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Abstract

Data privacy has attracted significant interests in both database theory and security communities in the past
few decades. Differential privacy has emerged as a new paradigm for rigorous privacy protection regardless
of adversaries prior knowledge. However, the meaning of privacy bound ε and how to select an appropriate
ε may still be unclear to the general data owners. More recently, some approaches have been proposed to
derive the upper bounds of ε for specified privacy risks. Unfortunately, these upper bounds suffer from
some deficiencies (e.g., the bound relies on the data size, or might be too large), which greatly limits their
applicability. To remedy this problem, we propose a novel approach that converts the privacy bound in
differential privacy ε to privacy risks understandable to generic users, and present an in-depth theoretical
analysis for it. Finally, we have conducted experiments to demonstrate the effectiveness of our model.
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1. Introduction

Large volumes of sensitive personal data (e.g., medical
records, transaction history) are being ubiquitously
collected by assorted organizations (e.g., hospitals,
retailers). To further unlock the utility of a wide variety
of datasets, these organizations often need to provide
public access to such datasets or share the data with a
third party (e.g., researchers or data analysts). This may
pose great threats to the privacy of individuals.

To this end, the data privacy research has attracted
significant interests in both database and security
in the past few decades. As a major branch of the
existing works, privacy preserving data publishing
techniques [9, 27] have been proposed to sanitize
specific datasets such that the output data can be
publishable by satisfying a pre-defined privacy notion.
More specifically, such privacy preserving techniques
can be categorized into two types: (1) anonymization
[18, 19, 27], and (2) differential privacy [1, 4].

Anonymization. In this case, a trusted curator
computes and publishes an anonymized output data.
Figure 1(a) shows such an example (table T1). Sufficient

degree of anonymization is achieved by hiding a record
in a crowd with some records having the same values.
In such non-interactive setting [16, 18, 19, 27], data
recipients passively receive the anonymized table, and
then issues some queries over the anonymized data.

Name Age Zipcode Diesease

Alex 20 15k Bronchitis

Bob 25 42k Pneumonia

Jane 33 71k Flu

Cathy 38 25k Gastritis

Eva 44 56k Emphysema

Frank 47 18k Dyspepsia

David 53 31k Bronchitis

Helen 61 35k Flu

(a) Input Data T1

Name Age Zipcode Diesease

Alex [20-38] [15k-71k] Bronchitis

Bob [20-38] [15k-71k] Pneumonia

Jane [20-38] [15k-71k] Flu

Cathy [20-38] [15k-71k] Gastritis

Eva [44-61] [18k-56k] Emphysema

Frank [44-61] [18k-56k] Dyspepsia

David [44-61] [18k-56k] Bronchitis

Helen [44-61] [18k-56k] Flu

(b) Generalized Data

Figure 1. Example of Anonymization

Differential Privacy. In this case, a curator sits between
the data recipients and the database. Data recipients
issue statistical queries over the database (as the utility
of the data). Data recipients can infer information from
the database via their queries. Thus, in order to protect
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the privacy of the respondents, the statistical queries
issued by the data recipients and/or the responses to
these queries, can be modified by the curator.

More specifically, without loss of generality, we adopt
count queries as our example in the following, as
illustrated in Example 1 (e.g., in Table T1). Inferences
from other types of queries such as min, max, mean or
sum can be handled in a similar way.

Example 1. Consider an adversary who have some
background knowledge of the individuals (e.g., Alex
with age 20 and Zipcode 15k), and would like to infer
the fact whether Alex is involved in Table T1 (which is
used for analysis) in Figure 1(a) or not.

• q1:

Select Count(∗) From T1

Group By Age, Zipcode

HAVING Age =20 AND Zipcode = 15k

The response of q1 would be the count of individuals
with age 20 and zipcode 15k. Then, the adversary can
infer if Alex is involved in the analysis (query) based on
the query result. An effective approach to address the
above inferences (via the queries) is output perturbation
[2, 5], which injects small amount of random noise
into each query result. Numerous output perturbation
techniques are available in the literature of statistics.
However, such techniques are not based on a rigorous
definition of privacy.

Recently, differential privacy [1, 4] has been the
breakthrough in this field, and it provides strong
privacy guarantee to prevent adversaries from inferring
the status of any individual in the database (included
or not) from their queries over the databases. Roughly
speaking, differential privacy ensures that the removal
or addition of a single tuple in the input data (e.g., T1 in
Figure 1(a)) does not substantially affect the outcome of
any analysis. Therefore, the privacy risks are bounded
regardless of adversaries’ background knowledge – the
query results are indistinguishable if queries are posed
over any two neighboring databases (with or without
any individual’s data).

