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Abstract—Smart grid has integrated an increasing number
of distributed energy resources to improve efficiency and
flexibility of power generation and consumption as well as
the resilience of the power grid. The energy consumers on
the power grid (e.g., households) equipped with distributed
energy resources can be considered as “microgrids” that both
generate and consume electricity. To facilitate energy manage-
ment, in this paper, we study the energy community discovery
problems which identify multiple kinds of communities for the
microgrids, such as homogeneous energy community (HEC),
mixed energy community (MEC) and self-sufficient energy
community (SEC). We present algorithms to discover such
energy communities for microgrids, and finally experimentally
validate the performance of the algorithms using real datasets.

1. Introduction

Smart grid superposes a communication network on top
of the electrical power network allowing massive sensor data
collection from the grid as well as two-way metering of
power for users [11]. While collecting and transmitting data
across the grid, it allows for the integration of renewable
energy resources at the individual consumer level [7]. It
creates a paradigm where any individual consumer on the
grid can also be a supplier of power: this facilitates the
creation of microgrids. Microgrids are localized grids that
can be separated from the larger power grid to operate
autonomously and be self-sufficient in power. A microgrid
typically consists of renewable (wind turbines, solar pan-
els, etc.) and/or non-renewable (micro-turbines, fuel cells,
etc.) energy resources, energy storage devices, and energy
consuming devices/appliances, all of which are connected
through a power and communication network [27]. A micro-
grid can be operated in a grid with the connected or islanded
mode. In the islanded mode, it could be connected to other
microgrids or operate independently. Therefore, microgrids
can provide energy independence to individual communities
or entities who intend to manage their own power generation
and distribution [21]. Moreover, microgrids can provide

resilience against large-scale failures across the grid: they
can continue to operate if large-scale blackouts occur [21].

With autonomous energy, every microgrid may fully or
partially feed their local demand. More importantly, numer-
ous microgrids would have great flexibility to utilize their
local energy (i.e., sharing) to collaboratively advance the
energy management on the power grid, e.g., load balancing
[19], energy exchange [28], and load shifting [17], [22].
Therefore, it is desirable to discover various microgrid com-
munities that can efficiently implement their cooperation on
the grid [20]. More specifically, based on every microgrid’s
local energy amount (supply) and its local consumption
amount (demand load), we can derive itsNet Energy as
the amount of supply minus the demand load, which can
be eitherpositive or negative over a specified period for
the energy supply and demand (from short-term to long-
term). In this paper, given the net energy of microgrids, we
study the problem of discovering different types of energy
communities to facilitate different applications on the power
grid (specific energy communities are defined in Section 2
and 3, respectively).

1.1. Literature Review

As the key building blocks on the smart grid, micro-
grids have attracted significant interests in both industry
and academia in the past decade. In such context, many
recent research were conducted to design microgrids and/or
energy management schemes so as to improve the grid
performance, such as load management [2], and demand
response solutions [16], [29]. In addition, analysis of data
collected from distributed microgrids (e.g., demand load,
energy generation and storage) has advanced the energy
management of the grid and individual microgrids [23],
e.g., short term load forecasting for microgrids [3], and load
shifting [22].

Furthermore, some cooperative models among dis-
tributed microgrids have been investigated in multiple ap-
plications, e.g., optimizing the power loss via a unified
microgrid voltage profile [25], eliminating the central en-
ergy management unit and price coordinator via localized
smart devices [5], and load management via exchanging



and sharing local electricity [15], [28]. In this paper, we
develop techniques to identify microgrid communities which
can directly implement all these cooperations within each
energy community to further advance grid performance.

Notice that the energy community discovery problems
are significantly different from the prior community discov-
ery problems studied in other contexts, such as geolocations
in the spatial data [9] and social graphs [31]. The key
difference is that the criteria ofgrouping two microgrids into
the same energy community should consider not only the
spatial distances on the power grid but also their individual
net energy amounts. Moreover, some additional constraints
may apply in real world, for example, (1) due to limited
power supply to each of the discovered communities, the
overall demand load of each community may have an upper
bound, (2) in some communities, the difference between
the overall demand and supply in each community might
be required to be bounded to a small number (for optimiz-
ing the performance of the power grid) [19], or (3) some
communities may need to possess a non-negative overall net
energy to be self-sufficient. In this paper, we will investigate
and tackle the above problems.

