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Abstract—Smart grid has integrated an increasing number  resilience against large-scale failures across the grid: they
of distributed energy resources to improve efficiency and can continue to operate if large-scale blackouts occur [21].
flexibility of power generation and consumption as well as With autonomous energy, every microgrid may fully or
the resilience of the power grid. The energy consumers on Partially feed their local demand. More importantly, numer-
the power grid (e.g., households) equipped with distribute ous microgrids would have great flexibility to utilize their
energy resources can be considered as “microgrids” that bot ~ local energy (i.e., sharing) to collaboratively advance the
generate and consume electricity. To facilitate energy maage- ~ €N€rgy management on the power grid, e.g., load balancing
ment, in this paper, we study the energy community discovery  [19], energ_y_exchz_inge [28]’_ and load _shiftin_g [17]_' [22].
problems which identify multiple kinds of communities for the ~ Therefore, it is desirable to discover various microgrid com-
microgrids, such as homogeneous energy community (HEC), Munities that can efficiently implement their cooperation on
mixed energy community (MEC) and self-sufficient energy the grid [20]. More specifically, based_ on every mlcrogn(_j’s
community (SEC). We present algorithms to discover such 0cal energy amount (supply) and its local consumption
energy communities for microgrids, and finally experimentdly ~ @mount (demand load), we can derive Kst Energy as

validate the performance of the algorithms using real datasts. the a_mount Of supply mi_nus the demanc_l _Ioad, V\.IhiCh can
be eitherpositive or negative over a specified period for

the energy supply and demand (from short-term to long-
term). In this paper, given the net energy of microgrids, we
1. Introduction study the problem of discovering different types of energy
communities to facilitate different applications on the power
grid (specific energy communities are defined in Section 2
Smart grid superposes a communication network on tognd 3, respectively).
of the electrical power network allowing massive sensor data
collection from the grid as well as two-way metering of 1.1. Literature Review
power for users [11]. While collecting and transmitting data
across the grid, it allows for the integration of renewable As the key building blocks on the smart grid, micro-
energy resources at the individual consumer level [7]. Itgrids have attracted significant interests in both industry
creates a paradigm where any individual consumer on thand academia in the past decade. In such context, many
grid can also be a supplier of power: this facilitates therecent research were conducted to design microgrids and/or
creation of microgrids. Microgrids are localized grids thatenergy management schemes so as to improve the grid
can be separated from the larger power grid to operatperformance, such as load management [2], and demand
autonomously and be self-sufficient in power. A microgridresponse solutions [16], [29]. In addition, analysis of data
typically consists of renewable (wind turbines, solar pan-collected from distributed microgrids (e.g., demand load,
els, etc.) and/or non-renewable (micro-turbines, fuel cellsenergy generation and storage) has advanced the energy
etc.) energy resources, energy storage devices, and enengyanagement of the grid and individual microgrids [23],
consuming devices/appliances, all of which are connected.g., short term load forecasting for microgrids [3], and load
through a power and communication network [27]. A micro- shifting [22].
grid can be operated in a grid with the connected or islanded Furthermore, some cooperative models among dis-
mode. In the islanded mode, it could be connected to otheributed microgrids have been investigated in multiple ap-
microgrids or operate independently. Therefore, microgridgplications, e.g., optimizing the power loss via a unified
can provide energy independence to individual communitiesnicrogrid voltage profile [25], eliminating the central en-
or entities who intend to manage their own power generatio®rgy management unit and price coordinator via localized
and distribution [21]. Moreover, microgrids can provide smart devices [5], and load management via exchanging



and sharing local electricity [15], [28]. In this paper, we then it is desirable to partition a set of microgrids with
develop techniques to identify microgrid communities whichnegative net energy into K different HECs such that the
can directly implement all these cooperations within eachgrid can increase the power supply to those HECSs; or the
energy community to further advance grid performance. grid plans to partition a set of microgrids withositive

