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Abstract—Severe privacy leakage in the AOL search log incident has attracted considerable worldwide attention. However, all the web

users’ daily search intents and behavior are collected in such data, which can be invaluable for researchers, data analysts and law

enforcement personnel to conduct social behavior study [14], criminal investigation [5] and epidemics detection [10]. Thus, an

important and challenging research problem is how to sanitize search logs with strong privacy guarantee and sufficiently retained utility.

Existing approaches in search log sanitization are capable of only protecting the privacy under a rigorous standard [24] or maintaining

good output utility [25]. To the best of our knowledge, there is little work that has perfectly resolved such tradeoff in the context of

search logs, meeting a high standard of both requirements. In this paper, we propose a sanitization framework to tackle the above issue

in a distributed manner. More specifically, our framework enables different parties to collaboratively generate search logs with boosted

utility while satisfying Differential Privacy. In this scenario, two privacy-preserving objectives arise: first, the collaborative sanitization

should satisfy differential privacy; second, the collaborative parties cannot learn any private information from each other. We present an

efficient protocol –Collaborative sEarch Log Sanitization (CELS) to meet both privacy requirements. Besides security/privacy and cost

analysis, we demonstrate the utility and efficiency of our approach with real data sets.

Index Terms—Search log, differential privacy, sampling, optimization, secure multiparty computation
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1 INTRODUCTION

WEB search logs contain a large volume of Internet
users’ posed queries and clicked urls. Such data gives

great insight into human behavior via their search intents,
then it can be used to examine the observed patterns of
human behavior as well as to draw important predictive
inferences, e.g., predicting the pattern of flu spread during
the flu-season, estimating the customer needs and market
trends, and identifying the popularity of electoral candi-
dates and economic confidence. Search engines themselves
use it to improve ranking [21], detect common spelling
errors [2], and recommend similar queries [7]. Researchers,
data analysts and law enforcement personnel also analyze it
for deriving the human living habits [14], investigating
criminal activities [5] or detecting epidemics [10]. It is
also an important tool for the government for shaping pub-
lic policy based on user concerns and opinions captured
through web logs.

There are millions of search queries each day and the
information is logged and stored for analysis. However, one
problem with the storage and the possible release of search
logs is the potential for privacy breach. Although search

logs may be stored or published by replacing the sensitive
user-IDs with pseudonyms (i.e. the published data in AOL
incident [14]), there are hidden clues in the search data that
can reveal the identity of the user. Also, the queries may
reveal their most private interests and concerns which can
be embarrassing (e.g., sexual habits) or lead to discrimina-
tion (e.g., health issues). Then, if search log data is released
without sanitization or with trivial anonymization like the
AOL data, many individuals might be easily re-identified
by adversarial data recipients with some prior knowledge,
and then web users’ entire sensitive search information will
be explicitly disclosed to adversaries. In the case of AOL 20
million records were released with only pseudo IDs replac-
ing the names. However, it was possible to identify many
users from the data set which subsequently resulted in a
class action lawsuit against AOL. The authors in [4], [14]
illustrated that it can only take a couple of hours to breach a
particular user’s privacy in the absence of good anonymiza-
tion. Thus, it is crucial to sanitize search logs appropriately
before storing, analyzing or possibly publishing them.

There has been prior work on anonymization of rela-
tional databases (e.g., k-anonymity [42]), yet it is not directly
aligned due to significant differences between search logs
and relational databases [25]. Some recent research results
have been proposed to sanitize search logs along two
dimensions. On one hand, each of [5], [17], [22], [25], [27],
[30] presented an anonymization method that satisfies its
defined privacy notion (mostly the variants of k-anonymity)
and attempts to retain good utility. However, the privacy
notion in each of the above work entails a high risk of
breaching privacy in case of adversaries holding certain
prior knowledge. On the other hand, some search log saniti-
zation techniques [13], [24] have been developed based
on a more rigorous notion—Differential Privacy [8], which
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provides strong privacy guarantee even if the adversaries
hold arbitrary prior knowledge. However, the released data
set in [13], [24] is the statistical information of queries and
clicks where all users’ search queries and clicks are aggre-
gated without individual attribution. The data utility might
be greatly damaged since the association between different
query-url pairs has been removed. With the output, we can
neither develop personalized query recommendation, nor
can we carry out human behavior research and criminal
investigation since the output data no longer include the
individual web user’s IDs. Therefore, the output utility of
the existing differentially private search log sanitization
work [13], [24] is not that satisfactory.

1.1 Contributions

There is little work that has perfectly resolved such trade-
off in the context of search logs—by generating the output
which simultaneously achieves a high standard of both
privacy protection and output utility. In this paper, to the
best of our knowledge, we take a first step towards
addressing this deficiency by presenting a novel sanitiza-
tion framework. The main contributions are summarized
as below:

� Utility. The existing differentially private algorithms
[13], [24] only made the statistical information of
queries and clicks publishable, and broke the associ-
ation of different queries/clicks posed by the same
user. This leads to huge utility loss. We propose a
novel differentially private mechanism that samples
the output with identical schema as the input. Thus, the
sanitized search log can be analyzed in exactly the
same fashion and for the same purposes as the input.
For example, it enables personalized query recom-
mendation, individual human behavior study, crimi-
nal investigation, among others.

Meanwhile, to further boost the utility, we build a
collaborative sanitization framework that enables
different data owners to produce a collaborative
publishable search log, which significantly improves
the utility as compared to publishing on their own
(this benefits society greatly1). We also show the
boosted utility in experiments.

� Privacy and security. Practically, involving untrusted
participants into the sanitization would pose addi-
tional privacy and security concern to every party
since each of them holds their own private input
data. We present an efficient protocol for collabora-
tive parties, namely Collaborative sEarch Log Saniti-
zation (CELS), which ensures: 1) the collaborative
sanitization over all parties satisfy differential pri-
vacy, and 2) the collaborative parties cannot learn
any private information from each other.

Also, we prove differential privacy and protocol
security for CELS and experimentally evaluate the
performance of our approach with real data sets.

The remainder of this paper is organized as follows. In
Section 2, some preliminaries for this work are introduced.
We present the sampling mechanism and derive the condi-
tions for satisfying differential privacy in Section 3. Then,
we propose the sanitization framework and the correspond-
ing analysis in Sections 4 and 5 respectively. Section 6 gives
experimental results, and Section 7 reviews the related liter-
ature. Finally, Section 8 concludes the paper and discusses
the future work.

2 PRELIMINARIES

2.1 Search Log Data

Web users’ most sensitive values in their search history are
the click-through information. Sometimes queries are more
sensitive than the clicked urls (e.g., query “diabetes medi-
cine” and click “www.walmart.com”), or vice versa (e.g.,
query “medicine” and click “www.cancer.gov”). We thus
consider each distinct click-through query-url pair (simply
denoted as query-url pair) as a single sensitive item. We let
Q ¼ ff1;f2; . . . ;fng be the query-url pair universe where n
is the cardinality of Q. Given a search logD includingm dif-
ferent users’ logged search information, we denote any user
uj (where 1 � j � m)’s share inD as:

Definition 1 (USER LOG Uj). User uj’s all query tuples in D,
where every single tuple ½uj;fi; cij� 2 Uj includes a user-ID
uj, a click-through query-url pair fi, and the count of fi posed
by user uj (1 � i � n and 1 � j � m).

Search log D ¼ fU1; U2; . . . ; Umg consists of all the users
u1; . . . ; um’s shares. Table 1 gives an example for the search
log: non-negative integer at the ith column and the jth row
(1 � i � n, 1 � j � m) indicates the count of query-url pair
fi posed by user uj.

2.2 Utility Measure

Search log analysis has been widely used to function many
practical applications, such as search results ranking [21],
query suggestion and recommendation [7], and spelling
correction [2]. In our prior work [26], we have developed
differentially private sanitization algorithms with three dif-
ferent measures—total output count, frequent query-url
pairs utility and query-url pair diversity. We now define an
all-round utility measure for the sanitization instead.