The rest of this paper is organized as follows. Section 2
and 3 illustrate how to discover different HECs, MECs and
SECs. Section 4 presents the experimental results conducted
on real world microgrid datasets. Finally, Section 5 gives the
concluding remarks and discusses the future work.

2. Homogeneous Energy Communities

TABLE 1. FREQUENTLY USED NOTATIONS AND ACRONYMS

HEC homogeneous energy community
MEC mixed energy community
SEC self-sufficient energy community
mi, ei microgrid and its net energy

Dis(mi,mj) distance between two microgrids on the grid
cj an energy community

NE(mi,mj) net energy distance of two microgrids
M+ set of microgrids with positive net energy
M− set of microgrids with negative net energy

We first look at the case that all the microgrids have
excessive local energy (positive net energy), or all of them
have to request external demand (negative net energy). Such
community is defined as below.
Definition 1 (Homogeneous Energy Community (HEC)).

A set of microgrids whose net energy are exclusively
positive; or exclusively negative.

2.1. Discovering Fixed Number of HECs

In real world, the smart grid may plan to partition
a set of homogeneous microgrids (exclusively positive or
negative) into a fixed number of HECs. For instance, the
grid intends to placeK groups of new generators atK
different substations respectively to provide power supply to
some newly established microgrids (e.g., new constructions),

then it is desirable to partition a set of microgrids with
negative net energy into K different HECs such that the
grid can increase the power supply to those HECs; or the
grid plans to partition a set of microgrids withpositive
net energy into K different HECs such that the grid can
establishK different energy banks to store the excessive
energy at different locations respectively.

At this time, the grid will try to identifyK different
HECs on the power grid. Then, this energy community
discovery problem can be considered as a clustering prob-
lem based on the distances of microgrids’ geolocations on
the electricity transmission network, where the number of
clusters is given asK and the net energy of each HEC
can be aggregated. The classic K-Means algorithm [24] can
efficiently generateK HECs amongN microgrids based on
their distances on the power grid.

For all j ∈ [1,K], any HEC cj ’s net energy can be
aggregated asEj =

∑
∀mi∈cj

ei. Then, such HECs could
help the power grid better manage their energy. For instance,
if ∀i ∈ [1, N ], ei < 0, K new energy resources with power
supply amount∀j ∈ [1,K], |Ej| will be placed at the closest
substations to the centroids of the HECs respectively.

2.2. Discovering HECs with Bounded Net Energy

Some real world constraints may require that each
HEC’s net energy (either positive or negative) should be
bounded, e.g., the external supply to every HEC is limited
due to capacity of generators. In these cases, the number
of communities is unknown and some additional constraints
should apply – i.e., in each HEC, if the HEC’s net energy
is positive, then it cannot exceed a positive upper boundL;
otherwise (negative net energy), it cannot be less than−L
(viz. each HEC’s external demand is no greater thanL).

Without loss of generality, we consider the negative
energy case – the external demand of each HEC should be
bounded byL. To find such HECs, we extend the Density-
based Spatial Clustering of Applications with Noise (DB-
SCAN) algorithm [10] to “L-DBSCAN” by adding an upper
boundL for the external demand of each HEC. Specifically,
three different microgrids can be defined [10]:

• Core microgrid : a microgridmi has at leastmin
microgrids within distanceǫ of it on the grid.

• Reachable microgrid: a microgridmj is reachable
from microgrid mi if there is a pathmi, . . . ,mj ,
where the next microgrid is directly reachable from
the previous microgrid on the path and all the mi-
crogrid exceptmj are core microgrids.

• Outlier : not reachable from any other microgrids.

The basic idea of DBSCAN algorithm is to group to-
gether reachable microgrids by reaching them from the
core microgrids: scanning neighbor microgrids from the
core microgrids. However, different from the DBSCAN
algorithm [10], discovering HECs should take into account
each microgrid’s external demand (∀i ∈ [1, N ], |ei|) as well
as the spatial distances on the grid. Our L-DBSCAN algo-
rithm first groups microgrids based on the spatial distances



between their geolocations (similar to DBSCAN). Then,
with the bounded external demandL of each HEC, the L-
DBSCAN algorithm will stop scanning microgrids for the
current HEC once its aggregated external demand gets close
to L, and then initialize a new HEC to continue scanning
the microgrids based on their geolocations. Finally, all the
outliers should be assigned to their nearest communities if
the updated external load remains no greater thanL. If no
such communities found, L-DBSCAN groups the outliers to
form new HECs.

