
The Design of PIRS, a Peer-to-peer Information

Retrieval System

Wai Gen Yee and Ophir Frieder

Database and Information Retrieval Laboratory
Department of Computer Science
Illinois Institute of Technology

Chicago, IL 60616
yee@iit.edu, ophir@ir.iit.edu

Abstract. In this paper, we describe the design of PIRS, a peer-to-
peer information retrieval system. PIRS satisfies many of the goals of
P2P computing in a way that other P2P IR systems do not: It does not
require the centralization of data onto specially designated peers, and is
therefore applicable to a larger application environment. We explain our
design decisions, analyzing their potential benefits and shortcomings. We
then demonstrate PIRS’s search performance via simulation.

1 Introduction

Many of today’s peer-to-peer (P2P) file sharing systems were initially conceived
as successors to Napster, which was used primarily for the exchange of music. As
such, they are designed to allow simple annotation of files, including the artist
and song title.

As long as a file’s metadata are well-known, searches are simple. A query
matches a file if its terms are substrings of the metadata’s terms. For example, a
query “Pumpkins” will return a file annotated by “Smashing Pumpkins 1979.”
However, even though the song, 1979, is one of Smashing Pumpkins greatest
hits, the alternative query “Smashing Pumpkins Greatest Hits” will not return
that file.

The problem described above illustrates a limitation of P2P search: It requires
the user to know the exact metadata associated with the file in order to perform
a successful search. This is problematic for the naive user, who is unaware of
annotation conventions, or for a user not looking for a particular song, but for a
particular type of music (e.g., “songs from bands from Chicago”). This problem
is exacerbated by the fact that many song files are automatically annotated
using Web databases, such as freedb.org. Such annotation results in the identical
annotation of all copies of a particular song, and gives users disincentives to make
their own annotations.

The goal of this paper is to describe how information retrieval (IR) can help
alleviate this problem in a P2P environment. In our analysis, we spend some time
describing the characteristics of P2P systems, and the degree to which existing



P2P systems possess them in Section 2. In Section 3, we informally describe the
P2P file sharing model. We describe the design of PIRS, our P2P IR System,
in Section 4, and then discuss its pros and cons compared with other P2P IR
systems in Section 5. We describe our PIRS system simulator and present some
experimental results in Section 6. We make concluding remarks about the work
presented in this paper, and discuss the future of P2P IR in Section 7.

2 Limits of Current Work in P2P Information Retrieval

2.1 Characteristics of P2P Systems

As described in [1], P2P systems are characterized by low maintenance over-
head, improved scalability and reliability, synergistic performance, increased au-
tonomy, privacy, and dynamism. P2P systems are inexpensive to maintain and
have good scalability because they use the full resources of all participants, who
function as both clients and servers. They are more reliable, because the fail-
ure of any one peer does not disable the entire system. They offer synergistic
performance because peers can utilize resources (e.g., data, CPU cycles, disk
space) that are underutilized by others. They are dynamic, allowing peers to
autonomously join and leave the system, and thereby changing the types of
resources offered. They offer privacy because P2P networks lack central authen-
tication servers. P2P systems are therefore ideal in environments populated by
many autonomous users with dynamic needs and surplus resources.

These characteristics distinguish P2P systems from previous technologies,
such as distributed computing, and ad-hoc communication. Distributed com-
puting refers to computing on a platform where resources are located on many
physically distinct platforms. Unlike P2P systems, these resources may be highly
integrated and interdependent. Ad-hoc communication refers to a communica-
tion platform in which a client can automatically join an existing network. Ad-
hoc networking deals with the lower-level communication infrastructure on which
P2P systems can be built. P2P computing is therefore a unique paradigm that
creates new possibilities for information technologies.

2.2 The Limits of Information Retrieval Using Web Search Engines

The Internet offers a medium by which everyone can easily gather, and share
information. Today, the dominant paradigm for sharing information is via the
Web. Organizations set up Web servers that host Web sites where they can pub-
lish information. Individuals also have a chance to publish information through
personal Web pages or blog pages. To access this information, users simply type
in the appropriate URL into a Web browser.

There is a gap, however, in bringing together information publishers and
consumers–how exactly does one find the appropriate URL that points to desired
information? Today, this gap is bridged by Web search engines, such as Google.
A consumer enters some relevant terms into Google, which returns heuristically-
defined best matches.