Notice that the energy community discovery problemsnet energy into K different HECs such that the grid can
are significantly different from the prior community discov- establish K different energy banks to store the excessive
ery problems studied in other contexts, such as geolocatiorenergy at different locations respectively.
in the spatial data [9] and social graphs [31]. The key At this time, the grid will try to identify X' different
difference is that the criteria @rouping two microgridsinto ~ HECs on the power grid. Then, this energy community
the same energy community should consider not only the  discovery problem can be considered as a clustering prob-
gpatial distances on the power grid but also their individual lem based on the distances of microgrids’ geolocations on
net energy amounts. Moreover, some additional constraints the electricity transmission network, where the number of
may apply in real world, for example, (1) due to limited clusters is given ad< and the net energy of each HEC
power supply to each of the discovered communities, thean be aggregated. The classic K-Means algorithm [24] can
overall demand load of each community may have an uppeefficiently generatdd HECs amongV microgrids based on
bound, (2) in some communities, the difference betweerheir distances on the power grid.
the overall demand and supply in each community might For all j € [1, K], any HEC¢;’s net energy can be
be required to be bounded to a small number (for optimizaggregated as; = >_y,, . €. Then, such HECs could
ing the performance of the power grid) [19], or (3) somehelp the powergrld better manage their energy. For instance,
communities may need to possess a non-negative overall ngtv: € [1, N],e; < 0, K new energy resources with power
energy to be self-sufficient. In this paper, we will investigatesupply amounw € [1, K], |E;| will be placed at the closest
and tackle the above problems. substations to the centroids of the HECs respectively.

The rest of this paper is organized as follows. Section 2
and 3 illustrate how to discover different HECs, MECs and2.2. Discovering HECs with Bounded Net Energy
SECs. Section 4 presents the experimental results conducted
on real world microgrid datasets. Finally, Section 5 gives the  Some real world constraints may require that each

concluding remarks and discusses the future work. HEC'’s net energy (either positive or negative) should be
bounded, e.g., the external supply to every HEC is limited
2. Homogeneous Energy Communities due to capacity of generators. In these cases, the number

of communities is unknown and some additional constraints
should apply — i.e., in each HEC, if the HEC's net energy

TABLE 1. FREQUENTLY USEDNOTATIONS AND ACRONYMS is positive, then it cannot exceed a positive upper bolind
otherwise (negative net energy), it cannot be less thén

HEC homogeneous energy community (viz. each HEC'’s external demand is no greater than

MEC mixed energy community Without loss of generality, we consider the negative

SEC self-sufficient energy community

—— microgrid and its net energy energy case — the external demand of each HEC should be
Dis(m;, m;) | distance between two microgrids on the grid bounded byL. To find such HECs, we extend the Density-

Cj an energy community ' _ based Spatial Clustering of Applications with Noise (DB-

NE (&ni m;) gstt gfnﬁ:ig;;g;insv?t r?fpf(‘;‘;?ﬂ\fgcr:g?g‘r’;gy SCAN) algorithm [10] to “L-DBSCAN” by adding an upper

M- set of microgrids with negative net energy boundL for the external demand of each HEC. Specifically,

three different microgrids can be defined [10]:
We first look at the case that all the microgrids have ,  Core microgrid: a microgridm,; has at leastnin

excessive local energy (positive net energy), or all of them microgrids within distance of it on the grid.
have to request external demand (negative net energy). Such ,  Reachable microgrid a microgridm; is reachable
community is defined as below. from microgrid m; if there is a pathm,, ..., m;,
Definition 1 (Homogeneous Energy Community (HEC)). where the next microgrid is directly reachable from
A set of microgrids whose net energy are exclusively the previous microgrid on the path and all the mi-
positive; or exclusively negative. crogrid exceptn; are core microgrids.
o Outlier: not reachable from any other microgrids.
2.1. Discovering Fixed Number of HECs The basic idea of DBSCAN algorithm is to group to-

gether reachable microgrids by reaching them from the
In real world, the smart grid may plan to partition core microgrids. scanning neighbor microgrids from the
a set of homogeneous microgrids (exclusively positive orcore microgrids. However, different from the DBSCAN
negative) into a fixed number of HECs. For instance, thealgorithm [10], discovering HECs should take into account
grid intends to placeX” groups of new generators d  each microgrid’s external demand:(c [1, V], |e;|) as well
different substations respectively to provide power supply taas the spatial distances on the grid. Our L-DBSCAN algo-
some newly established microgrids (e.g., new constructionsyjthm first groups microgrids based on the spatial distances



between their geolocations (similar to DBSCAN). Then,differs from other distance measures used in community
with the bounded external demardof each HEC, the L- discovery problems due to its unique feature: two opposite
DBSCAN algorithm will stop scanning microgrids for the values (e.g.¢; and —e;) are measured as “close”.