3. Mixed Energy Communities

Among thousands of microgrids on the power grid, some
of them may have excessive energy while some others may
request energy from external resources (e.g., main grid).
Therefore, adjacent microgrids can share their locally gener-
ated electricity for reduced energy loss on transmission and
better reliability and resilience of power supply [15], [28].
Such microgrids can form different energy communities to
feed their local energy demands, which are beneficial to
both the power grid and individual microgrids. Clearly, the
net energy of the microgrids in the communities are mixed
with negative and positive, thus denoted as “Mixed Energy
Communities” (MECs).
Definition 2 (Mixed Energy Community (MEC)).A set

of microgrids whose net energy are mixed with positive
and negative.

The ideal case of the discovered MECs is that all the
microgrids in the same MEC are geographically close to
each other while balancing the local demand and supply of
each MEC within a tight margin [19] (e.g., zero net energy
[4]). In Section 3.1, we propose an algorithm to identify
such MECs towards this goal. In Section 3.2, we present
another algorithm to discover a special form of MECs on
the grid – self-sufficient energy communities (SECs).

3.1. Discover MECs with Two Distance Thresholds

Similar to the HECs, each microgridmi’s net energy
is denoted asei, which can be eitherpositive or negative.
While grouping two microgrids (e.g.,mi andmj) into an
MEC, besides the spatial distance between them on the grid
Dis(mi,mj), we also have to consider their net energyei
and ej towards the load balancing of their community –
the overall demand and supply should be balanced (ideally,
equal to each other). For example, if one microgrid has a
net energyei while the other microgrid has a net energy
demand−ei, such two microgrids can supply their demand
using their local energy in the same community. Thus, we
define a novel measure namely “Net Energy (NE)” distance
of two microgridsmi andmj as:

NE(mi,mj) = |ei + ej| (1)

If ei = −ej, we haveNE(mi,mj) = 0. However, if
ei = ej , we haveNE(mi,mj) = 2|ei|. The NE distance

differs from other distance measures used in community
discovery problems due to its unique feature: two opposite
values (e.g.,ei and−ei) are measured as “close”.

For MECs discovery, we definetwo maximum distance
thresholds for the normalized NE distances and the nor-
malized spatial distances respectively1: ǫ, ǫ′ ∈ [0, 1]. Then,
we propose a novel agglomerative algorithm [30] to iden-
tify MECs by utilizing ǫ and ǫ′ to specify the criteria
for bounding the differences between the overall supply
and demand of each community and the spatial distances
between the microgrids in each community. Specifically, we
let each microgrid find its closest microgrid (with an NE
distance≤ ǫ and a spatial distance≤ ǫ′) to form an MEC,
update the MEC centroid’s geolocation and net energy, and
then hierarchically merge “small MECs” to form “large
MECs” (for pursuing better resilience). The merging process
terminates if the NE distance between two MECs’ centroids
exceedsǫ or their spatial distance exceedsǫ′. Algorithm 1
presents the details.

Algorithm 1 MECs Discovery
Input: maximum threshold of the NE distancesǫ

maximum threshold of the spatial distancesǫ′

Output: MECs
1: while any ungrouped microgridmi in m1, . . . ,mN do
2: initialize a new MEC withmi: cj = {mi}
3: for each ungrouped microgridmk do
4: compute MECcj ’s net energy:Ej and its centroid’s

geolocationµj

5: if NE(Ej ,mk) ≤ ǫ andDis(µj ,mk) ≤ ǫ′ then
6: cj = cj ∪mk (addmk to the MECcj )
7: updateEj andµj

8: considering each MECcj as a microgrid with net energyEj

and geolocationµj , repeat Line 1-7 to hierarchically merge
the MECs based onǫ and ǫ′ until convergence

Therefore, the difference of the overall supply and de-
mand of every MEC is bounded/balanced byǫ, and the spa-
tial distance between any microgrid and its MEC’s centroid
is bounded byǫ′.

3.2. Discover Self-sufficient Energy Communities

Many real world cases require that the microgrids in
each MEC can fully supply their demand with their local
energy (e.g., large-scale blackouts). Therefore, it is also de-
sirable to discover the “Self-sufficient Energy Communities
(SECs)”, defined as below.
Definition 3 (Self-sufficient Energy Community (SEC)).A

set of microgrids with non-negative overall net energy.