Measuring the count ratio difference of all the query-url
pairs in the input and output is a generic way of evaluating

TABLE 1
An Example of Search LogD

Query-url pairs (Sensitive Items)

users f1 f2 f3 f4 f5 f6

u1 3 2 0 1 0 0
u2 1 1 0 0 4 0
u3 2 1 0 1 0 2
u4 0 1 0 0 1 1
u5 1 0 7 0 0 5
u6 0 0 1 1 0 0
u7 0 1 0 0 2 0
u8 1 0 5 0 0 1

Total (ci) 8 6 13 3 7 9

1. For instance, since the data can be proven to be publishable, vari-
ous external researchers can now conduct human behavior study on
large quantities of search logs collected from various search engines.
Neither data owners nor data recipients need to worry about the breach
of data privacy.
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utility. However, Deng et al. [6] has noted that, such
approach is inherently biased towards heavily-clicked urls.
In order to balance this bias, we employ an entropy-biased
utility measure to evaluate the information loss in the saniti-
zation. Considering the count ratio of all query-url pairs in
the input/output search log as two probability distribution
functions (pdf), we define the utility loss function using Kull-
back-Leibler(KL) divergence between these two pdfs:

DKL ¼
X
8fi 2Q

ci
jDj log

ci=jDj
xi=jOj

� �
; (1)

where ci ¼
Pn

j¼1 cij (recall that n is the number of all unique
query-url pairs), and jDj and jOj represent the total count of
all query-url pairs in the input and output respectively.
Note that xi might be enforced to be 0 to satisfy differential
privacy in the sanitization. At this time, DKL may approxi-
mate þ1. Thus, we slightly revise Equation (1): xi)xi þ 1
and jOj ¼Pn

i¼1 xi)
Pn

i¼1ðxi þ 1Þ ¼ jOj þ n,

DKLðD;OÞ ¼
Xn
i¼1

ci
jDj log

ci
jDj �

jOj þ n

xi þ 1

� �� �
: (2)

The revised utility loss function DKLðD;OÞ lies very close
to DKL and avoids the zero denominator constraint, then we
regard it as our utility measure.

2.3 Privacy Notion

We consider two search logs D and D0 to be neighbors if
they differ in any user log Uj, resulting in the following
three Cases: (1) D ¼ D0

S
Uj, (2) D

0 ¼ D
S

Uj, and (3) Uj is
different in D and D0. However, ensuring �-differential pri-
vacy is not always feasible: e.g., if an output O includes an
item in D but not in D0, such as user-ID uj in (1), the proba-
bility of generating O from D0 is zero while the probability
of generating O from D is non-zero, hence the ratio between
the probabilities cannot be bounded by e� due to a zero
denominator. We thus employ the relaxed privacy notion:

Definition 2 (ð�; dÞ-differential privacy). A randomization
algorithm A satisfies ð�; dÞ-differential privacy if for all neigh-
boring inputs D and D0 and any set of possible outputs S, we

have Pr½AðDÞ 2 S� � e�Pr½AðD0Þ 2 S� þ d and Pr½AðD0Þ 2
S� � e�Pr½AðDÞ 2 S� þ d.

More specifically, if both Pr½AðDÞ 2 S� and Pr½AðD0Þ 2 S�
are positive, then e�� � Pr½AðDÞ 2 S�

Pr½AðD0Þ 2 S� � e�; if Pr½AðDÞ 2 S� ¼ 0,

then Pr½AðD0Þ 2 S� � d and vice-versa. Our sanitization sat-
isfies the above notion.

3 DIFFERENTIAL PRIVACY GUARANTEE

In this section, we present our sampling and show that
differential privacy for sampling is guaranteed by satisfying
some constraints.

3.1 Multinomial Sampling

In fact, the input search log D can be considered as an
“Input user-query-url Histogram” f8cijg, and a coarse-
grained “Input query-url Histogram” c ¼ ðc1; . . . ; cnÞ can be
aggregated by collecting the counts of all n distinct query-
url pairs in D. Similarly, we regard those histograms in the
output O as “Output user-query-url Histogram” f8xijg and
“Output query-url Histogram” x ¼ ðx1; . . . ; xnÞ.
Definition 3 (Multinomial Sampling with D and x). Given

input search log D (fine-grained input user-query-url histo-
gram) and the aggregated output counts x ¼ ðx1; . . . ; xnÞ,
sampling a fine-grained output user-query-url histogram
O ¼ f8xijg with multinomial distribution is the process of
sampling specific user-IDs for every query-url pair fi 2 Q
through xi multinomial trials, where the probability of every

sampled outcome in one trial is given as the ratio
cij
ci
, for each

query-url pair j (derived from inputD).

An example of themultinomial sampling is given in Fig. 1,
assuming that ðx1; . . . ; xnÞ ¼ ð0; 3; 20; 0; 4Þ. We thus have:

1) In every multinomial trial for any query-url pair fi,

the probability that any user-ID uj is sampled, is
cij
ci
.

For example, “car price, kbb.com” in Fig. 1, the prob-

ability that user 082 is sampled is 2
0þ2þ5. However,

the probability that user 081 is sampled for fi is 0.
2) While sampling user-IDs for query-url pair fi, since

the expected value of every random variable xij is

Fig. 1. An example of the multinomial sampling in the sanitization.

506 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2015



EðxijÞ ¼ xi � cijci , the shape of sampled user-query-url

histograms for fi is analogous to the input (guaran-
teed bymultinomial distribution). For example, while
sampling user-IDs for “google, google.com”, even if
the output count xi ¼ 20 < ci ¼ 15þ 7þ 17 ¼ 39, the
shape of a sampled histogram {8, 3, 9} (see Fig. 1b)
and {15, 7, 17} (in the input) is similar.

Thus, the output user-query-url histogram (see Fig. 1b)
has the identical schema as the input D, which can be also
considered as a user-query-url histogram.

3.2 Differential Privacy for Sampling

As described above, if x ¼ ðx1; . . . ; xnÞ and D are given,
multinomial sampling can generate probabilistic outputs
(with identical schema asD). We now discuss how ð�; dÞ-dif-
ferential privacy can be achieved in the sampling for any
two neighboring inputs D and D0. Recall that the relation-
ship between D and D0 has three different cases, we first
look at Case (1) D ¼ D0

S
Uj (where Uj is an arbitrary

user uj’s user log) in Sections 3.2.1 and 3.2.2. Two comple-
mentary scenarios of bounding the difference between
Pr½AðDÞ 2 S� and Pr½AðD0Þ 2 S� per Definition 2 will be
discussed respectively for Case (1), where S is an arbitrary
set of possible outputs. In Section 3.2.3, we discuss the
extension to Case (2) D0 ¼ D

S
Uj, and Case (3) Uj is differ-

ent inD andD0.

3.2.1 Pr½AðD0Þ 2 S� ¼ 0 in Case (1)D ¼ D0
S

Uj

While running multinomial sampling with inputs D and D0

respectively, if all the outputs in S includes the differential
user-ID uj, then we have Pr½AðD0Þ 2 S� ¼ 0, because: D0

does not have uj, and if sampling with the histogram in
input D0, the output would never include user-ID uj. Per
Definition 2, Pr½AðDÞ 2 S� � d should hold. Equivalently,
maxfPr½AðDÞ 2 S�g should be bounded by d. In fact, the
maximum Pr½AðDÞ 2 S� occurs when S is the set of all the
possible outputs including uj. Thus, we have

maxfPr½AðDÞ 2 S�g
¼ Pr½AðDÞ 2 ‘‘All outputs including uj’’�
¼ Pr½AðDÞ includes atleast one uj�:

(3)

If sampling with the histograms in input D, Equation (3)
equals the probability that “uj is sampled at least once in the
multinomial sampling process of all the distinct query-url pairs in
Uj”. For every query-url pair fi 2 Uj, if its total output count
in the sampling is xi, the probability that uj is not sampled

in any single multinomial trial is
ci�cij
ci

because user uj holds

fi with the count cij and the total count of fi inD is ci. Since
8fi 2 Uj may lead to that uj being sampled, and the multi-
nomial sampling for every query-url pair fi includes xi

independent trials, we have Pr½uj is not sampled� ¼Qn
i¼1ðci�cijci

Þxi . Finally, we can obtain the probability that uj is

sampled at least once: Pr½uj is sampled� ¼ 1�Qn
i¼1ðci�cijci

Þxi .
Thus, we have:

maxfPr½AðDÞ 2 S�g ¼ 1�
Yn
i¼1

ci � cij
ci

� �xi

: (4)

Note that for any query-url pair fi 2 Uj where cij ¼ ci (fi

is uniquely held by user uj, e.g., user 083’s sensitive query-
url pair “diabetes medicine, walmart.com”), if its output
count xi > 0, the probability maxfPr½AðDÞ 2 S�g ¼ 1,
which cannot be bounded by d. Therefore, xi ¼ 0must hold
for this scenario and such unique query-url pair should
be suppressed.

3.2.2 Pr½AðD0Þ 2 S� > 0 in Case (1)D ¼ D0
S

Uj

If existing an output in S without user-ID uj, both
Pr½AðDÞ 2 S� and Pr½AðD0Þ 2 S� will be positive. At this

time, we should bound Pr½AðD0Þ2S�
Pr½AðDÞ2S� and

Pr½AðDÞ2S�
Pr½AðD0Þ2S�with e�.

Now we divide the arbitrary output set S into S1 and S2

where uj 2 S1 and uj =2 S2, and denote any arbitrary output
in S1 and S2 as O1 and O2 respectively. We can derive a

sufficient condition to bound Pr½AðD0Þ2S�
Pr½AðDÞ2S� and

Pr½AðDÞ2S�
Pr½AðD0Þ2S� (Gotz

et al. [13] also studied this):

Theorem 1. If 8O2 2 S2;
Pr½AðD0Þ¼O2�
Pr½AðDÞ¼O2� � e� hold, then Pr½AðD0Þ2S�

Pr½AðDÞ 2S� � e�

also holds.

