1.2).
Thus, a buffer size of 1400 pages is actually the economically optimal configuration. There is no
point in increasing the buffer size to keep additional pages once locality flattens out. The LRU–2
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algorithm keeps this pool of 1400 hot pages memory resident, at a memory cost of only two thirds of
the cost of the classical LRU algorithm (i.e., B(1)/B(2) = 1.5 for B=1400).

5.  Concluding Remarks

In this paper we have introduced a new database buffering algorithm named LRU–K.  Our simula-
tion results provide evidence that the LRU–K algorithm has significant cost/performance advan-
tages over conventional algorithms like LRU, since LRU–K can discriminate better between fre-
quently referenced and infrequently referenced pages.  Unlike the approach of manually tuning the
assignment of page pools to multiple buffer pools, our algorithm is self–reliant in that it does not
depend on any external hints.  Unlike the approaches that aim to derive hints to the buffer manager
automatically from the analysis of query execution plans, our algorithm considers also inter–trans-
action locality in multi–user systems.  Finally, unlike LFU and its variants, our algorithm copes well
with evolving access patterns such as moving hot spots.

One of the new concepts of our approach is that page history information is kept past page residence.
But clearly this is the only way we can guarantee that a page referenced with metronome–like regu-
larity at intervals just above its residence period will ever be noticed as referenced twice.  It is an open
issue how much space we should set aside for history control blocks of non–resident pages.  While
estimates for an upper bound can be derived from workload properties and the specified Retained
Information Period, a better approach would be to turn buffer frames into history control blocks dy-
namically, and vice versa.

The development of the LRU–K algorithm was mostly motivated by OLTP applications, decision–
support applications on large relational databases, and especially combinations of these two work-
load categories.  We believe, however, that the potential leverage of our algorithm may be even high-
er for non–conventional engineering and scientific databases.  The reason is that buffer management
for such applications is inherently harder because of the higher diversity of access patterns.  The page
pool tuning approach outlined in Section 1 is clearly infeasible for this purpose.  The approaches that
derive buffer manager hints from the analysis of query execution plans are questionable, too, for the
following reason.  Non–conventional database applications of the mentioned kind will probably
make heavy use of user–defined functions, as supported by object–oriented and extensible database
systems.  Unlike relational queries, the access patterns of these user–defined functions cannot be
pre–analyzed if the functions are coded in a general–purpose programming language (typically, in
C++).  Thus, advanced applications of post–relational database systems call for a truly self–reliant
buffer management algorithm.  The LRU–K algorithm is such a self–tuning and adaptive buffering
algorithm, even in the presence of evolving access patterns.  We believe that LRU–K is a good candi-
date to meet the challenges of next–generation buffer management.
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