The problem with relying on Google to find published data is that publishers
must wait for Google to crawl their Web pages before they appear in any search
results. Because crawling occurs only periodically, material published today will
not be found for some time. Another problem is that Google caches indexed
content. Once this happens, publishers lose control over the dissemination of
their material [2]. Furthermore, the results returned by search engines can be
suspect. For example, rankings can be influenced by commercial interests [3].
Finally, centralizing query services limits the scalability and reliability of the
search engine: A single server can only index so much content (Google claims to
index 4 billion Web pages, which is considered a small fraction of those available),
and also is a single point of failure. A more relevant example is Napster, whose
centralized architecture made it easy prey for legal attacks.

Recent P2P file sharing systems that focus on file transfer, such as BitTorrent
[4] suffer from the same problems as Web search engines. BitTorrent is different
from Gnutella in that the former focuses on download performance, whereas
the latter focuses on search. BitTorrent allows a client to download a single
file from multiple sources simultaneously, thereby improving performance, and
distributing load. However, it relies on Web search engines to provide search
capabilities for shared content, and therefore has all the problems discussed
above.

P2P systems solve many of these problems. Because queries are sent directly
to data sources, results are up-to-date and reflect the currently available data.
Upon receipt of results, the peer can use custom algorithms to rank them. This
eases their perusal as users have more trust in their rankings. Finally, there is
no single point of failure with P2P systems. A query likely returns results even
with the failures of multiple nodes [5].

2.3 Current Peer-to-peer Information Retrieval Systems and their

Limits

Work on P2P information systems has focused on either bandwidth efficiency,
or the development of unifying data models. The PeerSearch system [6] is built
on top of the CAN routing infrastructure [7]. CAN places content in a P2P
network based on its hash value. PeerSearch proposes to create a distributed
index, which is partitioned and similarly placed on a network. This deterministic
placement of content improves bandwidth efficiency by constraining the way a
query is routed. (The original version of Gnutella, in contrast, floods queries
over the network [8].) In [9], the authors take a similar approach. They assume a
hybrid networking architecture where some the peers that have been deems more
reliable and capable act as servers. These servers, besides routing queries, also
store metadata statistics, such as term frequencies, that are used by traditional
IR algorithms.

Other systems, such as Edutella [10] and PeerDB [11] propose data models
that standardize the way data and services are published and queried.

While these systems have much potential, they are limited due to the con-
straints that they put on the infrastructure and applications. The PeerSearch



system works best in an environment where peers are reliably connected to
the Internet. This is necessary because shared content is centralized in certain
peers based on their hash values. The loss of a peer results in the loss of all its
associated content. Furthermore, it takes control of data placement out of the
users’ hands. These characteristics violate the principles of P2P systems that are
described in Section 2.1. A solution to this problem is to replicate content by ap-
plying multiple hash functions on content. This is problematic as well, because it
increases both the amount of data every peer must maintain and network traffic
as well. Notably, no work we know of has been done on P2P information retrieval
in highly environments where peers frequently join and leave the network.

Edutella and PeerDB focus more on standards than on information retrieval.
Standardization, however, tends to raise the bar for entry into a network because
it forces users to do more work to publish content. This has the effect of limiting
the amount of data that are published, thereby reducing the network’s overall
usefulness [12].

Note that it is not our goal to be purist in P2P system design. The success
of Napster (in terms of market impact and user satisfaction) demonstrates that,
under certain conditions, there is no need. At the same time, pure P2P systems
were shown to have scalability problems [13], which can be alleviated by the
use of a hybrid architecture [14]. However, the fact that a system works without
being purely P2P does not mean that it might not work better if it were so.

3 Model

In a typical file sharing model, each peer (which we may refer to as a client
or a server, depending on the context) maintains a set of shared files. Each file
is annotated with metadata terms. The particular terms associated with each
instance of a file (the file’s metadata set) is user-tunable.

Users create queries in order to find files in the P2P system. A query consists
of terms that a user thinks best describe a file. These queries are routed to reach-
able peers. (Queries generally do not reach all peers due to network conditions
or details of the routing protocol.) Returned are pointers to instances of files
that match the query, and the file’s metadata set. The matching criterion is for
all the query terms to be substrings of some term of the file’s metadata set.

Users study the returned metadata sets to decide on the file to download.
Once the user makes her selection, she downloads the file by selecting its asso-
ciated file pointer. The client follows the pointer, downloads the file, and then
becomes a server for an instance of that file.

Note that although the discussion in this paper uses music file sharing as
an application, it also applies to other applications. For example, an HTML
document is also a file that can analogously be annotated with metadata in the
form of META tags. The terms in the META tags can be tuned independent of the
“content” of the HTML document.