Proof.Note that 8O1 2 S1; Pr½AðD0Þ ¼ O1� ¼ 0, then

Pr½AðD0Þ 2 S� ¼
Z
8O12S1

Pr½AðD0Þ ¼ O1�dO1

þ
Z
8O22S2

Pr½AðD0Þ ¼ O2�dO2

� e�
Z
8O22S2

Pr½AðDÞ ¼ O2�dO2

� e�Pr½AðDÞ 2 S2� � e�Pr½AðDÞ 2 S�:

This completes the proof. tu
Similarly we can prove that Pr½AðDÞ 2 S� � dþ

e�Pr½AðD0Þ 2 S�. This shows that we can ensuring differen-

tial privacy by letting 8O2 2 S2; e
�� � Pr½AðDÞ¼O2�

Pr½AðD0Þ¼O2� � e� in

multinomial sampling, detailed as below.
For all query-url pairs in both Uj and D0, sampling user-

IDs from D involves an additional user-ID uj (but uj =2 O2)
compared to sampling user-IDs from D0. We then have
Pr½AðDÞ¼O2�
Pr½AðD0Þ¼O2� � 1 � Pr½AðD0Þ¼O2�

Pr½AðDÞ¼O2� . Since the ratio Pr½AðDÞ¼O2�
Pr½AðD0Þ¼O2� is

bounded by 1 (and e�), we only need to drive a bound for

the ratio Pr½AðD0Þ¼O2�
Pr½AðDÞ¼O2� . Since the conducted sampling for all

query-url pairs fi 2 Q is independent, we denote fi’s share

in ratio Pr½AðD0Þ¼O2�
Pr½AðDÞ¼O2� as ri (note that

Pr½AðD0Þ¼O2�
Pr½AðDÞ¼O2� ¼

Q
8fi2Q ri).

As mentioned in Section 3.2.1, all the query-url pairs
in D but not in D0 (unique query-url pairs in Uj) should
be removed in O2, where xi ¼ 0 makes ri ¼ 1. Thus, to
sample O2 from D, we only sample user-IDs for the com-
mon query-url pairs in D and D0. Two categories of them
can be identified:

� 8fi in D0 n Uj (e.g., D0 is 082 and 083’s user logs,
uj ¼ 081, fi ¼ “car price, kbb.com”), the probabilities
of sampling user-IDs for fi from D and D0 are equiv-
alent because these query-url pairs’ query-url-user
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histograms in D and D0 are identical. Now we have
ri ¼ 1.

� 8fi in D0
T
Uj (e.g., D0 is 082 and 083’s user logs,

uj ¼ 081, fi¼“book, amazon.com”), we can consider
every sampled user-ID in the process of AðDÞ into
two occasions: (a) “uj is sampled” and (b) “uj is not
sampled”. In every multinomial trial for fi, the proba-

bility of sampling uj is
cij
ci

while the probability of

sampling another user-ID in D (any user-ID in D0) is
1� cij

ci
. Since we run xi times independent multino-

mial trials for fi, we have ri ¼ 1=ð1� cij
ci
Þxi ¼ ð ci

ci�cijÞ
xi

(since O2 does not contain user-ID uj, uj should not
be sampled in all xi independent trials while gener-
ating O2 fromD).

To generate any output O2 2 S2 from D and D0 res-
pectively, it is independent to sample user-IDs for the
above two categories of query-url pairs. Thus, 8O2 2 S2,
Pr½AðD0Þ¼O2�
Pr½AðDÞ¼O2� ¼

Q
8fi2Q ri. Note that 8fi 2 D0 n Uj; ri ¼ 1, then

we have for all O 2 V2:

Pr½AðD0Þ ¼ O2�
Pr½AðDÞ ¼ O2�

¼
Y
8fi2Q

ri ¼
Y

8fi2UjnD0
ri

0
@

1
A � Y

8fi2D0\Uj

ri

0
@

1
A � Y

8fi2D0nUj

ri

0
@

1
A

¼
Y

8fi2D0\Uj

ci
ci � cij

� �xi

¼
Yn
i¼1

ci
ci � cij

� �xi

:

(5)

Thus, bounding Equation (5) by e� is effective to guaran-
tee differential privacy for this scenario.

3.2.3 Cases (2) and (3) ofD andD0

We now discuss the extension from Case (1) D ¼ D0
S

Uj to
Cases (2) and (3) forD andD0.

First, in Case (2) D0 ¼ D
S

Uj, similar to Sections 3.2.1
and 3.2.2, we need to examine two scenarios Pr½AðDÞ 2 S� ¼
0 and Pr½AðDÞ 2 S� > 0 since D does not include user-ID uj.
Conducting similar analysis as well as Case (1) D ¼ D0

S
Uj

(by swapping D and D0), we can discover that bounding the
probability differences in Equations (4) and (5) (derived
from D0) with d and e� respectively could make the multino-
mial sampling based on this pair of D and D0 differentially
private.

Second, in Case (3), user uj has different user logs Uj inD
and D0. We now show that multinomial sampling based on
this pair of D and D0 could also satisfy differential privacy.
Specifically, in this case, both D and D0 include uj, thus we
have Pr½AðDÞ 2 S� > 0 and Pr½AðD0Þ 2 S� > 0, and we
should derive the upper bound for the multiplicative differ-

ences Pr½AðDÞ2S�
Pr½AðD0Þ2S� and

Pr½AðD0Þ2S�
Pr½AðDÞ2S� . To do so, we can conduct sim-

ilar analysis as Section 3.2.2. Letting Uj and U 0j denote user

uj’s user log in D and D0 respectively, the count of query-
url pair fi in Uj and U 0j is defined as cij and c0ij respectively.

� If cij ¼ c0ij, the probabilities of sampling any user-ID
from D and D0 in any multinomial trial are identical,

thus fi’s share in ratio Pr½AðD0Þ2S�
Pr½AðDÞ2S� always equals 1.

� If cij > c0ij > 0, the probabilities of sampling any
user-ID from D and D0 in any multinomial trial are
closer than that of Case (1) D ¼ D0

S
Uj since c

0
ij ¼ 0 in

Case (1) and counts histograms of D and D0 are
closer in Case (3) than Case (1).

� Similarly, if 0 < cij < c0ij, the probabilities of sam-
pling any user-ID from D and D0 in any multinomial
trial are closer than that of Case (2) D0 ¼ D

S
Uj since

cij ¼ 0 in Case (2) and counts histograms of D and
D0 are closer in Case (3) than Case (2).

� If c0ij ¼ 0, the probabilities of sampling any user-ID
from D and D0 in any multinomial trial are the same
as Case (1) D ¼ D0

S
Uj since c

0
ij ¼ 0 in both Cases (1)

and (3) and the counts.
� If cij ¼ 0, the probabilities of sampling any user-ID

from D and D0 in any multinomial trial are the same
as Case (2) D0 ¼ D

S
Uj since cij ¼ 0 in both Cases (2)

and (3).
For simplicity of notation, we denote Pr½AðDÞ2S�

Pr½AðD0Þ2S� in Case
(1), (2) and (3) as R1, R2 and R3 respectively, thus we have
R1; R2 2 ½e��; e��. Since sampling user-IDs for any query-
url pair is independent, the overall multiplicative difference
of the probabilities is the product of all multiplicative differen-
ces for all query-url pairs (which may fall into any of the
above five cases). Therefore, by converting the multiplica-
tive probability difference representation using Theorem 1,

we have R3 � R1 �R2 � e2� and similarly we can also derive
1
R3
� e2�.

In summary, the multinomial sampling satisfies ð2�; dÞ-
differential privacy in Case (3) if we bound Equations (4) and
(5) (for bothD andD0) with d and e� respectively.

3.2.4 Differentially Private Sampling

Following the above analysis, we can derive a set of suffi-
cient conditions that the output counts x satisfy in order for
ð�; dÞ-differential privacy in the multinomial sampling.

Theorem 2. Multinomial sampling A satisfies ð�; dÞ-differential
privacy if for any input search log D, the output counts
of query-url pairs x ¼ ðx1; . . . ; xnÞ meet the following
conditions:

1) for any fi posed by user uj only, let xi ¼ 0;
2) 8j 2 ½1;m�;Qn

i¼1ð ci
ci�cijÞ

xi � e�=2;

3) 8j 2 ½1;m�; 1�Qn
i¼1ðci�cijci

Þxi � d.

