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Privacy Preserving Smart Meter Streaming against Information
Leakage of Appliance Status
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The smart grid frequently collects consumers’ fine-grainedoower usage data through smart meters to facilitate variouspplications
such as billing, load monitoring, regional statistics, anddemand response. However, the smart meter reading streamsay also pose
severe privacy threats to the consumers by leaking their apmnces’ ON/OFF status. In this paper, we first quantitativdy measure
the information leakage w.r.t. specific appliances’ statugrom any reading stream, and define a novel privacy notion to bund such
information leakage. In addition, we propose a privacy presrving streaming algorithm with different options to effectively convert
readings and promptly stream safe readings in different fakions. The output time series readings satisfy our privacy ation while
guaranteeing excellent utility, such as extremely low ag@gation errors and billing errors. Finally, we experimentdly validate the
effectiveness and efficiency of our approach using real dasats.

Index Terms—Smart Metering, Privacy, Anonymity, Utility

. INTRODUCTION More importantly, the privacy models in most of the existing
o L solutions (e.g., [30], [7], [37]) only consider all théne-
The smart grid integrates sensors and communication Ngtained meter readingéviz. a series of numbers) as sensitive
works into the existing power grid to ubiquitously colleettd 44 and simply aim to anonymize such “numbers”. To the best
from the grid for operational intelligence [14]. As a Crélc ¢ o+ knowledge, the privacy risks in terms of “appliances’
component in such an infrastructure, smart meters fre§uendnoFF status at different times” (which directly refledte t
transmit fine-grained readings to the electric utility, .28 pryacy concerns of energy consumers) has not been formally
reading every 15 minutes [27]. Such reading streams gregi¥fined and quantified in literature. Specifically, the failag
benefit the utilities (e.g., load balancing) as well as ther@n 516 nclear in most of the prior privacy models: (1) which
consumers (e.g., optimizing electricity usage) [13]. He&re |04 ing is sensitive and vulnerable? (2) how much inforomati
some recent studies show that such features may also Iga ted to the appliance status can be leaked from the rgs@iin

to serious breaches of consumers’ privacy [4], [7]. The finggq (3) what kind of background knowledge can be utilized
grained meter readings could potentially reveal the coessm identify the appliance status from the reading streams?

personal daily behavior or habits, e.g., cooking time (by th T K hi in thi . . h
stove or microwave), and frequency of going to the bathroom. 0 tac_ € such 1Ssues, In this paper, we |nvest|gate t,e
at night (by the light switched on) privacy risks by linking the meter readings to appliances

. - ON/OFF status at different times, and formally define a pyva
To prevent adversaries from compromising energy con- .. . .

\ X . . ~notion (denoted a&, §™)-Uncertainty) to quantify and bound
sumers’ personal privacy, three major categories of pyivac

. ) . ._.such threats of information leakage in any reading stream.
preserving techniques were proposed. First, some exist

approaches (e.g., [4]) inject tolerable noise into the in&al Bifterent from most of the prior work, we propose an effi-

or aggregated meter readings. However, they trade off sor%Ient privacy preserving algorithm to stream output regsiin

output utility for desired privacy and may not be able to gasu". hout any aggregatiomhile guaranteeing rigorous privacy

. . - and excellent utility. Therefore, the outputs can supparsim
high aggregation and billing accuracy due to the random art metering services, e.g., billing [12], regional istixs

noise. Second, some approaches (e.g., [30]) encr t ther m@
= L ppro =S €0, yp ], and load monitoring [15], and such outputs can also be
readings with cryptographic primitives and only report the - . . )
i ... _ted into the aggregation-based solutions when necessary.
temporally or geographically aggregated data for specfic a
plications (e.g., billing [12], regional statistics [7hlowever, Motivating Example. Table | presents a set of sample time
without reporting the fine-grained readings, the outpuincén series readings, and Table 1l shows the electric appliaacéds
support many real world smart grid applications (e.g., loatle labeled consumption rates in watts for a household [1].
monitoring [15]). Finally, some approaches (e.g., [37}pelt | real world, the adversaries can obtain the readings and
batteries for households to mask the meter readings. Howeygssess the background knowledge of common appliances’
they may require expensive devices or facilities to SUupf®t .onsumption rates. From the first reading 0.08kWh (in 0.1
scheme_ and thus result in high cost for both |mplementat|q:||6ur)’ he/she can learn the overall consumption rate as
and maintenance. 800watts. Then, with the background knowledge in Table II,
o . N the adversary can learn that exactly one of the following
Y. Hong is with the Department of Computer Science, lllinbistitute of ibiliti . . 800 is O 2
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TABLE |
READING STREAM (FREQUENCY. 1 READING PER6 MINUTES)
Time (PM) 630 ] ... | 730 ] ... | 800 ] 806 | 812 | ... | 842
Reading (kWh) 008] .. 013 ... | 005] 015 017 | ... | 0.2
Consumption Rate (watts) | 800 | ... [ 1300 | ... | 500 | 1500 | 1700 | ... | 2000
TABLE II 1. RELATED WORK
APPLIANCES CONSUMPTIONRATES
I\-/ight 1 (6COIWattS)1( ) VI\-/ight 2.k(1(100""a“s)) In the past decade, various privacy models were proposed
acuum eaner1(00watts aterpl OOwatts H H H L H .
Stereo Systeml(0wats) PC Q00watts) to bognq the privacy risks c_>f |dent|fy|ng.any mdmdyal or
TV (300watts) Microwave g00watts) associating any individual with the sensitive values in yan
Washer {000watts) Dishwasher 1200watts) different datasets, such as k-anonymity [36] for anonyngzi
Dryer (1500watts) tabular data, ang-uncertainty [6] for preventing inferences