current HEC once its aggregated external demand gets close For MECs discovery, we definigvo maximum distance

to L, and then initialize a new HEC to continue scanningthresholds for the normalized NE distances and the nor-
the microgrids based on their geolocations. Finally, all themalized spatial distances respectively, ¢’ € [0, 1]. Then,
outliers should be assigned to their nearest communities iive propose a novel agglomerative algorithm [30] to iden-
the updated external load remains no greater thatf no  tify MECs by utilizing ¢ and ¢’ to specify the criteria
such communities found, L-DBSCAN groups the outliers tofor bounding the differences between the overall supply

form new HECSs. and demand of each community and the spatial distances
between the microgrids in each community. Specifically, we
3. Mixed Energy Communities let each microgrid find its closest microgrid (with an NE

distance< ¢ and a spatial distanceg ¢') to form an MEC,

Among thousands of microgrids on the power grid, some-Pdate the MEC centroid’s geolocation and net energy, and
of them may have excessive energy while some others may'€"n f:lerarchlcal_lly merge “small MECs” to form “large
request energy from external resources (e.g., main grid]/ECS” (for pursuing better resilience). The merging process
Therefore, adjacent microgrids can share their locally genef€rminates if the NE distance between two MECs’ centroids
ated electricity for reduced energy loss on transmission an§xceeds: or their spatial distance exceeds Algorithm 1
better reliability and resilience of power supply [15], [28]. Presents the details.

Such microgrids can form different energy communities to . .
feed their Igcal energy demands, Whicﬁyare beneficial tgMgorithm 1 MECs Discovery _

both the power grid and individual microgrids. Clearly, the InPut: maximum threshold of the NE distances
net energy of the microgrids in the communities are mixed maximum threshold of the spatial distanags

with negative and positive, thus denoted as “Mixed Energyolu,tp\),lvjrt;ileMai(;Sungrouped microgrich, in m: ma do

Communities” (MECs). 2. initialize a new MEC withm;: ¢; = {m;}
Definition 2 (Mixed Energy Community (MEC)).A set 3:  for each ungrouped microgridh; do _ _
of microgrids whose net energy are mixed with positive 4 compute MECc;’s net energy:E; and its centroid’s

and negative. geolocation;
' if NE(Ej,mi) <eandDis(u;, mi) <€ then

5

The ideal case of the discovered MECs is that all the 6: ¢; = ¢; Umy, (@ddmy, to the MECc;)
microgrids in the same MEC are geographically close to 7: updateE; and p;
each other while balancing the local demand and supply of 8 considering each MEC; as a microgrid with net energys;
each MEC within a tight margin [19] (e.g., zero net energy and geolocatiory;, repeat{ Line 1-7 to hierarchically merge
[4]). In Section 3.1, we propose an algorithm to identify "¢ MECs based onande until convergence
such MECs towards this goal. In Section 3.2, we present )
another algorithm to discover a special form of MECs on  Therefore, the difference of the overall supply and de-

the grid — self-sufficient energy communities (SECs). mand of every MEC is bounded/balanceddynd the spa-
tial distance between any microgrid and its MEC'’s centroid

is bounded by'.

3.1. Discover MECs with Two Distance Thresholds
Similar to the HECs, each microgrich,’s net energy 3.2. Discover Self-sufficient Energy Communities
is denoted ag;, which can be eithepositive or negative.
While grouping two microgrids (e.gm; andm;) into an
MEC, besides the spatial distance between them on the gr o
Dis(mi, m;), we also have to consider their net energy ~ €N€r9Y (e.9., Iarge-scalne blackouts). Therefore, it is also de-
and e, towards the load balancing of their community — sirable EO dlscover the “Self-sufficient Energy Communities
the overall demand and supply should be balanced (ideallSECS)", defined as below.
equal to each other). For example, if one microgrid has &e€finition 3 (Self-sufficient Energy Community (SEC)A
net energye; while the other microgrid has a net energy  set of microgrids with non-negative overall net energy.
demand-—e;, such two microgrids can supply their demand  Ajgorithm 1 identifies the MECs with balanced load and
using their local energy in the same community. Thus, Weyounded spatial distance (layand ¢’ respectively). If the
define a novel measure namely “Net Energy (NE)” distancgyerall power supply of allN microgrids is greater than
of two microgridsm; andm; as: their demand, most of the MECs identified by Algorithm
1 can be SECs. However, if the overall power supply of