Proof.With the analysis in Sections 3.2.1, 3.2.2 and 3.2.3, it is
straightforward to prove this theorem. tu

Note that if 9cij ¼ ci, unique query-url pair fi will be
suppressed in the output (Condition 1). If 9cij which is
close to ci, the output count xi will be also enforced to 0
while satisfying Conditions 2 and 3 in the optimization
of output utility, thus we can still use effective � and d

(sufficiently small) to ensure differential privacy for this
special case.

Since Conditions 2 and 3 have given two sets of con-
straints for the output counts of all query-url pairs x ¼
ðx1; . . . ; xnÞ, we can compute the optimal x for differentially
private multinomial sampling by solving the following
problem (minimizing the utility loss in Equation (2)):
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min :
Xn
i¼1

ci
jDj log

ci
jDj �

jOj þ n

xi þ 1

� �� �

s:t:

8j 2 ½1;m�;Qn
i¼1ð ci

ci�cijÞ
xi � e�=2

8j 2 ½1;m�; 1�Qn
i¼1ðci�cijci

Þxi � d

8xi � 0 and xi is an integer:

8><
>:

This is a nonlinear programming (NLP) problem with
linear constraints: for simplicity, we let constant tij ¼ ci

ci�cij,
and combine the righthand-side constants of each

user log Uj’s two constraints as b ¼ minf�=2; log 1
1�dg.

Then, we have

min :
Xn
i¼1

ci
jDj log

ci
jDj �

jOj þ n

xi þ 1

� �� �

s:t:
8j 2 ½1; m�;Pn

i¼1ðxi � log tijÞ � b

8xi � 0 and xi is an integer;

� (6)

where jDj and jOj represent the total count of all query-url
pairs in D and O respectively, and xi represents the over-
all count of query-url pair fi in any sampled output. We
can solve this NLP problem by linear approximation [45]:
approximating the nonlinear objective function (proved as
convex in the Appendix, which can be found on the
Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TDSC.2014.2369034
available online) by piecewise linear functions, then the
optimal solution of this NLP problem can be derived after
solving an LP problem. The details are presented in
Appendix B, available in the online supplemental material.

3.3 Differential Privacy Guarantee Before Sampling

Besides the differential privacy guarantee for multinomial
sampling shown above, we also ensure that the process of
computing the optimal counts x ¼ ðx1; . . . ; xnÞ satisfies dif-
ferential privacy (such process occurs before sampling).
One simple way to do this is to use the generic way of add-
ing Laplacian noise to the counts derived from the optimiza-
tion ðx1; . . . ; xnÞ.

Similar to Korolova et al. [24], if the count differences
of every query-url pair fi 2 Q in the optimal solutions
derived from two neighboring inputs (D;D0) are
bounded by a constant d, computing optimal counts can
be guaranteed to be �0-differentially private [24] (�0 is the
parameter of ensuring differential privacy for such step)
by adding Laplacian noise Lapðd=�0Þ to the optimal count
of every query-url pair: 8i 2 ½1; n�; xi  xi þ Lapðd=�0Þ.
Indeed, given d, we can simply bound the difference of
every query-url pair’s optimal count computed from any
two neighboring inputs with a preprocessing procedure
by examining every user log Uj in the input D (for
details, please refer Appendix C, available in the online
supplemental material). Note that Lapðd=�0Þ has mean 0

and insignificant standard deviation
ffiffiffiffi
2d
p
�0 with sensitivity

d, and this is the minor price of guaranteeing complete
differential privacy. Since adding Laplacian noise is a
well-studied generic approach, we do not discuss this
privacy guarantee here, and the sanitization mechanism
refers to the sampling in this paper.

4 SANITIZATION MODEL

In this section, we present our sampling based sanitization
model that boosts the output utility. Specifically, the model
enables r different parties P1; . . . ; Pr to jointly generate an
output with their own private search logs. We consider a
common scenario in practice that search logs are horizontally
partitioned to r different shares, assuming that every user’s
all search tuples are completely held by one party (viz. sets
of users held by different parties are disjoint). In this case, if
different parties have different sets of unique query-url
pairs, the overall query-url pair universe can be securely
obtained by any secure union protocol (e.g., Algorithm 3).
Table 2 gives an example: P1, P2 and P3 hold their own pri-
vate user logs.

4.1 Collaborative Search Log Sanitization (CELS)

Jointly generating the output with private search logs by r
different parties needsmore privacy/security consideration:

Definition 4 (CELS). Given search log D horizontally parti-
tioned to r shares D1; . . . ; Dr (held by r parties P1; . . . ; Pr),
Collaborative sEarch Log Sanitization is to efficiently generate
a probabilistic output O such that (1) the output production
satisfies differential privacy, (2) the utility of the output O is
maximized under the sampling mechanism, and (3) each party
cannot learn any private information from each other in the
whole process.

We develop a secure communication protocol under
Secure Multiparty Computation [11], [47] for sanitization
(denoted asCELS protocol), ensuring that CELS protocol satis-
fies differential privacy, and every party cannot learn any pri-
vate information from each other in the protocol. We assume
semi-honest model where all parties are honest to follow the
protocol but curious to infer information from other parties.

Note that the output utility of CELS protocol can be con-
siderably boosted, compared to the union of all the local out-
put utility derived from each party’s own sampling-based
sanitization (while ensuring the same level of differential pri-
vacy). This is justified in our experiments (Section 6).

4.2 Protocol

While sanitizing inputD, an NLP problem should be solved
to maximize the output utility and the sampling is based on
the optimal solution. Therefore, in CELS, a global NLP

TABLE 2
Horizontally Partitioned Search Logs

Query-url Pairs (Sensitive Items)

parties users f1 f2 f3 f4 f5 f6

P1 u1
1

3 2 0 1 0 0

u1
2

1 1 0 0 4 0

P2 u2
1

2 1 0 1 0 2

u2
2

0 1 0 0 1 1

u2
3

1 0 7 0 0 5

P3 u3
1

0 0 1 1 0 0

u3
2

0 1 0 0 2 0

u3
3

1 0 5 0 0 1

Total (ci) 8 6 13 3 7 9
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problem should be securely formulated and solved among
them. With the optimal solution of the global NLP problem,
all parties should jointly generate the probabilistic output
with limited disclosure. We then illustrate the CELS proto-
col as below.

4.2.1 Secure NLP

In CELS, inputs D1; . . . ; Dr are privately held by parties
P1; . . . ; Pr respectively. Letting mk be the number of users in
Dk, if we mathematically formulate the NLP problem Equa-
tion (6) among r parties, its constraints are also horizontally
partitioned: every party Pkð1 � k � rÞ holds its own set of
linear inequality constraints—each of them is derived from
a user log in its input Dk. In addition, all parties know the
set of variables x (the output counts of all query-url pairs)
and objective function (the minimum utility loss). Table 3
gives the partitioned shares of the NLP problem, where

constant b ¼ minf�=2; log 1
1�dg, tkij ¼ ci

ci�ckij
and 1 � i � n; 1 �

j � mk; 1 � k � r.

Algorithm 1. Secure Counts Sum

Input: vk
! held by Pk (1 � k � r)

Output: v!¼Pr
k¼1 vk
!

1: P1 generates a pair of public-private key ðpk; skÞ
2: P1 sends the public key pk to P2; . . . ; Pr

3: for k ¼ 1; . . . ; r do
4: Pk encrypts

Qk
s¼1 vs
!0 as Qk

s¼1 vs
!0 ¼Qk�1

s¼1 vs
!0 � Encpkðvk!Þ

using pk (note that � and Qk�1
s¼1 stands for the product of

the ith entry in the encrypted vectors where 1 � i � n)
5: Pk sends

Qk
s¼1 vs
!0 to the next party Pkþ1 (if k ¼ r, the next

party is P1)
6: P1 decrypts

Qr
k¼1 vk
!0 with the private key sk to obtainPr

k¼1 vk
! and distributes the sum to P2; . . . ; Pr

(1) Secure counts sum. Since formulating the privately held
constraints in the NLP problem requires the total count of
every query-url pair in D, we first securely sum the global
count of every query-url pair over r parties using Homo-
morphic Encryption [35], [37]. We assume that P1; . . . ; Pr

can learn the total count of every query-url pair ðc1; . . . ; cnÞ
in our sanitization (but the individual counts are unknown
to each other). Then they can remove the unique query-url
pairs after obtaining the total count of every query-url pair
(for satisfying Condition 1 in Theorem 2), and preprocess its
own input for ensuring differential privacy for the step of
computing the optimal output counts x if necessary.

More specifically, every party Pk (1 � k � r) holds a

query-url pair count vector vk
!¼ ðck1; . . . ; cknÞ. An arbitrary

party is chosen to generate a pair of public-private key

ðpk; skÞ (w.l.o.g., P1 will do so). P1 then sends the public key
pk to all the remaining parties P2; . . . ; Pr. Every party Pk

encrypts their count vector vk
! using pk: vk

!0 ¼ Encpkðvk!Þ. The
sum of v!¼Pr

k¼1 vk
! can be guaranteed by the homomor-

phic property of the cipher-texts (as shown in Algorithm 1).
(2) Secure linear constraints transformation and variables per-

mutation. We propose a transformation approach for the
horizontally partitioned linear constraints with strong secu-
rity guarantee by extending the work of Mangasarian [31]
and Li et al. [29] (they have not implemented cryptography-
based strong security and variables permutation).