Algorithm 1 identifies the MECs with balanced load and
bounded spatial distance (byǫ and ǫ′ respectively). If the
overall power supply of allN microgrids is greater than
their demand, most of the MECs identified by Algorithm
1 can be SECs. However, if the overall power supply of

1. Microgrids mi and mj ’s spatial distanceDis(mi,mj) and net
energy distance|ei + ej | can be normalized into[0, 1], e.g., divided by
max(Dis(mi,mj)) and

∑N
i=1

|ei| respectively.



all N microgrids is significantly less than their demand,
many MECs identified by Algorithm 1 may not be able
to feed themselves. To address this issue, we develop a
novel algorithm to discover a subset of microgrids to form
a number of SECs out ofN microgrids. If the net energy
turns larger, more microgrids (up to allN microgrids) will
be involved in the SECs.

Specifically, among all theN microgrids, we denote the
set of microgrids with positive net energy asM+, and the
set of microgrids with negative net energy asM−. The
algorithm first clusters all the microgrids inM+ based on
their geolocations, where each cluster can be considered as
a “bigger microgrid” with aggregated positive net energy.
In this stage, we extend the K-Means algorithm [24] to
cluster such microgrids’ geolocations by specifying different
K ∈ {Kmin, . . . ,Kmax}. Then, the algorithm repeats K-
Means with differentK values and chooses the best clus-
tering result – the minimum sum of squared errors (SSE) of
the spatial distances [30] in all the clustering results.

Denoting clustering result ofM+ asc∗1, . . . , c
∗
K , the net

energy of any cluster∀j ∈ [1,K], c∗j can be aggregated
as

∑
∀mi∈c∗

j
ei. Then, ∀j ∈ [1,K], c∗j iteratively adds its

centroid’s closest ungrouped microgrid inM− until its net
energy drops close to0. Finally, the updatedc∗1, . . . , c

∗
K are

identified asK different SECs, as shown in Algorithm 2.

Algorithm 2 SECs Discovery

Input: M+: set of microgrids with positive net energy
M−: set of microgrids with negative net energy
{Kmin, . . . ,Kmax} : possible values forK

Output: SECs
1: for K = Kmin, . . . ,Kmax do
2: run K-Means for all microgrids inM+ based on their

geolocations to obtainc1, . . . , cK
3: choose the best clustering result with the minimum SSE for

differentK: c∗1, . . . , c
∗
K

4: for j ∈ [1, K] do
5: compute the centroid ofc∗j asµ∗

j

6: while
∑

∀mi∈c∗
j
ei ≥ 0 do

7: find µ∗
j ’s closest ungrouped microgrid inM−, denoted

asmk

8: c∗j = c∗j ∪mk (addmk to the SECcj )
9: updatec∗j ’s net energy:

∑
∀mi∈c∗

j
ei+ = ek andµ∗

j

10: if ∀mk ∈ M− are grouped, then break
11: return the updatedc∗1, . . . , c

∗
K as SECs

Note that all the microgrids inM+ are involved in the
SECs, but not all the microgrids inM− (depending on the
net energy of the microgrids inM+ andM−). Furthermore,
the net energy of most self-sufficient communities can be
well balanced to form “Zero Net Energy” communities [8].

4. Experiments

4.1. Experimental Setup

Datasets.Our experimental simulations were conducted on
three real world datasets: a spatial dataset and two power

generation & consumption datasets. First, the spatial dataset
of 115,475 cities/towns in the U.S. was collected by the
US Geological Survey on July 7, 2012 and is available in
National Imagery and Mapping Agency [1]. Second, two
power generation & consumption datasets were collected
by Richardson et al. [26] in East Midlands, UK and Barker
et al. [6] in Massachusetts, US respectively. In our exper-
iments, we integrate the spatial dataset with each of the
power generation & consumption datasets. Table 2 shows
the characteristics of the datasets.