1.1. Motivation: (1) Interpreting the Privacy Bound
for Differential Privacy to Practical Privacy Risks.
Although the notion of differential privacy has suc-
cessfully achieved the objectives of privacy protection
in many applications [10, 12, 21], the meaning of the
privacy budget ε is still unclear to real users in practice.
In general, the degree of privacy preservation gained by
ε-differentially private algorithms is anti-monotonic on
the privacy bound ε. That is, the smaller ε is, the better
privacy protection can be achieved.

From practitioners’ point of view, while ε was orig-
inally derived from the mathematical or probabilistic

domain, it is difficult to quantitatively measure the
strength of the privacy protection provided by differ-
ential privacy with any specific ε. This makes it hard
for ordinary users to select appropriate values of ε
for privacy protection, while maximizing the utility
of the analytical results produced by different privacy
mechanisms. Cynthia Dwork and Adam Smith put for-
ward related questions in [6]: “What does it mean not
to provide differential privacy? Failure to provide ε-
differential privacy might result in 2 · ε-differential pri-
vacy. How bad is this? Can this suggest a useful weaken-
ing? How much residual uncertainty is enough?”. The
main idea underlying these questions is how to inter-
pret the degree of protection provided by ε-differential
privacy to practical privacy risks (e.g., the upper bound
of the probability that any individual’s data is included
in the analysis).

Interpretive Inference Model. A practical approach
to interpret the privacy bound ε would be propose
an interpretive inference model on the ε-differentially
private query results – the probability that any
individual tuple (viz. individual’s data) is inferred to be
included in the input database (denoted as “inference
probability” for simplicity). As a consequence, the
inference probabilities can be explicitly understandable to
generic data owners). Note that the interpretive inference
model is proposed for interpreting privacy risks in ε to
practical privacy risks of individual tuples.

1.2. Motivation: (2) How to Choose An Appropriate ε
Then, after realizing the degree of privacy guarantee
with a given interpretive inference model, the next open
question would be how to choose appropriate values for
ε based on data owners’ required privacy risks (e.g.,
probabilities that any individual’s data is included).
Referring to the interpretive inference model used
for converting ε to probabilities (of inferences), this
question can also be interpreted as follows. Given any
maximum inference probability, what is the maximum
ε (upper bound) tolerable in differential privacy to
satisfy the practical privacy guarantee (represented as
the maximum inference probabilities).

To this end, Jaewoo Lee et al. [15] proposed an
interpretive inference model which can be used to
derive the upper bounds of ε given any maximum
inference probability. We illustrate such upper bounds
in the following example.

Example 2. We utilize a real database CENSUS that
is frequently studied in privacy research [17, 28, 32,
34]. It contains the demographic information of 600k
American adults. Each tuple has eight attributes: Age,
Gender, Education, Marital, Race, Work-class, Country,
and Income.

For instance, we apply count queries on the database.
Suppose that we want to enforce the adversary’s
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probability of successfully identifying the individuals
from the counting queries to be no greater than
ρ ≤ 1

10 (maximum inference probability). In order to
achieve this protection goal with the existing theoretical
result [15] (more details will be given in Section
3), we thus have: the upper bound of differential
privacy budget ε should satisfy ε ≤ ∆f

∆v ln (n−1)ρ
1−ρ , where

n represents the number of records, ∆f is the sensitivity
of query, ∆v is the maximum distance between function
values of every possible world (the same information
needed to calculate global sensitivity) [15], and ρ is the
maximum inference probability. Then, if given n =
600, 000 records, the bound yields

ε ≤ 1
1

ln
(600, 000 − 1)( 1

10 )

1 − 1
10

≈ 11.1 (1)

where ∆v is no greater than 1 for count queries.

In the above example, the upper bound of ε would
be 11.1, which might exceed our expectation. In
other words, such large ε can satisfy ρ ≤ 1

10 in their
interpretive inference model but can be vulnerable in
other cases (for instance, in our proposed interpretive
inference model, ε=11.1 would result in ρ > 1

10 ) (higher
privacy risks than the data owners’ demand).

Furthermore, in the interpretive inference model
proposed in [15], ε is proportional to ln(n) where n is
data size. As n increases, the upper bound of ε also
increases. In case of a large or small n, the derived
bound would be meaningless (unbounded or negative).
From the above examples, we can see that existing
solutions have their inherent drawbacks. Motivated
by such observations, we propose a novel interpretive
inference model, which can be used to evaluate the
probability or confidence that the adversary will
be able to identify any individual from the noise-
injected queries over the dataset. This enables us to
understand the privacy implications of differentially
private techniques in a much clearer way.