Algorithm 2. Secure NLP

Input: Horizontally partitioned constraint matrix Tk held by Pk

(1 � k � r), P0 is an external party, data recipient or
cloud

Output: Optimal Solution x ¼ ðx1; . . . ; xnÞ
{All parties agree on a large integer value ‘ � m}

1: every party Pk (1 � k � r) generates an ‘	mk random
matrix Ak

2: P0 generates a pair of public-private key ðpk; skÞ and sends
pk to P1; . . . ; Pr

{Homomorphic Encryption: a random nonce is chosen
for each encryption}

3: for k ¼ 1; . . . ; r do
4: Pk encrypts all the entries in Ak; Tk; Fk with pk:

EncpkðAkÞ ¼ A0k, EncpkðTkÞ ¼ T 0k, and EncpkðFkÞ ¼ F 0k
5: for each row s 2 ½1; ‘� of A0k and each column i 2 ½1; n� of

T 0k do
6: Pk computes Encpk½AkTk�si ¼

Qmk
j¼1½A0k�

ðTkÞ0ji
sj

7: Pk computes Encpk½AkFk� and Encpk½AkBk� like Lines 5-6
8: P1; . . . ; Pr jointly computes Encpk½AT � ¼Qr

k¼1 Encpk½AkTk�,
Encpk½AF � ¼Qr

k¼1 Encpk½AkFk�, and Encpk½AB� ¼Qr
k¼1 Encpk½AkBk�

9: an arbitrary party encrypts the query-url pair count vector

v!with pk: Encpk½ v!�
{Lines 10-11: Variables Permutation}

10: for k ¼ 1; . . . ; r do
11: Pk applies index permutation pk to Encpk½AT � and the

encrypted count vector Encpk½ v!�, and sends them to the
next party.
{the last party sends Encpk½prð. . .p1ðAT Þ . . .Þ�, Encpk½AB�,
Encpk½AF � and Encpk½prð. . .p1ð v!Þ . . .Þ� to P0}

12: P0 decrypts Encpk½prð. . .p1ðAT Þ . . .Þ�, Encpk½AF �, Encpk½AB�
and Encpk½prð. . .p1ð v!Þ . . .Þ� with sk to obtain prð. . .p1ðAT Þ . . .Þ,
AF , AB and prð. . .p1ð v!Þ . . .Þ

13: P0 solves the NLP problem with linear constraints
prð. . .p1ðAT Þ . . .ÞxþAFy ¼ AB, global constraint

Pn
i¼1 xi ¼

jOj and the query-url pair count vector prð. . .p1ð v!Þ . . .Þ
in the permuted objective function (Solving process is
given in Appendix B, available in the online supplemental
material): the permuted optimal solution prð. . .p1ðxÞ . . .Þ is
obtained
{All parties get the optimal solution in true index by
applying the inverse permutations p�1k ðk ¼ r; . . . ; 1Þ to
prð. . .p1ðxÞ . . .Þ in order}

First, we let each party Pkð1 � k � rÞ convert its private
linear inequality constraints into linear equality constraints
(the standard form): for party Pk’s inequality constraint

derived from its jth user log Uk
j (1 � j � mk),

Pn
i¼1ðxi log tkijÞ �

TABLE 3
Partitioned NLP Problem

All r Parties Know min :
Pn

i¼1
ci
jDj log ð cijDj � jOjþnxiþ1 Þ
h i

P1 Holds 8j 2 ½1;m1�;
Pn

i¼1ðxi log t1ijÞ � b

P2 Holds 8j 2 ½1;m2�;
Pn

i¼1ðxi log t2ijÞ � b
..
.

..

.

Pr Holds 8j 2 ½1;mr�;
Pn

i¼1ðxi log trijÞ � b
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b, we add a slack variable ykj with a random positive coef-

ficient2fk
j :

s:t:

8j 2 ½1;m1�;
Pn

i¼1
�
xi log t1ij

	þ f1j y
1
j ¼ b

8j 2 ½1;m2�;
Pn

i¼1
�
xi log t2ij

	þ f2j y
2
j ¼ b

..

. ..
.

8j 2 ½1;mr�;
Pn

i¼1
�
xi log trij

	þ fr
j y

r
j ¼ b:

8>>>><
>>>>:

(7)

The above standard form of all the linear constraints can
be written as Txþ Fy ¼ Bwhere constraint matrix

T ¼
T1

..

.

Tr

2
64

3
75

(note that T; T1; . . . ; Tr are m	 n, m1 	 n, . . ., mr 	 n matri-

ces with constant entries computed by log tkij) and diagonal

matrix F ¼ diag½F1; F2; . . . ; Fr�, where F1; . . . ; Fr are diago-

nal matrices with positive entries ff1
1 ; . . . ; f

1
m1
g, . . ., ffr1 ; . . . ;

fr
mr
g in the diagonals respectively.

Second, each party securely pre-multiplies a random
matrix to its matrices/vectors in the constraints and im-
plements an index permutation to all the variables x ¼
ðx1; . . . ; xnÞ.

More specifically, the pre-multiplication is Txþ Fy ¼
B, ATxþAFy ¼ AB, where A is vertically partitioned as
A ¼ ½A1A2 . . .Ar� and A1; . . . ; Ar are randommatrices gener-
ated by parties P1; . . . ; Pr respectively (B is horizontally par-
titioned as

B ¼
B1

..

.

Br

2
64

3
75;

and 1 � k � r; Bk is a vectorwithmk entries with the value b).
Note that Homomorphic Cryptosystem [37] facilitates

each party to securely pre-multiply its random matrix to
its share of the constraint matrix. See the pre-multiplication
as below:

P1 : A1T1xþA1F1y ¼ A1B1

..

. ..
.

Pr : ArTrxþArFry ¼ ArBr

¼) Pr
k¼1 AkðTkxþ FkyÞ ¼

Pr
k¼1 AkBk;

(8)

where the optimal solution remains original [31].
Then, we can let every party Pkð1 � k � rÞ permute the

columns of the transformed constraint matrix AT (via per-
muting the cipher-texts) with its own permutation (or con-
sidered as permuting the variables of the NLP problem).
With this, no party can learn the true matrix column/varia-
bles index and the transformation for other parties’ share.

(3) Algorithm. We present the detailed steps of securely
solving the NLP problem for CELS protocol in Algorithm 2.
We can employ an external party, the output data recipient or

the cloud P0 to solve the transformedNLP problem, and let it
generate the public-privacy key pair ðpk; skÞ and send the
public key pk to the data holders P1; . . . ; Pr for encryption.

First, every party encrypts all the required scalar products
in thematrixmultiplicationAkTk,AkFk,AkBk using pk (Lines
3-7). Second, all parties jointly computes the cipher-texts ofPr

k¼1 AkTk,
Pr

k¼1 AkFk and
Pr

k¼1 AkBk with homomorphic

property (Line 8). Note that the query-url count vector v!
should be applied with the same permutation as matrix AT
since the coefficients for variables ðx1; . . . ; xnÞ in the objective

function are derived from v!¼ ðc1; . . . ; cnÞ, where v! should
be encrypted before permutation. Third, every party
Pkðk ¼ 1; . . . ; rÞ applies its column/index permutation pk to

the cipher-texts Encpkð v!Þ and Encpk½AT � respectively (Lines
10-11), and then they send all the cipher-texts to P0. After
receiving the cipher-texts from P1; . . . ; Pr, P0 decrypts the
ciphertexts with its private key sk, and solves the trans-
formed NLP (Lines 12-13) with the approach shown in
Appendix B, available in the online supplemental material.

Algorithm 3. Secure Union

Input: Sampled outputs O1; . . . ; Or held by r parties P1; . . . ; Pr,
Commutative encryption and decryption keys of Pk:
ðek; skÞ

Output: the union O ¼ S r
k¼1Ok

1: every party Pkð1 � k � rÞ encrypts Ok: O
0
k ¼ EncekðOkÞ and

sends O0k to P1

{At Party P1 (Coordinator)}
2: O fg, O0  fg
3: for each O0kð1 � k � rÞ do
4: temp O0k
5: for i ¼ 1; . . . ; r; i 6¼ k (parties besides Pk) do
6: send temp to Pi for commutative encryption with key

ei: temp EnceiðtempÞ (Pi sends temp back to P1)

7: At P1: O
0  O0

S
temp

{Decryption of O0 by all parties, at Party P1 (Coordinator)}
8: for each O0k 2 O0ð1 � k � rÞ do
9: temp O0k
10: for i ¼ 1; . . . ; r do
11: send temp to Pi for decryption with Di (Pi decrypts

temp: temp DecsiðtempÞ, and sends temp back to P1)

12: P1 receives temp from Pi

13: O O
S

temp
14: output O ¼ S r

k¼1Ok

Finally, every party applies their inverse permutations

k ¼ r; . . . ; 1, p�1k to the permuted optimal solution prð . . .
p1ðxÞ . . .Þ in order, and acquire x ¼ ðx1; . . . ; xnÞ with the
true index.