in transaction data. Furthermore, differential privac§][has
been extended to tackle the privacy concerns in many differe
likely to be ON due to the cooking time. contexts based on randomizations, such as recommender [23]
Second, at 7:30pm, consumption rate 1300watts can $warch queries [21], [16], [18] and smart metering [4].
learned. Thus, dishwasher is likely to be ON at 7:30pm (dueRecently, privacy-preserving techniques have been devel-
to 1300watts). In reality, a sequential usage pattern of twped for mitigating privacy risks in fine-grained meter riead
appliances “microwave- dishwasher” (washing the disheg4], [29], [31]. For instance, Rottondi et al. [29] presemte
after dinner) could help the adversary confirm that dishwasha secure communication protocol which allows utilities to
is ON at 7:30pm. Similarly, TV and stereo system might bgecurely aggregate smart meter readings. Acs and Casialluc
ON at 8:00pm due to the TV's temporal usage pattern, ff proposed a differentially private scheme that enabbears
well as the correlation between TV and stereo system to ffsters to periodically report data to power suppliers and
ON simultaneously (can be known as background knowledgepmpute aggregated statistics with rigorous privacy guaea
Third, besides the consumption rate/time, some appliandasaddition, Shi et al. [33] proposed a differentially ptiea
also have their unique signatures on the length of usage, Theandomization based aggregation of distributed time serie
adversaries can also utilize it to learn the status of difier data (e.g., readings collected from multiple smart metsit)
appliances. For instance, washer is likely to be ON at 8:06pfifferential privacy guarantee. Different from the noiseséd
(due to 1500watts) and it is also likely to be ON at 8:12pmata perturbation (e.g., state-dependent perturbati@j),[3
(due to 1700watts). Then, the adversary can confirm that ther privacy preserving streaming algorithm does not report
washer is extremely likely to ON at both times due to probabilistic results, which can reduce errors and vaganc
common background knowledge that washer runs continuouglgneral. In the context of smart metering aggregation and
for at least 30 minutes in general. (1 perturbation, more recently, Savi et al. [32] quantitdjive
In this paper, we will investigate a set of possible inforanalyzed a tradeoff between the aggregation set size, the
mation leakage to breach the consumers’ privacy from smafecision on the aggregated measurements, and the privacy.
meter reading streams, and define a novel privacy notion kihally, renewable energy sources (e.g., battery) canibeeat
quantify and bound such risks. Then, the primary contrimgi to mask the original meter readings of households as wejl [37
of this paper are summarized as below: Non-Intrusive Load Monitoring (NILM) . In some NILM
We defi : . . glgorithms [8], [9], [26], [25], privacy concerns have been
* ine a novel privacy notion to quantify and boun dentified since the NILM algorithms estimate the specifie a
the privacy leakage w.r.t. the readings’ actual impIio:z:m;ioI en ! 9 . . © P P
pliances’ energy consumption at different times in houtds)o

3\78Sp?g'f(')csspgrl:ag]fffcsi’eS{N/g\'/:;:Statruesgervm streamine'g" [8], [9], [26]. However, such NILM algorithms cannot
* propose . privacy p N9 ;glrovide an upper bound for the probabilities of disaggriegat
algorithm with different options to effectively convert

readinas and oromotly stream safe readings with excell mis was also indicated in [10]). Then, the privacy enhagci
INGs and promptly st dings With €x echniques extended from NILM algorithms (e.g., [26]) aainn
output utility, e.g., negligible aggregation/billing ers.

We conduct experiments o evaluate the erformance%:fantify and bound the risks with theoretical guarantee of
* P P ivacy. Instead, in this paper, the privacy leaking risks c

our streaming algorithm on real datasets and provide cegsee guantified, and can be bounded with our defined privacy
studies for real-life households. '

notion to provide theoretical guarantee of privacy. Notltat,

The rest of the paper is organized as follows. Section dmong the NILM studies, Dong et al. [10] have learned the
first reviews the related work. Section Il formally definesipper bounds on the probabilities of distinguishing betwee
some models. In Section IV, we present our privacy presgrviacenarios of appliance usage based on the energy consump-
streaming algorithm. Then, we give analysis on privacy, cortion distribution (which was missing in most of the NILM
plexity and implementation in Section V. Section VI presentlgorithms). However, in such work, privacy notions are not
the experimental results, and Section VII summarizes somefined to quantify the privacy risks, and there does nott exis
limitations and challenges. Finally, we draw the conclgdina privacy preserving algorithm to output safe readings dbase
remarks and discuss the future work in Section VIII. on the derived upper bounds either.
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I1l. M ODELS 1) Leakage in a Single Reading

We now illustrate the information leakage, privacy notions The “ON/OFF” status of any appliance can be possibly

and three utility measures. Table Il lists some frequensigd leaked from a single reading which includes the consumption
notations. amount/rate and consumption time.