4 The Design of PIRS

4.1 Goals

Our goal is to design a P2P IR system that focuses on client behavior and is fully
distributed. The system must make little or no assumptions about the underly-
ing communication infrastructure and the behavior of servers (i.e., other peers).
For example, CAN routing and PeerSearch (mentioned above in Section 2) tac-
itly assumes that the network is stable and servers are reliable. Consequently,
although these systems have potentially excellent performance, violating either
of these assumptions results in the loss of either queries or data. In this light,
these systems tend to fall somewhat between the categories of distributed and
P2P systems.

A system that does not make assumptions about the communication infras-
tructure and behavior of peers avoids these problems. The obvious questions to
ask therefore are:

1. How well would such a P2P IR system work? For example, IR requires global
statistics about the available data for effective ranking. In a highly dynamic
environment, such statistics are hard to yield. Furthermore, even if such data
were available, would it be possible to implement IR ranking algorithms in a
P2P application? The question here is about performance in terms of query
result quality as well as computational complexity.

2. Could such a system adapt to changes in system conditions? Making no as-
sumptions in designing a P2P system may be too conservative an approach.
In some cases, the network and peers are capable and reliable. Can the P2P
system take advantage of this condition, if available? Gnutella’s Ultrapeer
architecture demonstrates adaptability; it conserves bandwidth given a sta-
ble environment, but also works (albeit less efficiently) in an unstable one
[14].

Our goal is to answer these two questions. To do this, we describe the design
of the PIRS P2P IR system. In doing this, we will highlight the complexities of
applying IR techniques to a P2P environment.

4.2 Overview

PIRS is designed to combine the search capabilities of information retrieval sys-
tems with the dynamic network management of P2P systems. It works by man-
aging metadata in such a way as to gradually increase the variety of queries that
can be answered for a given file. This is done by adapting the annotation of
a particular file to match query patterns. PIRS accomplishes its goals in three
ways:

1. Metadata collection (Section 4.3) - Collect as much metadata as possible for
a file, using various means. Increasing the amount of metadata increases the
likelihood that a query will find matches.



2. Metadata distribution (Section 4.4) - Heuristically replicate metadata from
other peers for a given file. By sharing metadata from multiple peers, the
variety of queries that can be matched for a given file increases.

3. Metadata use (Section 4.5) - Utilize IR techniques to rank results, disam-
biguating them, and thereby improving the likelihood of a correct download.

The processes of metadata collection, distribution, and use work together
to improve the search capabilities of PIRS. Ostensibly, they can work indepen-
dently to improve search, but with diminished benefits. For example, IR ranking
techniques alone can be incorporated into Gnutella, without PIRS’s metadata
distribution techniques.

By design, PIRS is simple to incorporate into many existing P2P protocols.
This is a consequence of its functionality being concentrated on client behav-
ior, and its independence from networking infrastructure. Many existing P2P
protocols focus on aspects of query routing, which is independent of PIRS’s
functionality. Consequently, PIRS can be built on top of many of today’s popu-
lar P2P file sharing applications, such as Gnutella and FastTrack. We will discuss
this in more detail in Section 5.

PIRS Versus Other P2P IR Systems The major difference between PIRS
and other P2P IR systems is that PIRS treats metadata as a dynamic resource
that should be managed collectively by all peers. Effective management of meta-
data improves query result quality. The inspiration of this work stems from the
notion that, from a client’s perspective, the P2P network is a repository of files,
each of which is described collectively by a body of metadata. The better a file’s
body of metadata describes the file, the easier the file should be to find.

Current P2P IR systems do not have this perspective. They treat each down-
load as an individual transaction, without regard to how it (the download) af-
fects the file’s body of metadata. The download of a file generally also results in
the replication of that file’s metadata from a particular server. The downloading
client becomes a server for the file, but with marginal benefit, because the clients
it serves are exactly those which the original server serves. The new server’s role
in the network is largely redundant.

4.3 Metadata Collection

Metadata collection the process by which a file is annotated with identifying
terms. In this section, we describe how metadata collection is typically done in
commercial P2P systems. We also describe a unit of metadata that PIRS exploits
for good performance.

Metadata terms are directly used for query matching. It is therefore im-
portant to build into PIRS effective means of annotating files. One of these
means include creating an easy to use user interface, which encourages users to
add metadata. Other means include automatic, user automatic annotation and
metadata foraging.



Recent versions of P2P file sharing systems offer templates that help a user
annotate certain types of files, such as audio files, using special application-
specific fields [15]. These templates structure metadata, potentially increasing
the query matching possibilities.