4.2.2 Secure Sampling

We now discuss how to securely sample the output by all
parties with the optimal solution of the NLP problem.

(1) Global and local sampling. In the sampling based saniti-
zation, we denote “global sampling” as sampling the output
with the global input database D ¼ S r

k¼1Dk and the opti-
mal output count x ¼ ðx1; . . . ; xnÞ. Moreover, we denote
“local sampling” as—every party Pk locally samples an out-
put Ok with its privately held input Dk and a share of the
global optimal output counts x ¼ ðx1; . . . ; xnÞ: i.e. Pk locally

runs xi � c
k
i
ci
times multinomial trials for query-url pair fi.

2. Using coefficient fkj for slack variable ykj is equivalent as sim-
ply adding the slack variable with coefficient 1, and fkj can prevent

learning the transformation matrix for horizontally partitioned lin-
ear constraints [29].
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In essence, since the expectation of sampling every user-
ID for every query-url pair is identical for both global and
local sampling, the output of the global sampling is equiva-
lent to the union of all the outputs of the local sampling.

(2) Secure union. After obtaining the outputs with local
sampling, we can utilize a commutative encryption based
protocol to securely union all the local outputs O1; . . . ; Or.
Since the commutative encryption-based protocol (e.g.,
Pohlig-Hellman’s encryption scheme [41]) generates the
same cipher-text by encrypting the plain-text with multiple
encryption keys in any arbitrary order, we can let every
party first encrypt its local data to cipher-text and then
encrypt all the cipher-texts by all parties (note that an arbi-
trary party should be picked as the coordinator of this pro-
tocol. W.l.o.g., we let P1 be the coordinator which cannot
learn more information than other parties). Finally, all par-
ties decrypt all the cipher-texts to get the union of the plain-
texts. Algorithm 3 describes the details.

4.2.3 CELS Protocol

CELS protocol can be obtained by composing secure sum
(Algorithm 1), secure NLP (Algorithm 2), local sampling,
and secure union (Algorithm 3).

5 ANALYSIS

In this section, we analyze the CELS protocol security in
semi-honest model by quantifying the privacy leakage
under SMC [11], [47]. SMC states that a computation is
secure if the view of each party during the execution of the
protocol can be effectively simulated knowing only its input
and output. This is more about protocol security but not
quite the same as saying that all private information is pro-
tected against leakage. Indeed, differential privacy can com-
plement the protocol security by bounding the privacy risk
of inferring information in the sanitized result. We also ana-
lyze the complexity of computation and communication of
the CELS protocol.

5.1 CELS Protocol Security

5.1.1 Secure Counts Sum

Theorem 3. Algorithm 1 privately computes the sum of r query-

url pairs count vectors vk
!ð1 � k � rÞ, where each party Pk

only knows the sum v!¼Pr
k¼1 vk
!.

Proof. For all k 2 ½1; r�, Pk receives the encrypted vector sum

from the previous party Encpkð
Pk

s¼1 vs
!Þ ¼Qk

s¼1 Encpkðvs!Þ
(note that

Qk�1
s¼1 stands for the products of all the ith

entries in the encrypted vectors where 1 � i � n). It is
straightforward to simulate the views of all parties by
repeating the encryptions in the algorithm step by step.
The simulator runs in linear time w.r.t. the size of
the input vectors, and thus satisfies the security proof
requirement. tu

5.1.2 Secure NLP

Most part of Algorithm 2 are locally executed by each party.

Theorem 4. In Algorithm 2, P1; . . . ; Pr learns only P0’s public
key pk and the permuted optimal solution prð. . .p1ðxÞ . . .Þ
while P0 learns only the transformed matrices/vector

prð. . .p1ðAT Þ . . .Þ, AF , AB and prð. . .p1ð v!Þ . . .Þ.

Proof. P1; . . . ; Pr’s view: every party Pkð1 � k � rÞ first
encrypts the scalar products in its transformed matrix/
vector AkTk, AkFk, and AkBk with the public key pk
(Lines 3-7), and there is no communication occurring in
this stage. This can be simulated by running these steps
by each party where random nonce are chosen. In addi-
tion, Line 8 calls a secure sum subprotocol with the
inputs of the distributed matrices/vectors (the messages
can be simulated per the proof of Theorem 3). In the stage
of permutation (Lines 10-11), P1; . . . ; Pr can run an inverse
permutation algorithm to the cipher-texts with permuta-
tion prð. . .p1ð�Þ . . .Þ in linear time. Thus, P1; . . . ; Pr’s view
can be simulated in polynomial time, and they learn only
P0’s public key pk and the final output prð. . .p1ðxÞ . . .Þ.

P0’s view: P0 receives following messages from
P1; . . . ; Pr: Encpk½prð. . .p1ðAT Þ . . .Þ�, Encpk ½AF �, Encpk½AB�
and Encpk½prð. . .p1ð v!Þ . . .Þ� in only one round communi-
cation. P0 learns prð. . .p1ðAT Þ . . .Þ, AF and vectors Ab

and prð. . .p1ð v!Þ . . .Þ to solve the transformed NLP prob-
lem. Thus, the messages can be simulated by encrypting

prð. . .p1ðAT Þ . . .Þ, AF and vectors Ab and prð. . .p1ð v!Þ . . .Þ
with its own public key pk. This simulator is clearly con-
structed in linear time. tu
Mangasarian [31] has shown that it is nearly impossible

to learn matrices A, F and vector B with the known trans-
formed matrices AT , AF and vector AB. Note that even

if all the entries in B equal minf�=2; log 1
1�dg which is

known to all parties, it is still impossible to reconstruct
A ¼ ½A1A2 . . .Ar� with only known Ab and B (8k 2 ½1; r�, the
entries in Ak and even the sizes of bk and Ak are unknown to
other parties). Besides the matrix multiplication based
transformation, we let all parties jointly permute the varia-
bles in the optimization problem. Thus, P0 can only formu-
late a random NLP problem which reveals nothing about
the original problem.

5.1.3 Secure Union

All parties only send and receive cipher-texts in Algorithm 3.

Theorem 5. Algorithm 3 privately generates the union of the
local sampling outputs O ¼ S r

k¼1Ok.

Proof. The exchanged cipher-texts received by all parties
can be simulated by an inverse algorithm of the secure
union protocol with the same commutative cryptosys-
tem. Thus, Algorithm 3 privately generates the union of
the local sampling outputs O ¼ S r

k¼1Ok where only the
length of 8k 2 ½1; r�, Ok can be obtained. tu

5.1.4 Overall CELS Protocol

Theorem 6. CELS protocol reveals at most v! and prð. . .p1ðxÞ . . .Þ
to P1; . . . ; Pr, and the transformed matrices/vectors prð. . .
p1ðAT Þ . . .Þ, AF , Ab and permuted counts vector prð. . .
p1ð v!Þ . . .Þ to P0.

Proof. All the communication in CELS protocol occurs in
the calls to one-time secure counts sum (Algorithm 1),
secure NLP (Algorithm 2) and secure union (Algo-
rithm 3). Applying the composition theorem [11] can
complete the proof. tu
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Note that P1; . . . ; Pr learns the permuted output counts vec-
tor prð. . .p1ðxÞ . . .Þ in the CELS protocol, and they have to
recover the true index for sampling (thus know x ¼ ðx1; . . . ;
xnÞ since then). Hence, some of those parties might guess
the overall permutation index from this. However, every
party’s individual permutation cannot be inferred by
those parties in this case, and P0 does not know the overall
permutation. Theorem 6 still holds under the SMC defini-
tion, and this minor information disclosure does not hurt
any party.

5.2 Differential Privacy

Theorem 7. CELS protocol is ð�; dÞ-differentially private.
Proof. All the conditions in Theorem 2 are satisfied in CELS

from a global point of view (Condition 1 is satisfied after
every party knows the total count of every query-url pair
and suppresses the unique queries; Conditions 2 and 3
are satisfied by subjecting to the linear constraints in the
NLP problem), hence CELS protocol satisfies ð�; dÞ-differ-
ential privacy. Note that if differential privacy for com-
puting the optimal output counts with the NLP problem
is desirable, every party can locally preprocess its input
with known total count and jointly add Laplacian noise
to the output count to ensure differential privacy for the
step before sampling. tu

5.3 Cost Analysis

We now analyze the computation and communication com-
plexity of the CELS protocol.