1.3. Our Contributions
The major contributions of this paper are summarized
as follows.

• This paper presents a novel interpretive inference
model to convert the privacy bound ε in
differential privacy to inference probabilities that
any individual is included in the input data
(for queries). The proposed interpretive inference
model and converted inference probabilities have
addressed the drawbacks of the existing models
[15, 24].

• Based on the proposed interpretive inference
model, we present an instantiation for choosing

appropriate ε (maximum privacy bound in dif-
ferential privacy), which should effectively bound
the risks of inferring the presence/absence of indi-
viduals (given the maximum inference probabil-
ity) in generic differentially private algorithms.

• An in-depth theoretical analysis of our approach
is provided, and a set of experiments are
conducted to confirm the effectiveness of our
approach.

The rest of the paper is organized as follows. In
Section 2, we describe the preliminaries for differential
privacy. In Section 3, we present the analysis for two
representative existing works. Then, in Section 4, we
propose our interpretive inference model and the upper
bound for ε in differential privacy (given the maximum
inference probability). Section 5 demonstrates the
experimental results, and Section 6 reviews related
work. Finally, Section 7 gives the concluding remarks.

2. Preliminaries
In this section, we will first describe the basic
mechanism of differential privacy, and then present
the Laplace distribution which contributes to a generic
differentially private approach.

2.1. Differential Privacy
The most commonly-used definition of differential
privacy is ε-differential privacy, which guarantees that
any individual tuple has negligible influence on the
published statistical results, in a probabilistic sense.
Specifically, a randomized algorithm A satisfies ε-
differential privacy if and only if for any two databases
D1,D2 that differ in exactly one record, and any possible
output O of A, the ratio between the probability that A
outputs O on D1 and the probability that A outputs O
on D2 is bounded by a constant. Formally, we have

|P rob(A(D1) = O)|
|P rob(A(D2) = O)|

≤ eε (2)

where ε is a constant specified by the user, D1, D2
differ in at most one element, and e is the base of
the natural logarithms. Intuitively, given the output
O of A, it is hard for the adversary to infer whether
the original data is D1 or D2, if the parameter ε is
sufficiently small. Similarly, ε-differential privacy also
provides any individual with plausible deniability that
her/his record was in the databases.

The earliest and most widely-adopted approach
for enforcing ε-differential privacy is the Laplace
mechanism [4], which works by injecting random noise
x ∝ lap(λ) that follows a Laplace distribution into
the output of the original O, and the deterministic
algorithm A obtains its randomized version O + x, that
is, A(D) = O + x, where λ = 4f

ε .
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Definition 1 (Sensitivity). The sensitivity 4f of the query
function f is defined as the maximal L1-norm distance
between the exact answers of the query q (i.e., q(D1) and
q(D2)) on any neighboring databases:

4f = maxD1,D2
||q(D1) − q(D2)||

2.2. The Laplace Distribution
A random variable has a Laplace(µ, b) distribution if its
probability density function is

f (x|µ, b) =
1

2b
e−
|x−u|
b =

 1
2b e

x−µ
b x < µ

1
2b e

µ−x
b x ≥ µ

(3)

It is straightforward to integrate the Laplace
distribution. Its cumulative distribution function is as
follows:

F(x) =

 1
2e

x−µ
b x < µ

1 − 1
2e

µ−x
b x ≥ µ

(4)

3. Inferences on the Privacy Bound ε
In this section, we first introduce a key concept for
describing the adversary’s inference ability: Potential
Input Set. Then, we provide an in-depth analysis of two
existing work [15, 24] on converting the guarantee of
privacy budget ε to inference probabilities.

3.1. Potential Input Set
Definition 2 (Potential Input Set). Given any output S of a
differentially private algorithm A, the potential input
set Ψ is a set of corresponding possible inputs ∀Di .
Then, Ψ = {Di |A(Di) = S}

Note that our interpretive inference model can be
applied to different kinds of queries, e.g., count, sum,
min and max. We use sum queries in the following
example.

Example 3. In Example 2, if sum queries are given, there
will be n = 60, 000 possibilities of the potential input set
Ψ : any subset X ⊆ CENSUS with n − 1 tuples sampled
from CENSUS can be a possible input Di . While in
Example 1, there are only 2 possibilities for query q1:
Ψ = {∅, {Alex}}.

The cardinality of the potential input set can be
very large or extremely small, which depends on
external knowledge. Basically, differential privacy hides
the presence of any individual in the database from
data users by making any two output distributions in
Ψ (one is with individual and the other is without)
computationally indistinguishable. The adversary’s
goal is to figure out whether Di ∈ Ψ is true or not.