Much metadata are also automatically foraged from Internet sources. For
example, when wav files are ripped from commercial compact disks, the rip-
ping software automatically collects ID3 metadata (e.g., title, artist) [16] for
it from Web sites such as freedb.org. Other metadata are intrinsic to the file.
Such metadata include the size of the file, its filename, and the last time it was
accessed. Making these metadata available for querying requires some simple
programming.

Finally, some systems automatically derive useful metadata from the actual
file. BitTorrent, for example, generates a unique hash key for each file, which can
simplify its search and be a means of validating the file’s contents [4]. A hash
key can also be used to group files that are returned by queries.

PIRS uses a file’s hash key for validating and grouping files. Such use of
the hash key has not been universally adopted. LimeWire’s Gnutella groups by
filename, file type, and file size [17]. BearShare and eDonkey only use hash keys
to authenticate files.

One problem with requiring all files to be annotated with a hash key is its
computational cost. This problem has been acknowledged by BearShare, which
claims that computing keys in a background process takes only 25% of a CPU’s
cycles [18]. Hash keys can also be computed while a file is being downloaded,
extracted (if it is compressed), or ripped. Piggybacking these processes amortizes
the cost of computing the hash key.

Maintaining a hash key for files also does not hurt PIRS’s compatibility with
existing P2P file sharing systems. It would be treated as another generic unit
of metadata by a peer that did not realize its significance.

4.4 Metadata Distribution

Collected metadata for a file on each node on which it is replicated constitutes
a collective body of metadata for that file. The larger and more descriptive
this body of metadata, the more likely a query will result in relevant results.
Metadata collection alone, however, must be supplemented with good metadata
distribution techniques.

There are two reasons for this. First of all, if metadata are not distributed,
then the system becomes vulnerable. If all metadata are concentrated on a sin-
gle peer (e.g., as with Napster), the system becomes unusable if this peer is
unreachable. This vulnerability violates a basic principle of P2P systems.

Second, data that are not distributed properly could leave correlations in
term occurrences, which limit the degree of query matching. For example, assume
there are two metadata ripping systems for song files: one extracts the album
name and the song’s track number, and the other extracts the album’s label and
year. If files were only annotated using one of these two rippers, then a query



containing an album (corresponding to the first ripper) and a year (corresponding
to the second ripper) cannot be properly matched.

PIRS distributes metadata in a way that avoids the problem just described.
PIRS attempts to do three things: maximize the amount of metadata associated
with each file; remove correlations in query terms; make frequencies of a term’s
occurrence in a body of metadata reflect its frequency of occurrence in queries
for it.

In designing PIRS, we assume that there is a potentially large, but finite
set of terms associated with each file. Of these terms, some are more strongly
associated with the file than are others. The stronger the term’s association, the
more likely it will appear in a query. For example, a song’s title is very strongly
associated with a song file, but the song’s publisher is less so. The aggregate
metadata distribution in a P2P system should reflect this tendency in order to
improve query matching.

Metadata distribution occurs during queries that are followed by downloads.
The first step in this process is to group the query results (including their meta-
data sets and pointers) by hash key. The user browses the groups of metadata
to select the file for download. Because the selected group may contain a large
set of metadata, the user may only select a subset of the metadata. This refer
to the selection as metadata distribution. We consider five ways of distributing
metadata:

– Server terms (trad) - The client selects the metadata that exist on the single
server from which it downloads. This is the solution that is commonly used
in today’s P2P file sharing systems. It is notable for its simplicity.

– Most frequent terms in the group (mfreq) - The client selects the terms
that occur most frequently in the group. The justification for this approach
stems from the assumption that, because these terms appear so much, they
are strongly associated with the file, and therefore most likely to occur in
queries.

– Least frequent terms (lfreq) - The client selects the terms that occur least
frequently in the group. The usefulness of this approach is that these terms
help distinguish this file from others. It also balances out the term distribu-
tion.

– Random terms (rand) - The client randomly selects terms from the group,
maximizing the number of term combinations.

– Random terms based on freq (randfreq) - The client randomly selects terms
from the group weighting more frequently occurring terms proportionately
higher. Like rand, this technique also increases the number of term combi-
nations, but gives preference to more commonly occurring terms.

In the last four techniques, mfreq, lfreq, rand, and randfreq, the client
selects as many metadata terms as it can for each file.