5.3.1 Computation Cost

NLP computation cost. In CELS protocol, the NLP problem
with linear constraints is securely transformed by P1; . . . ; Pr

and solved by P0. Such NLP problem is formulated with n
variables and m private linear constraints where m linear
constraints are securely transformed into ‘ new linear con-
straints (‘ � m). As described in Appendix B, available in
the online supplemental material, P0 can solve it by linear
approximation with K intervals in ½0; jOj�, and the final LP
problem consists of Km variables and ð‘þ 1Þ linear con-
straints. Standard solvers like Simplex method can find the
optimal solution within an ignorable time in the protocol.

Encryption and decryption cost. In CELS protocol, we ana-
lyze the cost in three major subprotocols. Specifically,

� Secure counts sum: every party has to perform a
homomorphic encryption on a length-n vector, and
P2; . . . ; Pr additionally compute the homomorphic
products of the cypher-texts with minor computa-
tion cost. Finally, P1 runs only one time decryption
for length-n vector.

� Secure NLP: every party Pk first encrypts the sca-
lar products of ‘ðnþmþ 1Þ pairs of length-mk

vectors (one time length-n objective vector encryp-
tion is also required). The secure sum then exe-
cutes with ‘ðnþmþ 1Þ entries amongst r parties.
Note that the computation cost of permutation
can be ignored compared with encryption and
decryption. Finally, P0 runs one time decryption
for ‘ðnþmþ 1Þ þ n entries.

� Secure union: r2 times commutative encryption and
decryption on each party’s local sampling output
8k 2 ½1; r�, Ok (which is a counts matrix with size

 mk 	 n).

Thus, the computational complexity w.r.t. encryption
and decryption is nrþ ‘ðnþmþ 1Þr � ð2Pr

k¼1 mkÞ þ n þ
r2 � ðPr

k¼1 mkÞn 
 Oð‘mnrþmnr2Þ and nþ ‘ðnþmþ 1Þþ
nþ r2 � ðPr

k¼1 mkÞ �n 
 Oðr2mnÞ respectively.

5.3.2 Communication Cost

� Secure counts sum: r times communication are
required among r parties to deliver the cipher-texts
of a length-n vector to the next party (P1 also sends
its public key to P2; . . . ; Pr). Thus, the total bit cost
for this step is r � nþ ðr� 1Þ � pk size bits.

� Secure NLP: The external party (or cloud) P0 first
sends its public key to P1; . . . ; Pk. Consequently, the
secure sum and variables permutation call ðr� 1Þ
rounds of communication among P1; . . . ; Pr in total
while the outsourcing calls one-time communication
between Pr and P0. Thus, the total bit cost for this
step is r � pk size þ 2ðr� 1Þð‘ � nþ ‘ �mþ ‘Þ þ ð‘ �
nþ ‘ �mþ ‘þ nÞ 
 Oðr‘ðmþ nÞÞ bits. Notice that
the communication cost of inverse permutation on
the length-n optimal solution can be neglected due
to tiny overheads.

� Secure union: ðr� 1Þr rounds of communication
(from the coordinator P1 to P2; . . . ; Pr) are required
in the commutative encryption while the decryption
also requires ðr� 1Þr rounds of communication.
Thus, the total bit cost is 2ðr� 1Þr �Pr

k¼1 mk � n 

Oðmnr2Þ bits.

The overall communication complexity is Oðmnr2Þ.

6 EXPERIMENTAL RESULTS

In this section, we examine the performance of our CELS
protocol using real data sets.

6.1 Experiment Setup

Data sets. We conduct experiments on two real data sets—
AOL search logs [14] and MSNBC (available at UCI ML
Repository). The AOL data set was originally logged by the
AOL search engine in ten partitions. The 2 Gigabytes data
set consists of 20 million web queries collected from about
650 k users over three months in 2006. The original MSNBC
data set describes the URL categories visited by users in
sequential order. Each tuple includes a set of distinct URL
categories visited by a user and the visited counts (every
URL category can be considered as a query-url pair fi).

The statistics of two data sets are summarized in Table 4
(one AOL data set partition and the whole MSNBC data
set). jDj is the total count of query-url pairs in D; m and n
denote the number of distinct users and query-url pairs
respectively; maxjUjj and avgjUjj represent the maximum
and average value of every user’s total count of query-url
pairs; maxjjUjjj and avgjjUjjj are the maximum and average
value of every user’s total number of distinct query-url
pairs. Obviously, AOL data set is extremely highly-dimen-
sional and sparse while MSNBC data set is also sparse but
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contains a small universe size. Therefore, we conduct the
experiments with randomly picked subsets of these two
data sets. Note that we clean the AOL data by removing all
the query-url pairs with total count less than 20; for MSNBC
data, we keep the query-url universe since all of the query-
url pairs are frequent.

Parameters setup. We first examine the utility loss in the
preprocess on varying d 2 ½10; 80� for b ¼ 10�4 and 10�2

(where b is the combination of � and d:minf�=2; log 1
1�dg).

In the remaining experiments, we let d ¼ 30 and �0 ¼ 1,
and inject a set of Laplacian noise Lapð30Þ to the optimal sol-
utions for end-to-end differential privacy. To observe the

utility of CELS on different b 2 ½10�5; 10�1�, we demonstrate
the KL-divergence of input and output as well as the per-
cent of retained distinct query-url pairs (Recall), where the
input data set D is equally partitioned to r ¼ 2; 4; 6; 8; 10
shares held by different parties. The utility is the average of
the results obtained when r ¼ 2; 4; 6; 8; 10.

To depict the boosted utility with CELS protocol, we
compare the output utility of CELS and local sanitization
(all parties locally sanitize their own input with the same
differential privacy requirement and integrate all the
outputs together). In such experimental group, we let
r ¼ 2; 4; 8. The utility results of CELS aver averaged.

We also evaluate the efficiency of CELS protocol by
examining the computation and communication overheads
on varying number of parties r ¼ 2; 4; 6; 8; 10 and input size
(AOL: 100 K� 20 M; MSNBC: 25 K� 1:6 M).

Platform. All the experiments are performed on an HP PC
with Intel Core 2 Quad 3 GHz 64-bit CPU and 6 GB RAM.

6.2 Prerequisite

Preprocess. For differential privacy of computing optimal
output counts, we can preprocess the inputs to make the
neighboring optimal solutions bounded. However, such
process trades off the output utility for stronger privacy
protection: some exceptional user logs might be removed.
Figs. 2a and 2b present such utility loss (percent of retained
user logs). For both AOL and MSNBC data sets, applying

CELS with larger d or larger input size can clearly retain
more percent of the user logs in the output. This is quite rea-
sonable—larger d provides greater difference tolerance, and
neighboring inputs with larger size are even more similar
(thus the optimal solutions become closer).

Note that AOL users posed most of their query-url pairs
for less than 10 times [14], thus the difference between two
neighboring inputs could be bounded with a relatively
small d. It would be preferable to make d less than 100 (oth-
erwise, the noise for the output counts might be too large).
We can try different values of d � 100 and specify an
appropriate value according to the utility requirements on
the preprocessed search logs (Korolova et al. [24] chose
d 2 ½1; 80� in their experiments as well).

Maximum output count jOj. While satisfying all the pri-
vacy conditions, the output count is indeed bounded by a
constant [26] (also discussed in solving the NLP problem in
Appendix B, available in the online supplemental material).
Since the maximum output count jOj is important in solving
such NLP problem, we regard it as a prerequisite of the
experiments and present the result for different inputs and
parameters.

Specifically, to better compare jOj with the input query-
url pairs count jDj, we plot the maximum percent of them
jOj
jDj in Fig. 3. Since search logs are highly-dimensional, the

shown maximum percent jOjjDj is sufficiently good for differ-

ential privacy guaranteed algorithms.

6.3 Utility of CELS

While solving the NLP problem in CELS protocol, the utility
loss (KL-Divergence) can be minimized for any specified
output size jOj � O. With an appropriate output size jOj,
the minimum KL-Divergence represent the best output util-
ity (for details, please refer Appendix B, available in the
online supplemental material).

In our experiments, we measure the minimum utility loss
with two data sets (each has two sizes) in Figs. 4a, 4b, 4c, 4d.
Note that for each input, we choose three different ratio jOjjDj
(all no greater than jOjjDj that are derived from the prerequi-

site), ensuring the feasibility of the NLP problems.

TABLE 4
Characteristics of the Data Sets

Data sets jDj m n maxjUjj avgjUjj maxjjUjjj avgjjUjjj
AOL 1,864,860 51,922 1,190,491 6,925 54.7 5,609 38.14
MSNBC 4,698,794 989,818 17 14,795 4.75 17 1.72

Fig. 2. Retained user logs. Fig. 3. Maximum output count (percent jOjjDj).
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Figs. 4a, 4b, 4c, 4d show that the utility loss decreases
rapidly if we lower the requirement of differential privacy
(with increased b) for all the inputs.