3.2. Lee and Clifton’s Interpretive Inference Model
[15]
In order to bound ε, a few assumptions are made by
Lee and Clifton [15], e.g., assuming that the adversary
has a database D consisting of n tuples, has an infinite
computational power, and knows everything about the
universe besides which individual is missing in the
database. The adversary maintains a set of tuples <
w, α, β > for each possible combination w of D ′ , with
n − 1 records sampled from D (i.e., D ′ ∈ D and |D ′ | =
|D | − 1).

Consider the discussions in Section 2, we can infer
that, either D = D1, D

′ = D2 or D = D2, D
′ = D1 holds.

Let Ψ denote the set of all possible combinations of D ′

(|Ψ | = n). α and β are the adversary’s prior belief and
posterior belief on w = D ′ , respectively, after given a
query response.

For simplicity, they assume that α is a uniform prior,
i.e., ∀w ∈ Ψ , α(w) = 1

n . They refer to each possible
combination w in Ψ as a possible world. The posterior
belief β is defined as

β(w) = P (w = D ′ |γ) =
P rob(Af (w) = γ)∑
ϕ∈Ψ P rob(Af (ϕ) = γ)

(5)

where Af is an ε-differentially private mechanism for
query function f .

Given the best guess w′ , the confidence of the
adversary’s guess is calculated as β(w′) − α(w′). Authors
treated the adversary’s posterior belief on each possible
world as the risk of disclosure. Starting from Equation
(5), after several steps of deduction, the upper bound of
ε can be derived as follows:

ε ≤
∆f

∆v
ln

(n − 1)ρ
1 − ρ

(6)

Although such study is the state-of-the-art, the upper
bound provided in Equation (6) has two drawbacks that
greatly limit its practical applicability.

• First, it is somewhat surprising that the upper
bound is directly proportional to ln(n), and
n is the size of the potential input set. As
illustrated in Example 2, the size n is a crucial
component in deciding ε. Therefore, the solution
may be not suitable when the size is too small
or large. Moreover, the upper bound would be
infinite if the potential input set contains only
a single tuple. Therefore, we can safely make a
conclusion that the upper bound described above
is not always applicable and has its inherent
disadvantage.

• Second, this solution still cannot estimate the
probability that a certain tuple is included or
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not. Specifically, when the differentially private
algorithm A returns a query, its response means
nothing for interpreting the privacy risks for
individual tuples regardless of whether the
answer is large or small.

Let us illustrate these with Example 4.

Example 4. With the purpose of identifying the victim
Alex, the adversary issues a query q1 as shown in
Example 1. As a running example, the ε-differential
private algorithm A answers its query with noise -1.1,
then returns A(q1) = −0.1 to the adversary. No matter
what the answer is, the adversary cannot make an
assertion regarding whether Alex has contributed to the
result or not.

3.3. Naldi et al.’s Interpretive Inference Model [24]
In [24], Naldi et al. provided a different approach for
choosing ε. With respect to the above notation, the new
equation for choosing ε can be given as follows:

ε = −
ln(1 − ρ)
q(D) × w

(7)

The parameter w > 0 indicates that the true value of
q(D) is within interval [q(D)(1 − w), q(D)(1 + w)] with
probability ρ.

Equation (7) is derived from below:

ρ = P[q(D) × (1 − w) < X < q(D) × (1 + w)] (8)

where X is the guess value.

Example 5. Suppose the query result is q(D) = 100 and
we wish the query output to be within ± 20% of the
true value (i.e., 100) with 80% probability, then ε ≤
ln(1 − 0.8)/(0.2 · 100) = 0.08.

On the other hand, while q(D) is negative, for
instance, themin query equals −100, Equation (7) might
be totally wrong.

From Examples 4 and 5, we can see that although
choosing proper ε for differential privacy has attracted
many attentions, and has successfully achieved some
upper bounds, state-of-the-art upper bounds derived
via Equations (6) or (7) do not function properly in
many cases. Based on such observation, we claim that
the problem of choosing proper values of ε remains
open.

4. Novel Interpretive Inference Model on the
Privacy Bound ε
In this section, we present our interpretive inference
model and how to choose ε.

4.1. Inferring Query Results

First, for each noise variable x added by algorithm
A, which follows Laplace distribution f (µ, b), it is
impossible for the adversary to guess it accurately.
However, the adversary can guess x if it falls in a short
interval. That is, for each noise variable x, the adversary
generates x′ , which is also governed by the Laplace
distribution f (µ, b). If |x − x′ | < L, we consider that the
inference is successful. The length L is related to query
types. For example, in the case of count queries, L
equals 0.5.