4.5 Metadata Use

By judiciously distributing metadata, the client increases the variety of metadata
combinations that exist in the network. This has the effect of increasing the



variety of queries that can be satisfied and the number of results returned per
query. This increases the amount of work the user must do to find the correct
file. Ranking lightens this burden by speeding up the time required to find the
correct file.

Good ranking is also important in keeping the body of metadata for each file
correct. A poor ranking function may induce a user to download the incorrect
file, and then misannotate it with terms that are meant for the intended file.
This incorrect metadata may mislead other peers, leading to further incorrect
metadata.

We consider five ranking techniques. Some of these techniques are classical
IR techniques, and some are unique to P2P file sharing:

– Group size (GS) - The number of results in a group. A large GS indicates
that either a particular file has large support for satisfying a query, or that
the file is generally popular, and is therefore something desirable anyway.

– Term frequency (TF) - Counting the number of times query terms appear
in a file’s metadata. Terms that occur frequently in metadata sets likely
represent the contents of the file.

– Precision (prec) - Dividing TF by the total number of terms in the group.
Precision adjusts for problems with TF caused by large metadata sets.

– Inverse term frequency (ITF) - Starting with TF, but weighting each term
by the inverse of its frequency in the set of results. Less frequent terms get
more weight, because they are assumed to be better discriminators of a file’s
content.

These algorithms may be used by PIRS with some modification. For example,
GS, TF and precision are straightforward ranking techniques. ITF (based on idf

ranking [19]) should use global instead of local knowledge about term frequencies,
but global knowledge is unavailable to any individual peer. ITF may also be
computationally expensive. Other ranking techniques, such as PageRank [20]
are inapplicable to the P2P environment due to the lack of hyperlinks.

4.6 Implementation Issues

One of the characteristics of P2P file sharing systems is that results of user
queries arrive asynchronously. This is a consequence of the distributed, inde-
pendent, and heterogeneous nature of the data sources. A peer can vary in
its location, computational capability, network connectivity, and so on. Results
therefore arrive over a period of time. In LimeWire’s implementation of Gnutella,
this period is about three minutes, after which further results are ignored.

Results are displayed to the user as they arrive. This is an interface design
decision that gives the user feedback on the progress of the query. It also al-
lows the user to pick a file to download as soon as she sees it displayed. These
characteristic complicates PIRS’s use of IR techniques.

To be helpful to the user, results must be organized in a reasonable manner–
not simply in the order of arrival. Specifically, similar results must first be



grouped, reducing the number of results the user must examine. The groups
must then be ranked in order to allow the user to more easily find the relevant
query.

In traditional IR, rankings are computed on static data sets, and subsets
of the resultant rankings are displayed to the user on request. This is intuitive
behavior, as one would expect all necessary information to be available to an
algorithm for it to make a decision as to the relative value of a file.

The ranking problem is slightly more complicated in the P2P case because
of the asynchronous arrival of results, the need to display results to the user in
real-time, and the lack of global statistics on data. Instead of computing a mono-
lithic set of rankings, the ranking algorithm must be able to update the current
rankings as new results arrive in a reasonable time. The resultant rankings may
also be spurious due to the fact that no global statistics are available (as we will
discuss below).

LimeWire’s implementation of Gnutella is very popular. We therefore use it
ranking and grouping technique as a model, comparing to it the performance of
PIRS. LimeWire performs grouping using filename, file size, and file type. The
worst-case complexity of LimeWire’s grouping algorithm is O(N2 log (N)KM),
where N is the number of results, K is a similarity metric (edit distance of two
filenames), and M is the length of the filename. Files are first sorted by size.
Files with similar sizes are checked for similarity by their filenames and file types.
LimeWire does not perform ranking [17].

PIRS’s interface displays groups of files, dynamically updating the member-
ships of these groups. As results arrive, the rank of each group changes. The
ordering of the groups in the user interface, however, does not. This is a de-
sign decision that allows the interface to maintain some stability. We consider
the automatic reordering of groups caused by updated rankings disruptive to
the user’s experience. On the other hand, the user has the option of explicitly
requesting that the groups be reordered once based on current rankings. We
will now demonstrate how PIRS grouping and ranking can be implemented in a
complexity that is comparable to that of LimeWire grouping.

As mentioned in Section 4.5, term frequency (TF) is one of the most basic
algorithms for ranking results. Its measure is the number of times a query term
occurs in metadata. The problem with this metric is that it disproportionately
weights very frequent terms. For example, the frequent term (e.g., classical for
describing music) is less indicative of content than a rare one (e.g., baroque for
describing music). Inverse term frequency (ITF) attempts to solve this problem
by dividing each term’s contribution to the rank of a group by that term’s overall
frequency over all groups [19].