Many real world cases require that the microgrids in
gach MEC can fully supply their demand with their local

NE(mi,m;) = |e; + €] 1)
. 1. Microgrids m; and m;’s spatial distanceDis(m;, m;) and net
If e; = —ej, we haveNE(m;,m;) = 0. However, if  energy distancee; + e;| can be normalized intd0, 1], e.g., divided by
e; = e;, we haveNE(m;, m;) = 2|e;|. The NE distance maz(Dis(m;, m;)) and >~ | |e;| respectively.



all N microgrids is significantly less than their demand, generation & consumption datasets. First, the spatial dataset
many MECs identified by Algorithm 1 may not be able of 115,475 cities/towns in the U.S. was collected by the
to feed themselves. To address this issue, we develop @S Geological Survey on July 7, 2012 and is available in
novel algorithm to discover a subset of microgrids to formNational Imagery and Mapping Agency [1]. Second, two
a number of SECs out oV microgrids. If the net energy power generation & consumption datasets were collected
turns larger, more microgrids (up to @l microgrids) will by Richardson et al. [26] in East Midlands, UK and Barker
be involved in the SECs. et al. [6] in Massachusetts, US respectively. In our exper-
Specifically, among all thév microgrids, we denote the iments, we integrate the spatial dataset with each of the
set of microgrids with positive net energy a¢*, and the power generation & consumption datasets. Table 2 shows
set of microgrids with negative net energy as—. The the characteristics of the datasets.
algorithm first clusters all the microgrids i/~ based on

their geolocations, where each cluster can be considered as TABLE 2. CHARACTERISTICS OFDATASETS

a “bigger microgrid” with aggregated positive net energy. Datasets Characteristics

In this stage, we extend the K-Means algorithm [24] to Spatial Data 115,475 unique geolocations
cluster such microgrids’ geolocations by specifying different 16 660 microgrids

K € {Kmin, -, Kmas}. Then, the algorithm repeats K- UK Dataset average consumption rate: 953

Means with differentK’ values and chooses the best clus-
tering result — the minimum sum of squared errors (SSE) of
the spatial distances [30] in all the clustering results.
Denoting clustering result af/* ascj, . .., ¢}, the net
energy of any clusterj € [1, K], ¢j can be aggregated

as ZVmiec; e;. Then,Vj € [1, K], c; iteratively adds its

Consumption (Watts) | max consumption rate: 2,891

min consumption rate: 140

6,480 microgrids

average generation rate: 776
UMass Dataset average consumption rate: 1,045

Generation/Consumption max generation rate: 1,250

centroid’s closest ungrouped microgrid A4~ until its net (Watts) max consumption rate: 2,147
energy drops close to. Finally, the updated;, ..., cj are min generation rate: 355
identified asK different SECs, as shown in Algorithm 2. min consumption rate: 192
Algorithm 2 SECs Discovery Normalization. We use Euclidean distance to measure the
Input: M*: set of microgrids with positive net energy spatial distance between any two microgrids on the grid.
M set of microgrids with negative net energy Both the Euclidean distances and the net energy (NE) dis-
{Kmin, ..., Kmaz} : possible values foK tances are normalized inf0, 1] in all the experiments.
Output: SECs
1. for K = Knmin, ..., Kmaz dO . .
2 run K-Means for all microgrids inM* based on their 4.2. Discovering HECs
geolocations to obtaini,...,cx N The algorithms have identical performance to discover
3: choose the best clustering result with the minimum SSE for,

HECs with negative and positive net energy. Without loss
of generality, we evaluate the case of negative net energy
(external demand) for discovering HECs.

We first implement the K-Means algorithm [18] and L-
DBSCAN to discover HECs from 16,060 microgrids, and
then aggregate the external demand in each HEC. In litera-

different K: cj, ..., ck
4: for j € [1, K] do
5:  compute the centroid of; asyu;
6:  while vaec; e; > 0do
7 find 11}’s closest ungrouped microgrid i/ ~, denoted
asmrg

g: ¢ = ¢t Umy (addmy to the SECe;) ture, the performance of K-Means and DBSCAN algorithm

o: updatec;’s net energy:y",,. .. ei+ = ej and on clustering has been well studied using measures such
0. if Vms € M~ are grouped, then break as sum of squared errors (SSE) and sHhouette coefficient
11: return the updated:, ..., ¢ as SECs [30] to evaluate the cohesion and separation of the clusters.