Consider that the guess x′ is also generated according
to Laplace distribution. Then, the confidence of the
adversary’s guess can be calculated using Definition 3.

Definition 3. Given a guess x′ , the adversary’s confidence
in guessing the exact x that falls into interval L is
defined as

P rob(|x − x′ | < L) = F(x + L) − F(x − L) (9)

The definition of F is presented in Equation (4).

We note that probability P rob(|x − x′ | < L) is not a
fixed value, but varies with x, which is sampled from
a Laplace distribution. The nearer that x appears in
location u, the larger the probability P rob(|x − x′ | < L)
is. On the contrary, while x is picked far away from
the the location u, probability P rob(|x − x′ | < L) becomes
much smaller.

Therefore, it makes no sense to calculate the
probability for each noise variable x, since such noise
can be sampled as much as you want, which is
inexhaustible. Moreover, the adversary cannot infer the
exact x after deriving response q(D) + x. Luckily, we can
compute its mathematical expectation that reflects the
average level.

Theorem 1. Given response q(D) + x, interval L, the
mathematical expectation of the probability that the
adversary can guess the exact value falling into interval
[q(D) − L, q(D) + L] can be given as follows: E(P rob(|x −
x′ | < L)) = 1 − (1 + L·ε

2·4 ) · e−
ε·L
4 .

Proof. We can use p(x) to denote F(x + L) − F(x − L) for
simplicity. In the light of the definition of mathematical
expectation in the area of probability theory, we have
the following equation:

E(P r(|x − x′ | < L)) =
∫ +∞

−∞
p(x) · f (x)dx (10)

where the definition of f (x) is given in Equation (3).
In order to calculate the final result, the integration
Equation (10) is divided into 4 parts:
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∫ +∞

−∞
p(x) · f (x)dx

=
∫ µ−L

−∞
p(x) · f (x)dx +

∫ µ

µ−L
p(x) · f (x)dx

+
∫ µ+L

µ
p(x) · f (x)dx +

∫ +∞

µ+L
p(x) · f (x)dx

(11)

Then, after Equation (9) is substituted into Equation
(11), thus we have:

=
∫ µ−L

−∞
(
1
2
e
x+L−µ
b − 1

2
e
x−L−µ
b ) · 1

2b
e
x−µ
b dx

+
∫ µ

µ−L

((
1 − 1

2
e
µ−(x+L)

b

)
− 1

2
e
x−L−µ
b

)
· 1

2b
e
x−µ
b dx

+
∫ µ+L

µ

((
1 − 1

2
e
µ−(x+L)

b

)
− 1

2
e
x−L−µ
b

)
· 1

2b
e
µ−x
b dx

+
∫ +∞

µ+L

((
1 − 1

2
e
µ−(x+L)

b

)
−
(
1 − 1

2
e
µ−(x−L)

b

))
· 1

2b
e
µ−x
b dx

(12)

Now, we can integrate the four parts in Equation (12),
respectively.

=
1
8

(
e

2x−2µ+L
b − e

2x−2µ−L
b

)∣∣∣∣∣µ−L−∞
+

(
− 1

4b
e
−L
b x +

1
2
e
x−µ
b − 1

8
e

2x−2µ−L
b

)∣∣∣∣∣µ
µ−L

+
(
− 1

4b
e
−L
b x − 1

2
e
µ−x
b +

1
8
e

2µ−2x−L
b

)∣∣∣∣∣µ+L

µ

+
1
8

(
e

2µ−2x−L
b − e

2µ−2x+L
b

)∣∣∣∣∣+∞
µ+L

(13)

Finally, we arrive at:

=
(1

8
e
−L
b − 1

8
e
−3L
b

)
+

(1
2
−
(5

8
+
L
4b

)
e
−L
b +

1
8
e
−3L
b

)
+

(1
2
−
(5

8
+
L
4b

)
e
−L
b +

1
8
e
−3L
b

)
+

(1
8
e
−L
b − 1

8
e
−3L
b

)
= 1 −

(
1+

L
2b

)
e
−L
b

(14)

Recall that, to implement ε-differential privacy, the
noise λ is governed by Lap(4ε ). Therefore, by replacing
b with 4ε , the theorem has been proven.

Example 6. Let ε = 1, and the adversary submits count
queries, then the probability of successful inference that
the adversary can achieve is 24.18%. For example, if the

adversary submits a workload of 10,000 queries, then
there are about 2,418 queries, of which the value of q(D)
could be correctly inferred (Note that 4 = 1, L = 0.5).