There are two challenges to implementing ITF in PIRS. The first challenge is
to compensate for the lack of necessary statistics in the P2P environment. The
second is to implement it so that it efficiently handles asynchronously arriving
results, as described above.

ITF requires information on the frequencies of all terms that exist in all
metadata sets in the network in order properly function. The problem is that, in



a dynamic P2P environment, it is impossible to gather this information because
the set of available metadata is always in flux as peers join and leave the sys-
tem. Past works have claimed that precise frequency statistics are not necessary
for reasonable accuracy [9]. With this assumption, we work with the informa-
tion that is available–the metadata that accompanies the results a query–and
make estimates about term frequencies based on this asynchronously growing
metadata sample.

Incorporating ITF ranking in Limewire’s Gnutella is computationally com-
plex. Each time a result arrives, each of its metadata’s fD terms must be counted,
and the rankings of N groups must be updated. Updating a ranking for a query
term q requires updating the contribution of q to a group. This requires O(1)
work. The complexity of updating the ranking with the arrival of each result is
therefore O(fDN) times the cost of making the groups, for a total complexity
of O(N3 log (N)KMfD).

PIRS simplifies the process of grouping and ranking. As a result arrives, it
is grouped based on its hash key. This requires O(log (N)) time for each result,
or O(N log (N)) for all N of them. Each term in the result’s metadata is hashed
into a table that keeps track of its frequency in the group as well as its total
frequency. Because each term in the metadata may affect rankings, the total
complexity of updating a ranking due to the arrival of a result is O(NfD), and
the total complexity to group and rank is O(N2 log (N)fD).

We can reduce the complexity of grouping and ranking by only occasionally
updating the rankings in response to result arrival. For each query term, qi, we
wait until its frequency, fi, is 2j for some integer j ≥ 0 before updating its
contribution to a group’s rank. For example, if a query contains the term “pop,”
then we only update the ranks of groups for the 1st, 2nd, 4th, 8th, 16th, etc.,
occurrences of “pop” over all the results. If “pop” occurs a total of fi times,
then the rankings will be updated ⌈lg (fi)⌉ + 1 times instead of fi times as a
result of this term. The justification for this method is that, as fi increases, the
marginal effect of qi on the rankings decreases. Increasing fi from 1 to 2 halves
qi’s impact on rankings, but increasing fi from 2 to 3 only decreases its effect
by a factor of two-thirds.

The complexity of grouping and ranking using ITF is now significantly im-
proved. If the number of terms in the query is qT , then the average frequency
of a query term is at most f = NfD

qT

. The complexity of ranking is therefore

O(N log (N) + NfD + NqT (⌈lg (f)⌉+ 1). The first term in the expression repre-
sents the complexity of the grouping of results based on hash key (a sort opera-
tion). The second term represents the complexity of updating the frequencies of
each term. The third term represents the complexity of updating the rankings
for each of the N groups ⌈lg (f)⌉ + 1 times for for each of the qT terms.

The complexity expression contains separate terms for grouping and ranking
because these operations are independent. This complexity is clearly a signifi-
cant improvement over the unoptimized ranking algorithm that uses LimeWire
grouping. But it is also comparable to LimeWire’s grouping algorithm without
ranking.



5 Pros and Cons of PIRS’s Design

One of the features of PIRS is that its functionality is concentrated in the ap-
plication layer. Consequently, regardless of the reliability of the network and the
reachability of any one client, PIRS can function. This means that PIRS can
work with any routing protocol devised for P2P networks such as Gnutella rout-
ing. The problem with Gnutella routing is that each query floods the network.

A solution to flooding is to incorporate hash-based routing, such as CAN,
into PIRS. Each file’s metadata set (as well as user queries) is treated as a
vector, where each element represents a term’s frequency. The vector is hashed
into a key that determines its placement (routing) in the network using CAN
techniques. This is exactly what is done in PeerSearch [6]. We do not standardize
this feature in PIRS for reasons stated in Section 2.

Another feature of PIRS is that it is backward compatible with Gnutella, and
that Gnutella is forward compatible with it. This is true PIRS-specific activity
is isolated in its client behavior. Server behavior is equivalent in Gnutella and
PIRS. It can also be argued that PIRS query results are no worse that standard
Gnutella results, and that a PIRS peer does not adversely affect the performance
of Gnutella peers.