TABLE 2. CHARACTERISTICS OFDATASETS

Datasets Characteristics
Spatial Data 115,475 unique geolocations

16,060 microgrids
UK Dataset average consumption rate: 953

Consumption (Watts) max consumption rate: 2,891
min consumption rate: 140
6,480 microgrids
average generation rate: 776

UMass Dataset average consumption rate: 1,045
Generation/Consumption max generation rate: 1,250

(Watts) max consumption rate: 2,147
min generation rate: 355
min consumption rate: 192

Normalization. We use Euclidean distance to measure the
spatial distance between any two microgrids on the grid.
Both the Euclidean distances and the net energy (NE) dis-
tances are normalized into[0, 1] in all the experiments.

4.2. Discovering HECs

The algorithms have identical performance to discover
HECs with negative and positive net energy. Without loss
of generality, we evaluate the case of negative net energy
(external demand) for discovering HECs.

We first implement the K-Means algorithm [18] and L-
DBSCAN to discover HECs from 16,060 microgrids, and
then aggregate the external demand in each HEC. In litera-
ture, the performance of K-Means and DBSCAN algorithm
on clustering has been well studied using measures such
as sum of squared errors (SSE) and silhouette coefficient
[30] to evaluate the cohesion and separation of the clusters.
Therefore, we do not report the spatial cohesion and sep-
aration of the HECs on the grid here. Figure 1 shows the
external demand of the discovered HECs in two different
cases.

First, as shown in Figure 1(a), the average, maximum
and minimum external demands of the HECs decline as
K increases, where parameterK varies∈ [50, 800]. Note
that if K = 50, a large HEC (∼ 1, 250 microgrids) can
be identified to request external energy (with an amount
∼ 106 Watts), then the external demands of the HECs drop
significantly asK increases.

Second, while using L-DBSCAN to discover HECs with
negative energy, we set a reasonable value for the normal-
ized minimum distance (Euclidean)ǫ = 0.1 and the core
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microgrid’s minimum number of neighborsmin = 10.
Table 3 presents the number of discovered HECs in the
same experimental setting. We can observe that the number
of HECs decreases asL increases, because each HEC
can involve more reachable microgrids with a higherL.
Furthermore, Figure 1(b) shows the average, maximum and
minimum external demands of all the HECs. The maximum
external demand of all the HECs always equalsL since
the net energy boundL is the major constraint besides the
distances of microgrids’ geolocations. However, the average
and minimum external demand of all the HECs tend flat as
L increases. In reality, the HEC with the minimum external
demand only includes a small number of microgrids, where
not many microgrids can be reachable from other (core)
microgrids. Thus, the minimum external demand of such
HEC is far less thanL in general.

TABLE 3. NUMBER OF HECS FORL

L Watts # of HECs L Watts # of HECs
50,000 233 150,000 66
60,000 207 160,000 62
70,000 181 170,000 55
80,000 154 180,000 52
90,000 129 190,000 47
100,000 107 200,000 46
110,000 92 210,000 43
120,000 85 220,000 42
130,000 77 230,000 40
140,000 71 240,000 39

4.3. MECs Discovery

We conduct the experiments for the MECs discovery
algorithm on the UMass Smart* Microgrid dataset [6].

4.3.1. Discovering MECs withǫ and ǫ′. Recall that the net
energy of all the 6,480 microgrids (overall power generation
minus overall power consumption) isnegative. To test the
effectiveness of Algorithm 1 in two different cases (1) pos-
itive net energy and (2) negative net energy, we extract two
subgroups of microgrids from the 6,480 microgrids, each

of which includes 2,000 microgrids and has positive and
negative net energy respectively. For simplicity of notations,
these two subsets of microgrids are named as “Positive” and
“Negative” respectively.

First, we implement Algorithm 1 withǫ ∈ [0.03, 0.3]
where the normalized spatial distance thresholdǫ′ is fixed
as a reasonable value0.05. Then, Figure 2(a) shows the
average, maximum and minimum net energy of all the com-
munities generated from “Positive” whereǫ ∈ [0.03, 0.3]. As
ǫ drops from 0.3 to 0.03, the allowed maximum differences
between the overall demand and overall supply in every
MEC decline significantly. The average, maximum and min-
imum net energy then decrease close to 0 asǫ decreases.
Thus, the demand and supply of the MECs become better
balanced with a net energy closer to 0. On the contrary,
Figure 2(b) demonstrates the results for “Negative”, which
present a reverse trend as “Positive”, but still tend to better
balanced load (net energy lies closer to 0) asǫ decreases.