4.2. Inferring Record Status: Present or Absent
Recall that given a query answer q(D) + x, we can
derive its exact answer q(D) with a certain probability.
However, it is not our ultimate goal, as the goal of the
differential privacy is to determine whether a certain
tuple has contributed to the query result or not. Hence,
we need to go further into reduction of Theorem 1,
which aligns with the objectives of differential privacy.

Example 7. Let’s continue with Example 1, and assume
that ε = 1. Suppose the adversary tries to identify
victim Alex, and issues a query q1 as shown in
Example 1. The random noise drawn from the Laplace
distribution with mean 0 and scale factor b = 1 is 0.7,
then the response is produced as A(q1) = 1 + 0.7 = 1.7
by the ε-differentially private algorithm A.

As a result, the adversary generates an additional
noise x′ . If 0.7 − x′ > 0.5, that is, x′ < 0.2, the inference is
successful, and the adversary can infer that Alex’s data
is included. Otherwise, the inference fails.

This example inspires us that a certain tuple is absent
or not can be determined by extrapolating the query result
with sufficient background. Generally, let q be a count
query such that q(D) = c, and the adversary knows that
q(D) falls into the potential input set Ψ = {c1, c2, . . . , cn}
where some integer constants c1 ≤ c2 ≤ · · · ≤ cn (note
that ∀i ∈ [2, n], ci − ci−1, the intervals between every two
consecutive integer constants can be greater than 1).
The main task of the adversary is to make an answer
for ci ∈ Ψ or not, which is close to the value of y =
x + q(D) − x′ . In other words, the adversary pick the
answer that minimizes |ci − y|, formally

arg min
∀i∈{1,...,n}

|ci − y| (15)

Observing this, we propose an inference algorithm
for the count query as shown in Algorithm 1. The
adversary issues a query q(D), which restricts the query
to a specific victim (e.g., query q1 in Example 1). The
differentially private mechanism A generates noise x,
which is governed by Laplace distribution f (µ, b). Then,
noise x plus the real value q(D), that is, x + q(D),
is returned to the adversary. The adversary generates
some different noise x′ , and computes the value y = x +
q(D) − x′ . Eventually, the adversary concludes that: if
the answer of y equals c, then the inference is successful,
otherwise will be failure.

Theorem 2. For count queries, Algorithm 1 can correctly

infer the record status with probability 1 − (1+ ε
4 )·e−

ε
2

2
where c = c1 or cn, otherwise the probability is 1 − (1 +
ε
4 )e−

ε
2 .
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Algorithm 1 Inference For Count Query
Input: A(q(D)) = x + q(D),Ψ
Output: Success or Failure

/* Lap(µ, b): the scale factor b, and the location u
and q(D) ∈ {0, 1}*/

1: The adversary generates a noise x′ variable, which
is governed by Laplace distribution f (µ, b)

2: y ← x + q(D) − x′
3: derive arg min∀ci∈Ψ |ci − y| where i = 1, 2, . . . , n
4: answer=ci
5: if answer==c then
6: return Success
7: else
8: return Failure
9: end if

Proof. Consider the symmetry that the probability that
y falls into [c2 + 0.5,+∞) equals to that of y falls
into (−∞, c2 − 0.5]. Combined with Theorem 1, we can
complete the proof of this theorem. Notice that for
count queries, L equals 0.5.

Example 8. As for the min (max or sum) queries, the
adversary may know the fact that the victim Alex is
involved and his minimal income. Then, the adversary
issues query q3:

Select Min(Income) From CENSUS

This is the case with the potential input set |Ψ | = 1,
which is different from the count query.

Indeed, it is sufficient for the adversary to determine
whether the victim is present or not for the count query,
while for the min query, the case would change. The
adversary can only determine that the victim’s income
falls into a small interval [q(D) − L, q(D) + L], where L is
half length of the interval.

We extend the above approach to other types of
queries, such as mean, sum, min and max. The main
difference is the predicate condition (see Line 3 in
Algorithm 2).

Algorithm 2 Inference for Min, Max or Sum Query
Input: A(q(D)) = x + q(D)
Output: Success or Failure

/* Lap(µ, b): the scale factor b, and the location u */
1: The adversary generates a noise x′ variable, which

is governed by Laplace distribution f (µ, b)
2: y ← x + q(D) − x′
3: if y ∈ [q(D) − L, q(D) + L] then
4: return Success
5: else
6: return Failure
7: end if

Theorem 3. For min (or extended to max, sum, etc.)
queries, Algorithm 2 can correctly infer whether a
certain victim is in interval [q(D) − L, q(D) + L] with
probability 1 − (1 + L·ε

2·4 ) · e−
ε·L
4

Note that Theorem 3 can be directly derived from
Theorem 1.