PIRS focus on application level functionality can also be a limitation. The
fact that its functionality does not make assumptions about the network means
that it may miss out on certain performance optimizations. Specifically, PIRS
performs best compared to other systems when the network is unreliable. The
question is whether PIRS can be made to work better in more stable conditions.

Analogous to how modern Gnutella networks designate some peers as Ultra-
peers to make routing more efficient, PIRS can designate some peers as statistics
servers. Statistics may be collected actively or passively, and may include rout-
ing information, query information, and information about the repositories of
nearby peers. The system described in [9] does just this for P2P information
retrieval, and we are also incorporating such functionality into future versions
of PIRS.

6 Modeling a PIRS Network

We designed a simulator that captures the behavior of a PIRS system. It simu-
lates queries and downloads from a query to the general reachable peer popula-
tion. Because PIRS makes no assumption about network capability, aside from
the fact that only a subset of peers is available at any time, it is not necessary
for our simulator to simulate a network topology. We also do not consider the
response time of the network. The user is assumed to make a decision when all
responses have arrived at the client.

We assume that a user always downloads the file that is ranked highest. By
doing this, we assume a significant role for the ranking algorithm. Related to
ranking is the ability of the user to discriminate highly ranked, yet irrelevant
results. We model this by assuming that the user can peruse all metadata asso-
ciated with a file, much in the way the modern Web search engines give a hint



at the Web site that is pointed to by using some quoted text. If the user sees
metadata that contradicts her expectation of the file (e.g., the term Madonna

for a Michael Jackson song), then she will automatically reject the file. This is
how we simulate a user’s behavior in overriding the suggestion of the computer
by using human judgment.

File-term mapping is done as described in [21]. Each file is annotated with a
set of terms from a dictionary of words associated with it, such that the overall
distribution of term frequencies of all files is Zipf. The likelihood that each file
is downloaded is also Zipf. These distributions conform to the notion that some
words naturally occur more frequently than others, and that some songs are
more popular than others. Finally, queries are constructed using terms from the
file’s dictionary.

6.1 Some Experimental Results

In these experiments, we demonstrate the effect that different metadata distri-
bution techniques have on the rate of correct downloads. We fix group size as
the ranking criterion. (Other results have been left out due to space limitations.)
There are 1000 peers and 1000 files. Each file may be annotated with an average
of 30 terms from a dictionary of 5000 terms. Queries also draw terms from the
dictionary, and have an average length of approximately two. (The exact length
distribution follows the empirical distribution reported in [22].) The likelihood
that a peer is reachable is 0.5. These values conform to the patterns observed in
[23, 24].

0

500

1000

1500

2000

2500

3000

1 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of Queries

S
uc

ce
ss

fu
l Q

ue
rie

s

trad
randfreq
rand
mfreq
lfreq

Fig. 1. Number of Successful Queries vs. Number of Queries.

The results shown in Figure 1 results are averages over five trials. They in-
dicate that the random distribution of metadata outperforms all others by a
significant margin. Random effectively increases the variety of metadata sets,
and, due to the matching criterion, skews term frequecies toward terms that ap-
pear in queries. Lfreq and mfreq have a marginal effect, because they annotate



new replicas with either terms that seldom occur in queries (lfreq) or with terms
that do not distinguish a file (mfreq). Trad fails because it does not increase
the variety of metadata sets. Randfreq performs fairly, but, due to interaction
with the matching criterion, overskews the overall distribution of terms for a file.

7 Conclusion

In this paper, we analyzed various methods of finding data in a P2P network: a
P2P file sharing system; a Web search engine; and research systems in P2P IR.
For one reason or another, each has a weakness due to its naive design, or the
centralization of query processing or other components. These weaknesses limit
their applicability in truly general, dynamic environments.

In response, we describe PIRS, which does not exhibit the weaknesses sug-
gested above. Its functionality is centralized in the application level of the client,
making few assumptions about the network layer or the behavior of its peers. It
works by judiciously managing and using metadata that annotate the results of
queries. This design is arguably more practical.

The question is whether it yields acceptable performance in terms of result
quality. We showed by simulation that PIRS can improve the success of queries by
over 30% compared with an ordinary P2P file sharing system, such as Gnutella.

7.1 The Outlook for Peer-to-Peer Information Retrieval

Industry trends seem to indicate that P2P information retrieval will be a strate-
gic technology in the near future. Google is currently working on Puffin, a desk-
top search tool that helps users find information stored on their desktops [25].
Whether or not this is a counterattack to Microsoft’s Longhorn [26] strategy, it
signals a new focus on harnessing the information stored on desktops.