Therefore, we do not report the spatial cohesion and sep-
aration of the HECs on the grid here. Figure 1 shows the

. o . .
Note that all the microgrids id/™ are involved in the external demand of the discovered HECs in two different

SECs, but not all the microgrids il — (depending on the cases
net energy of the microgrids ih/+ and A/ ~). Furthermore, :

7 - First, as shown in Figure 1(a), the average, maximum
the net energy of most self-sufficient communities can be T .
N i and minimum external demands of the HECs decline as
well balanced to form “Zero Net Energy

communities [8]. K increases, where parametir varies € [50, 800]. Note
that if K = 50, a large HEC { 1,250 microgrids) can

4. Experiments be identified to request external energy (with an amount
_ ~ 108 Watts), then the external demands of the HECs drop
4.1. Experimental Setup significantly asK increases.

Second, while using L-DBSCAN to discover HECs with
Datasets.Our experimental simulations were conducted onnegative energy, we set a reasonable value for the normal-
three real world datasets: a spatial dataset and two powézed minimum distance (Euclideam)= 0.1 and the core
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Figure 1. External Demand of the Discovered HECs

microgrid’s minimum number of neighborsiin = 10. of which includes 2,000 microgrids and has positive and
Table 3 presents the number of discovered HECs in th@egative net energy respectively. For simplicity of notations,
same experimental setting. We can observe that the numb#rese two subsets of microgrids are named as “Positive” and
of HECs decreases af increases, because each HEC“Negative” respectively.

can involve more reachable microgrids with a highler First, we implement Algorithm 1 witke € [0.03,0.3]
Furthermore, Figure 1(b) shows the average, maximum andthere the normalized spatial distance threshdli fixed
minimum external demands of all the HECs. The maximumas a reasonable valu®05. Then, Figure 2(a) shows the
external demand of all the HECs always equélssince  average, maximum and minimum net energy of all the com-
the net energy bound is the major constraint besides the munities generated from “Positive” wheres [0.03, 0.3]. As
distances of microgrids’ geolocations. However, the average drops from 0.3 to 0.03, the allowed maximum differences
and minimum external demand of all the HECs tend flat adetween the overall demand and overall supply in every
L increases. In reality, the HEC with the minimum externalMEC decline significantly. The average, maximum and min-
demand only includes a small number of microgrids, wherédmum net energy then decrease close to O aecreases.
not many microgrids can be reachable from other (core)hus, the demand and supply of the MECs become better
microgrids. Thus, the minimum external demand of suchbalanced with a net energy closer to 0. On the contrary,

HEC is far less tharl in general. Figure 2(b) demonstrates the results for “Negative”, which
present a reverse trend as “Positive”, but still tend to better
TABLE 3. NUMBER OFHECS FORL balanced load (net energy lies closer to Ox atecreases.

Second, we fixe = 1 and ¢’ = 0.05 in Algorithm 1,

Lsgvgétg # O';QSECS is\{)v?)t(t)?) # OfG'é'ECS which then removes the constraint of NE distances and turns
60,000 207 160,000 62 into a regular agglomerative clustering problem based on
70,000 181 170,000 55 geolocations. Then, we compute the SSE in such case as
80,000 154 180,000 52 the benchmark SSE (say SSEj) and test how the spatial
B o oo e distances (viz. SSE) within each MEC vary for different
110,000 92 210.000 43 levels of balanced load (differenf). Specifically, we fix
120,000 85 220,000 42 ¢ =1 (then Algorithm 1 only specifies the maximum NE
130,000 77 230,000 40 distance threshold and ignores spatial distances), generate
140,000 1 240,000 39 the MECs withe € [0.03,0.3] for two inputs “Positive”
and “Negative” respectively, and compute the corresponding
_ SSE for each MEC. Then, we define a new measure SSE
4.3. MECs Discovery ratio as22E- and plot all the results in Figure 3. Clearly, the

SSE
SSE increases asdeclines — an MEC with better balanced

We conduct the experiments for the MECs discoveryload would include the furthest microgrids from each other
algorithm on the UMass Smart* Microgrid dataset [6]. if not bounding the spatial distances within each MEC.