4.3. Choice of ε
From the discussions in Section 4.2, we can make the
conclusion to a certain extent. Theorem 1 can be used to
estimate the risk of disclosing presence/absence of any
individual in the database (by the interpretive inference
model), which is given in the following corollary.

Corollary 1. Let ρ be the probability of being identified
as present in the database, then parameter ε on
the adversary’s probability can be utilized to enforce
requirements constrained by the following formulas:

• for count queries: ρ ≥ 1 − (1+ ε
4 )·e−

ε
2

2

• for min (or extended to max,sum) queries: ρ ≥
1 − (1 + L·ε

2·4 ) · e−
ε·L
4 .

Thus, we illustrate how to choose ε to prevent the
adversary from successfully identifying an individual
(for the maximum inference probability ρ). Note that it
is challenging to directly calculate the inverse functions
of the above formulas directly. Consider that the
formulas in Corollary 1 are functions of monotone
decreasing with ε. Then, we can approximate it with a
binary search strategy: we pre-compute some pairs of
< ρi , εi >. Given a ρ, if we can find a ρi = ρ, then we
return εi . Otherwise, we need to find εk and εk+1 where
ρk ≤ ρ ≤ ρk+1. Next, we compute the pair < ρj , εj >

using formulas in Corollary 1 with εk+εk+1
2 . If ρj > ρ,

we compute ρj with
εj+εk+1

2 ; otherwise, we compute

ρj with
εj+εk

2 . The above procedure terminates as ρj
approximates ρ within a marginal error where the time
complexity is log(n).

5. Experimental Evaluation
In this section, we conduct experiments to evaluate our
proposed approach. Note that the propopsed approach
is experimentally incomparable with [15] and [24]
since three different approaches have different sets of
parameters (which may result in biased comparisons).

Specifically, with comparison of the experimental
and theoretical values of ε, we will show that our
model is fully consistent with the actual tests. In the
experiments, our theoretical model is denoted by THE
and the actual tests is shortened as ACT. The ACT
is conducted by randomly generating n pairs of noise
x1, x

′
1, x2, x

′
2, ..., , xn, x

′
n. Denoting the number of noise
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pairs that satisfy inequality |xi − x′i | < L, 1 ≤ i ≤ n as
m, the probabilities of successful inferences can be
measured by the ratio: mn . On the other hand, the THE
is directly computed from Theorem 1.
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Figure 2. Probability of Successful Inference vs. ε

5.1. Results on Varying ε
This set of experiments are mainly designed to study
the influence of ε on the probabilities of successful
inferences in THE and ACT. The results with length=0.5
and length=0.2 are shown in Figure 2(a) and 2(b). From
the results, we can see that in all the experiments, the
probabilities produced by our model are very close to
the actual tests. To be specific, varying ε from 0.001 to
1, the differences between the two approaches (THE and
ACT) are 0.00003, -0.00026, 0.00004, 0.000073 with
length=0.5 (see Figure 2(a)). When the length equals
0.2, the differences are -0.00004, -0.00011, -0.000151,
0.000146, as presented in Figure 2(b), respectively.
These results further confirm the correctness of our
interpretive inference model.

5.2. Results on Varying Length of Interval L
Then we consider comparing THE and ACT by varying
the length of intervals from 0.1 to 1. Figure 3(a)
and 3(b) show the two probabilities of successful
inferences by THE and ACT with ε = 1 and ε = 0.5,

respectively. In general, the probabilities will increase
along with the increase of length L. This is because
with larger L, it is easier for the adversary to obtain
a successful inference. In these figures, we can see
that the probabilities generated by both THE and ACT
have minor differences, which is consistently achieved,
especially when L lies between 0.1 to 1.
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Figure 3. Probability of Successful Inference vs. Length L

5.3. Results on Varying Workload
Finally, we demonstrate that how workload affects THE
and ACT. More specifically, we consider the workload of
testing varies from 100 to 1,000k. Figure 4(a) and Figure
4(b) plot THE and ACT as a function of workload,
with ε = 1 and ε = 0.5, respectively. We can see that
the test values become increasingly closer to theoretical
values with the growth of workload. This observation
can be attributed to the fact that more tests lead to more
accurate results. Similarly, the theoretical values are
consistently close to the actual tests for large workloads.

5.4. Summary
With the demonstrated experimental results (Figure 2-
4), we can confirm that the main result of our model,
i.e., Theorem 1, is correct. Our model generates only
negligible errors compared with actual tests. Notice
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Figure 4. The Probability of Success vs. Workload

that, the experimental results are derived from noisy
queries (e.g., count and sum): comparing the actual
noise generated for queries with the theoretical results
(i.e., derived from Theorem 1). Thus, the experimental
results are independent of the experimental datasets. In
other words, the results would be consistent with the
results derived from any dataset (using the same noise).