P2P file sharing has been a consistently active Internet activity for the last
several years. This condition shows no sign of weakening, despite recent legal
actions by the recording industries [27]. As the user base and variety of P2P ap-
plications grows, PIRS and other P2P search tools will only gain in significance.

References

1. Milojicic, D.S., Kalogeraki, V., Lukose, R., Nagaraja, K., Pruyne, J., Richard, B.:
Peer-to-peer computing. Technical Report HPL-2002-57, Hewlitt-Packard Labora-
tories, Palo Alto (2002)

2. Noguchi, Y.: Online search engines help lift cover of privacy. Washington Post
(2004) Feb. 9, 2004.

3. Hansell, S.: Yahoo to charge for guaranteeing a spot on its index. New York Times
(2004) Mar. 2, 2004.

4. Cohen, B.: Bittorrent home page. (Web Document) bitconjurer.org/BitTorrent.
5. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature

393 (1998)



6. Tang, C., Xu, Z., Dwarkadas, S.: Peer-to-peer information retrieval using self-
organizing semantic overlay networks. In: Proc. ACM SIGCOMM. (2003)

7. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-
addressable network. In: Proc. ACM SIGCOMM. (2001)

8. LimeWire, LLC: Gnutella protocol 0.4. Web Document (2004)
www9.limewire.com/developer/gnutella protocol 0.4.pdf.

9. Lu, J., Callan, J.: Content-based retrieval in hybrid peer-to-peer networks. In:
Proc. ACM Conf. on Information and Knowledge Mgt. (CIKM). (2003) 199–206

10. Nejdl, W., Wolf, B., Qu, C., Decker, S., Sintek, M., Naeve, A., Nilsson, M., Palmr,
M., Risch, T.: Edutella: A p2p networking infrastructure based on rdf. In: Proc.
World Wide Web Conf. (2002)

11. Ng, W., Ooi, B.C., Tan, K., Zhou, A.: Peerdb: A p2p-based system for distributed
data sharing. In: Proc. IEEE Intl. Conf. on Data Eng. (ICDE). (2003)

12. Google, I.: Simplicity and enterprise search. Technical report, Google, Inc. (2003)
13. Ritter, J.: Why gnutella can’t scale. no, really. Web Document (2001)

www.darkridge.com/∼jpr5/doc/gnutella.html.
14. Singla, A., Rohrs, C.: Ultrapeers: Another step towards

gnutella scalability. Technical report, Limewire, LLC (2002) rfc-
gnutella.sourceforge.net/src/Ultrapeers 1.0.html.

15. Thadani, S.: Meta information searches on the gnutella network. (Web document)
http://www.bearguru.com/kb/articles/metainfo searches.htm.

16. Nilsson, M.: Id3v2 web site. Web Document (2004) www.id3.org.
17. Rohrs, C.: Search result grouping {in gnutella}. Technical report, LimeWire (2001)

http://www.limewire.org/project/www/result grouping.htm.
18. Free Peers, Inc.: Bearshare technical faq. Web document (2004)

www.bearshare.com/help/faqtechnical.htm.
19. Grossman, D., Frieder, O.: Information Retrieval: Algorithms and Heuristics. Num-

ber ISBN 0-7923-8271-4. Kluwer Academic Publishers (1998)
20. Brin, S., Page, L.: The anatomy of a large scale hypertextual web search engine.

In: Proc. World Wide Web Conf. (1998)
21. Schlosser, M.T., Condie, T.E., Kamvar, S.D.: Simulating a file-sharing p2p net-

work. In: Proc. Wkshp. Semantics in Peer-to-Peer and Grid Comp. (2003)
22. Reynolds, P., Vahdat, A.: Efficient peer-to-peer keyword searching. In: Proc. ACM

Conf. Middlware. (2003)
23. Ripeanu, M., Foster, I.: Mapping the gnutella network: Properties of large-scale

peer-to-peer systems and implications for system design. In: Intl. Wkshp. on P2P
Sys. (IPTPS). Number 2429 in LNCS (2002)

24. Saroiu, S., Gummadi, P.K., Gribble, S.D.: A measurement study of peer-to-peer
file sharing systems. In: Proc. Multimedia Computing and Networking (MMCN).
(2002)

25. Markoff, J.: Google moves toward clash with microsoft. New York Times (2004)
May 19.

26. Microsoft, Inc.: Longhorn development center. Web Document (2004)
msdn.microsoft.com/longhorn/.

27. Reardon, M.: Oops! they’re swapping again. CNET News (2004)