4.3.1. Discovering MECs withe and ¢’. Recall that the net 4.3.2. SECs Discoveryin the experimental dataset, 34.4%
energy of all the 6,480 microgrids (overall power generation(2,229) and 65.6% (4,251) of the 6,480 microgrids have
minus overall power consumption) iegative. To test the positive and negative net energy respectively (leading to
effectiveness of Algorithm 1 in two different cases (1) pos-negative overall net energy). We implement Algorithm
itive net energy and (2) negative net energy, we extract tw@ on all 6,480 microgrids to discover the SECs, where
subgroups of microgrids from the 6,480 microgrids, eachK = {50,60,...,200}. The characteristics of the discov-
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Figure 2. MECs Discovery

SSE Ratio respectively. Specifically, two HECs discovery algorithms

30 (K-Means and L-DBSCAN) are extremely efficient with
u SSE Ratio (Positive) fixed parameters (e.g., HECs number in the K-Means, three

20 OSSE Ratio (Negative) parameters in the L-DBSCAN). For discovering MECs and

SECs, Algorithm 1 hierarchically groups close microgrids
10 and merge the communities, and Algorithm 2 identifies the
optimal communities with positive net energy for different
K. Thus, they need relatively more runtime than K-Means
SSE, 0.3 0.27 0.24 0.21 0.18 0.15 0.12 0.09 0.06 0.03 and L-DBSCAN. Indeed, in Algorithm 2, clustering is only
€ applied to the microgrids with positive net energy. Also,
the step of finding microgrids with negative net energy in
Algorithm 2 is highly efficient with a complexity oD ().
Thus, both Algorithm 1 and 2 are still efficient, as shown

Figure 3. SSE Ratio vs. Normalized Net Energy Distance Tulelse

ered SECs are depicted in Table 4. in Figure 4.
TABLE 4. SELF-SUFFICIENTENERGY COMMUNITIES Runtime (Sec)
400
average net energy of all the SECs 47.6 KM
max net energy of all the SECs 127 300 ——L-DBSCAN

min net energy of all the SECs 0

number of SECs (all positive net energy): bést | 90
number of micorgrids in all the SECs 3,923| 100
average number of microgrids in the SECs 42.5
microgrids (with positive net energy) in the SECs2,229 0
microgrids (with negative net energy) in the SEC4,694

200 -=-MEC

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
# of Microgrids

While discovering the SECs, all the 2,229 microgrids
with positive net energy are clustered to form the commu-
nities of energy resources, and their electricity can supply
additional 1,694 _microgrids with negative net energy. The5_ Conclusion and Future Work
average and maximum net energy of all the communities aré
quite close to 0. This proves that the demand and supply of Energy communities formed by distributed energy re-
most SECs are well balanced (with net energy close to O)sources (viz. microgrids) could facilitate the power grid
to advance energy management and enable microgrids to
find cooperative peer microgrids (e.g., sharing energy). In
this paper, we have proposed a series of approaches to

Finally, we evaluated the computational performancedentify different energy communities for the microgrids,
of all the algorithms based on different input sizes (num-including homogeneous energy communities, mixed energy
ber of microgrids), and plotted the results in Figure 4.communities and self-sufficient energy communities. We
Note that KM, L-DBSCAN, MEC, and SEC denote K- have also validated the effectiveness and efficiency of the
Means, L-DBSCAN, MECs Discovery, and SECs Discoveryapproaches using real world datasets.

Figure 4. Computational Performance

4.4. Efficiency



From the economic perspective, not all the microgrids[14]
would be willing to share their excessive energy without
benefits. For this reason, we plan to investigate the energ
community discovery problems from an economic perspectt®
tive, e.g., microgrids can sell their energy to each other
at different times. Moreover, such local energy trade may, 5
also affect the global electric prices provided by the utility
companies. In the future, we will explore effective models
for the above research problems. Furthermore, beyond dist7]
covering communities based on the static energy generation
and consumption at specific times, we will explore stochastic
optimization models for energy community discovery based!8
on time series power generation and consumption. Finally,
the process of discovering energy communities requests all
the microgrids to fully disclose their local data (i.e., demand; g
and supply) to a trusted-third party, and thus results in
privacy concerns in centralized [12] or distributed environ-
ment [13], [14], we plan to explore solutions to tackle such[20]
concerns in the future.
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