6. Related Work
Since Dwork [4] proposes the seminal mechanism of
ε-differential privacy, there has been a large body of
work on it. The literature of differential privacy can be
classified into three main categories.

The first category aims at studying the properties
of differential privacy and its variants. For example, a
natural relaxation of differential privacy (ε, δ) [6] was
proposed where better accuracy (a smaller magnitude
of added noise) and generally more flexibility can
often be achieved. Authors of [20] reported the design
and implementation of the Privacy Integrated Queries
(PINQ) platform for privacy-preserving data analysis.
Complement to the Laplace mechanism, McSherry
and Talwar [22] proposed the exponential mechanism,
which works for any queries whose output spaces are
discrete. This enables differentially private solutions for
various interesting problems where the outputs are not
real numbers.

The second category studies new differentially
private methods with improved accuracy, without
compromising privacy preservation. Privelet [33] was
developed as a data publishing technique that ensures
ε-differential privacy while providing accurate answers
for range-count queries, i.e., count queries where the
predicate on each attribute is a range. The core of their
solution is a framework that applies wavelet transforms
on the data before adding noise to it. The technique
in [1] was designed for releasing marginals, i.e., the
projections of a frequency matrix on various subsets of
the dimensions. iReduct [31] was designed to compute
answers with reduced relative errors. The basic idea
of iReduct is to inject different amounts of noise to
different query results, thus smaller (larger) values are
more likely to be injected with less (more) noise.

The third category includes algorithms for enforcing
ε-differential privacy in the publication of various types
of data, such as relational tables [4, 11, 33], data
mining results [8, 21, 29], and histogram publication
[35]. Specifically, Xu et al. [35] investigated how the
counts in one-dimensional histograms can be released
in a differentially private manner. Barak et al. [1]
proposed a solution for releasing marginals, each of
which contains the counts of pertinent to a projection
of the original dataset onto a subset of its attributes.
Rastogi and Nath [26] studied the publication of time-
series in a distributed setting. In some contexts (e.g.,
search logs [10, 13, 14]), besides ε-differential privacy,
a relaxed notion of (ε, δ)-differential privacy have been
proposed to bound the probabilities (by δ) that the
output generated from one of two neighboring inputs
D and D ′ cannot be generated from the other one
(since the zero probability cannot be the denominator
to be bounded by eε). Similar to ε-differential privacy,
Mohammady et al. [23] has proposed a privacy
notion ε-indistinguishability for different views of the
outsourced network trace data.

Yang et al. [36] listed some open problems that
we believe are important and deserved additional
attention from researchers. The first problem is about
the actual/physical meaning of privacy budget ε.
The most relevant prior work (to ours) is [15]. They
consider the probability of identifying any particular
individual as being in the database, and demonstrate
the challenge of setting proper values of ε given the
goal of protecting individuals in the database with
some fixed inference probability. The details of their
techniques are discussed in Section 3.

Recently, the differential privacy models have been
extended to local differential privacy [3] in which
each user locally perturbs its data before disclosing
to the untrusted data recipients. The state-of-the-art
LDP techniques are proposed to sanitize statistical data
to generate histograms/heavy hitters [7], social graphs
[25] and function frequent itemset mining [30]. We
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intend to extend our approach for local differential
privacy in the future.

Finally, privacy bounds have been studied outside
differential privacy community. For instance, Zhang et
al. [37] studied the privacy bound for identifying which
intermediate data sets need to be encrypted and which
do not in cloud computing.

7. Conclusion
Although the mechanism of differential privacy has
received considerable attention in the past decade, few
efforts have been dedicated to studying the practical
implications of its given privacy bound (e.g., ε) and
applying it in practice. In addition, despite its apparent
importance in real world, the choice of an appropriate
value of ε (based on a required quantitative probability
that any individual can be identified from the input
data) has not been well studied in the literature.

Prior works suffer from some limitations. To
address these deficiencies, we have presented a novel
interpretive inference model to convert the differential
privacy bound ε to the probability of identifying any
individual from the input database. In addition, it is
also possible to determine an appropriate value of
the privacy bound ε from our inference model for
any desired privacy guarantee (i.e., given a limited
probability of identification). We have also shown
that the upper bound ε for differential privacy
suggested by prior models is too large – this makes
the prior interpretive inference models vulnerable
to our inferences performed by the adversaries. We
have theoretically and experimentally validated the
effectiveness of our model.
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