In addition, for every input sample data set (e.g., AOL
20 M), smaller specified total output count jOj can produce the
sanitized output with less KL-Divergence. This is also reason-
able—since KL-divergence only measures the difference
between two probability distributions (f c1jDj ; . . . ; cn

jDjg and

fx1jOj ; . . . ; xnjOjg), it is easier for every query-url pair (e.g., fi) to

achieve its input count proportion ci
jDj in the output O with

smaller jOj while satisfying all the privacy conditions (con-
straints). In other words, given jOj, the ideal output count of
fi is xi ¼ jOj � ci

jDj. Recall that satisfying the privacy condi-

tions may reduce xi and then deviate xi from jOj � ci
jDj. With

small jOj, 8i 2 ½1; n�; xi ¼ jOj � ci
jDj are also small. Therefore,

8i 2 ½1; n�; xi ¼ jOj � ci
jDj (or slightly reduced i 2 ½1; n�; xi) may

easily satisfy all the privacy conditions, and then the mini-
mum ratio difference (KL-Divergence) between f c1jDj ; . . . ; cn

jDjg
and fx1jOj ; . . . ; xnjOjg can be very small.

Finally, we present the retained query-url pair diversity
in Figs. 4e and 4f for AOL data sets (since MSNBC data sets
have smaller universe size, the diversity is always main-
tained). With the same setup, the retained diversity (exhib-
ited by the recall of the number of distinct query-url pairs in the
output) increases for weakened privacy guarantee. Mean-
while, the preserved diversity in the output also shows
the effectiveness of the entropy-biased utility measure in
the sanitization.

6.4 Utility of CELS versus Local Sanitization (LS)

When different parties need to securely sanitize their
search logs and integrate the outputs with limited infor-
mation disclosure, two possible sanitization methods can
be utilized with identical privacy guarantee (same param-
eter b for differential privacy): 1) Local Sanitization (LS)—
all parties locally impose the privacy conditions with its

data with parameter b and a share of jOj, sample the local
output and then securely integrate the outputs, and 2)
CELS protocol.

We first compare the utility of CELS and LS using two
input data sets AOL 20 M and MSNBC 600 K, where each of
them is equally partitioned to r ¼ 2; 4; 8 shares in three
groups of experiments. For r ¼ 2, two party each holds
half of the input, and they can either execute CELS protocol
or LS (so do r ¼ 4 and 8). In Fig. 5, the result of CELS proto-
col is compared to “2-Party LS”, “4-Party LS” and “8-Party
LS”. Clearly, CELS protocol provides remarkably boosted
output utility than local sanitization while ensuring the
same level of privacy.

Fig. 4. KL-Divergence based utility lLoss and retained query-url diversity (recall).

Fig. 5. Boosted utility by CELS protocol.
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6.5 Efficiency

We have implemented the CELS protocol based on Paillier’s
homomorphic cryptosystem [37] (512-bit and 1,024-bit key
length resp.) and Pohlig-Hellman’s commutative encryp-
tion scheme [41] (1,024-bit key length), which is provably
secure. Thus, we conduct two groups of experiments to vali-
date the computation costs:

1) Given fixed data set (e.g., AOL 2 M or MSNBC
400 K), testing the overall computation cost of CELS
protocol by increasing the number of parties, where
every party holds an equal share of the input. The
experimental result is given in Fig. 6a, which shows
a linear increasing trend.

2) Given fixed number of parties (e.g., 6 parties), testing
the overall computation cost of CELS protocol by
increasing the input size,where every party also holds
equally partitioned input. Figs. 6a and 6b also demon-
strate very good computational scalability on varying
inputs for both data sets and different key length.

In Table 5, we present the communication overheads
required in our CELS protocol (the overall bits/Bytes trans-
ferred among all the parties) where the key length for homo-
morphic cryptosystem and commutative encryption is given
as 512-bit and 1,024-bit respectively. The overall bandwidth
consumption of all parties is very affordable for large inputs
in CELS protocol, and the bandwidth grows slowly as the
number of parties increases. Moreover, in the protocol, the
relatively small amount of overall sent/received data (based
on large inputs and up to 10 parties) is well balanced for all
the participants—each consumes almost identical band-
width. Therefore, such low bandwidth requirement enables
our CELS protocol to be readily implemented and scaled to
large inputs in most networking environments.

7 RELATED WORK

Search log anonymization. Following the AOL search log inci-
dent, there has been some work on privately publishing

search logs. Adar [1] proposes a secret sharing schemewhere
a querymust appear at least t times before it can be decoded.
Kumar et al. [27] showed that token based hashing is an ano-
nymization that does not work. More recently, some privacy
models [17], [24], [25], [30] have been proposed to make
search log release possible. He and Naughton [17], Hong
et al. [25] and Liu and Wang [30] anonymized search logs
based on k-anonymity. Korolova et al. [24] first applied dif-
ferential privacy to search log release by adding Laplacian
noise. G€otz et al. [13] analyzed algorithms of publishing fre-
quent keywords, queries and clicks in search logs and con-
ducted a comparison for two relaxations of �-differential
privacy. Feild et al. [9] presented a framework for collecting,
storing andmining search logs in a distributed scenario.

Differential privacy. Dwork et al. [8] first proposed differ-
ential privacy that provides sufficient privacy protection
regardless of adversaries’ prior knowledge. It has been
extended to data release in various different contexts. Xiao
et al. [46] introduced a data publishing technique which
ensures �-differential privacy while providing accurate
answers for range-count queries. Hay et al. [16] presented a
differentially private algorithm to release a provably private
estimate of the degree distribution of a network. McSherry
and Mironov [32] solved the problem of producing recom-
mendations from collective user behavior while providing
differential privacy. Two other recent work [15], [23]
showed how to sanitize the matrix under differential pri-
vacy. Nissim et al. [36] addressed smooth sensitivity and
sampling in differentially private data analysis. Li et al. [28]
discussed sampling based differential privacy.

Secure distributed data anonymization. Zhong et al. [48] pre-
sented two formulations for securely building global k-
anonymous tabular data held by distributed sites. Jiang and
Clifton [20] addressed the distributed k-anonymity problem
for vertically partitioned data between two parties.
Mohammed et al. [33] extended the above work to securely
anonymizing distributed data with k-anonymity to multiple
parties and malicious model. Mohammed et al. [34] also
tackled the anonymization problem for centralized and dis-
tributed healthcare data with the privacy model LKC-pri-
vacy. Goryczka et al. [12] raised a privacy notion m-privacy
to bound the number of colluding parties in distributed ano-
nymization. Alhadidi et al. [3] presented a two-party proto-
col for publishing horizontally partitioned data with
differential privacy and SMC. To the best of our knowledge,
we take the first step towards securely sanitizing highly-
dimensional data from multiple parties.

Finally, since our sanitization model securely solves a
collaborative NLP problem and sample the output based on

Fig. 6. Scalability of CELS protocol.

TABLE 5
All Parties’ Total Bandwidth Consumption (megabytes)

# of Parties (r) 2 4 6 8 10

AOL 1 M 3.7 14.3 30.3 56.2 85.2
AOL 2 M 9.8 28.2 65.3 121.2 183.8
AOL 4 M 19.3 66.0 152.6 257.4 405.3
MSNBC 200 K 2.2 8.8 19.1 32.6 46.2
MSNBC 400 K 4.6 18.3 40.9 62.1 87.3
MSNBC 800 K 8.9 36.5 89.3 132.7 194.6
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the optimal solution, some privacy-preserving collaborative
optimization models [18], [19], [29], [31], [39], [40], [43], [44]
in literature are also very relevant to our algorithm.

8 CONCLUSION

We have addressed the important practical problem of sani-
tizing search logs for potential storage and publish. Specifi-
cally, we presented a differentially private mechanism that
can generate the output with identical schema with the
input rather than statistical information. This significantly
preserves the utility of the sanitized search logs. To better
improve the output utility, we built a framework (CELS
protocol) that involve distributed parties to securely gener-
ate the output while satisfying differential privacy. We
proved the security of the protocol and differential privacy
guarantee. Finally, the performance of CELS protocol has
been experimentally validated with real data sets.

We can extend our work in several directions. First, in
most of the literature on search log release, the database
schema of the input and output does not include query time
and the rank of the clicked url, thus it is an open problem to
probe effective approaches for publishing search logs with
more complex schema (that may cause additional privacy
concernwith the property of time series). Second, it is unclear
that whether the adversaries can breach the privacy by infer-
ring the correlations between users’ query-url pairs or not,
and whether the differential privacy guaranteed sanitization
algorithms can handle such potential privacy breach or not is
worth investigating. Finally, we also intend to develop incen-
tive compatible sanitization protocols that are secure and
honesty-reinforced againstmalicious adversaries.
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