Second, we fixǫ = 1 and ǫ′ = 0.05 in Algorithm 1,
which then removes the constraint of NE distances and turns
into a regular agglomerative clustering problem based on
geolocations. Then, we compute the SSE in such case as
the benchmark SSE (say SSE0) and test how the spatial
distances (viz. SSE) within each MEC vary for different
levels of balanced load (differentǫ). Specifically, we fix
ǫ′ = 1 (then Algorithm 1 only specifies the maximum NE
distance thresholdǫ and ignores spatial distances), generate
the MECs with ǫ ∈ [0.03, 0.3] for two inputs “Positive”
and “Negative” respectively, and compute the corresponding
SSE for each MEC. Then, we define a new measure SSE
ratio as SSE

SSE0

and plot all the results in Figure 3. Clearly, the
SSE increases asǫ declines – an MEC with better balanced
load would include the furthest microgrids from each other
if not bounding the spatial distances within each MEC.

4.3.2. SECs Discovery.In the experimental dataset, 34.4%
(2,229) and 65.6% (4,251) of the 6,480 microgrids have
positive and negative net energy respectively (leading to
negative overall net energy). We implement Algorithm
2 on all 6,480 microgrids to discover the SECs, where
K = {50, 60, . . . , 200}. The characteristics of the discov-
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ered SECs are depicted in Table 4.

TABLE 4. SELF-SUFFICIENTENERGY COMMUNITIES

average net energy of all the SECs 47.6
max net energy of all the SECs 127
min net energy of all the SECs 0
number of SECs (all positive net energy): bestK 90
number of micorgrids in all the SECs 3,923
average number of microgrids in the SECs 42.5
microgrids (with positive net energy) in the SECs2,229
microgrids (with negative net energy) in the SECs1,694

While discovering the SECs, all the 2,229 microgrids
with positive net energy are clustered to form the commu-
nities of energy resources, and their electricity can supply
additional 1,694 microgrids with negative net energy. The
average and maximum net energy of all the communities are
quite close to 0. This proves that the demand and supply of
most SECs are well balanced (with net energy close to 0).

4.4. Efficiency

Finally, we evaluated the computational performance
of all the algorithms based on different input sizes (num-
ber of microgrids), and plotted the results in Figure 4.
Note that KM, L-DBSCAN, MEC, and SEC denote K-
Means, L-DBSCAN, MECs Discovery, and SECs Discovery

respectively. Specifically, two HECs discovery algorithms
(K-Means and L-DBSCAN) are extremely efficient with
fixed parameters (e.g., HECs number in the K-Means, three
parameters in the L-DBSCAN). For discovering MECs and
SECs, Algorithm 1 hierarchically groups close microgrids
and merge the communities, and Algorithm 2 identifies the
optimal communities with positive net energy for different
K. Thus, they need relatively more runtime than K-Means
and L-DBSCAN. Indeed, in Algorithm 2, clustering is only
applied to the microgrids with positive net energy. Also,
the step of finding microgrids with negative net energy in
Algorithm 2 is highly efficient with a complexity ofO(N).
Thus, both Algorithm 1 and 2 are still efficient, as shown
in Figure 4.
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5. Conclusion and Future Work

Energy communities formed by distributed energy re-
sources (viz. microgrids) could facilitate the power grid
to advance energy management and enable microgrids to
find cooperative peer microgrids (e.g., sharing energy). In
this paper, we have proposed a series of approaches to
identify different energy communities for the microgrids,
including homogeneous energy communities, mixed energy
communities and self-sufficient energy communities. We
have also validated the effectiveness and efficiency of the
approaches using real world datasets.



From the economic perspective, not all the microgrids
would be willing to share their excessive energy without
benefits. For this reason, we plan to investigate the energy
community discovery problems from an economic perspec-
tive, e.g., microgrids can sell their energy to each other
at different times. Moreover, such local energy trade may
also affect the global electric prices provided by the utility
companies. In the future, we will explore effective models
for the above research problems. Furthermore, beyond dis-
covering communities based on the static energy generation
and consumption at specific times, we will explore stochastic
optimization models for energy community discovery based
on time series power generation and consumption. Finally,
the process of discovering energy communities requests all
the microgrids to fully disclose their local data (i.e., demand
and supply) to a trusted-third party, and thus results in
privacy concerns in centralized [12] or distributed environ-
ment [13], [14], we plan to explore solutions to tackle such
concerns in the future.
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