Consumption Rate.Denoting the size of’'s candidate appli-

TABLE Il
FREQUENTLY USEDNOTATIONS ance setc(w) as |c(w)|,_we can represent(w) as {c(g)l,
AE appliance set, a subset df C(w)g,.:.,c(whc(w”}. Since there arde(w)] combllna'uons
az,|az| | an appliancea,’s labeled consumption rate of appliances that would lead to the consumption rate
|4] number of appliances il adversaries can enumerate all the entries:(in) and infer
h(-) consumption rate function iew f Il th ibl binati f i
e.6,m | privacy parameters a view for all the possible combinations of app mnt{e@)l,_
W, ¢ reading, consumption rate, reading frequericy c(w)2, .-, ¢(W)|ew) - INdeed, in such view, each combination
<) candidate appliance set function of appliancesty € [1, |c(w)|] can have a probability?, such
|e(w)] size of the candidate appliance s€t) h le(w)] itV the inf L leak
Rin, Rout | input and output reading streams that doym1 By =1 \_Ne can quant_|fyt e information leakage
K number of readings in a stream in the adversary’s view using their Entropy [34]:
le(w)
A. Preliminary Models H(c(w)) == Y (P,log Py) 3)
We denote a smart meter's associatggpliance setas v=t
A ={ay,...,a)4}, where|A] is the number of appliances Therefore, the maximum information leakage occurs in case
(how smart meter populates and maintains its appliance 88t P = P> = -+ = Pl () (maximum entropy). In other
A is discussed in Section V-C). We use|,...,|a | to Wwords, among all the possible inferences in the adversary’s
represent their labeled consumption rates. In addition, wew, 1 = P, = --- = P, would result in (house-

definereading frequencys ¢: the time interval between two holds’) maximum privacy leakage (viz. adversary’s maximum
consecutive readings (e.g., 15 minutes). The readings eanitformation gain) from the consumption rate Then, given

converted into consumption rates, and vice-versa. a reading: = w¢, adversaries can have the maximum privacy
Given an appliance setl and the consumption rate ofleaking view which isP; = P, = --- = P, = Wi' for

each appliance i, we first define a function to calculateeach of the possible combinations of appliances with olveral
the overall consumption rate of any subsetsbfwhich is a consumption ratev.
combination of appliances). As a result, the information leakage w.r.t. “any appliange
Definition 1 (Consumption Rate Functid-)): Given any is ON” can be quantified from all the possible combinations
subset of an appliance set: VE C A, function h(-) is (entries in the candidate appliance 8gb)): Vy € [1, |c(w)|],
defined to calculate the overall consumption rate of all thkappliancea, is in the appliance set(w),, then Wlw)\ is
appliances inE: h(E) = >y, cplaz|, where|a,| denotes added into the overall information leakage. Thus, given the
az'S consumption rate. consumption ratev, the information leakage w.r.t. “appliance
Then,h(-) can be used to calculate the unique consumptian is ON” can be represented as:

rates of all the subsets of, which are denoted as:

Definition 2 (Candidate Rate Séf): Given the power set le@)! Luy
24 of an appliance sef, the set of unique consumption rates: Tlw = as] = Z ()] €[0,1] (4)
y=1
G ={h(E):VE C 2%} (1) wherevy € [1, |¢(w)]], I, € {0,1} and if a, € ¢(w), then
whereE is a subset ofd. Iy = 1; otherwisel,, = 0.

As a result, for any consumption ratec G, we can find Consumption Time. Besides the consumption rate, since
all the subsets ofA whose consumption rate equalsby many appliances may have temporal usage patterns, the times

traversing2“. We consider such process as a function:  tamp of a reading can also be exploited by adversaries to
Definition 3 (Candidate Appliance Set Functier)): Given  further identify appliances’ “ON/OFF” status at that time.
any consumption rate € G, functionc(-) is defined as For instance, microwave might be “ON” with a very high
probability at 6pm, and TV is very likely to be “ON” between
cw)={E:E C2* hE)=w} (2) 7-9pm. Note that the temporal usage patterns can be readily
) estimated by the adversaries via exterior knowledge, thg.,
B. Privacy Leakage power usage of most households, weather conditions, aed oth

In this paper, we look at the case that each appliance igeitipeblic resources. Then, we also use the [0,1] range to measur
completely “ON” or completely “OFF” between two adjacensuch information leakage where 0 represents “impossibbeto
readings (which occurs very often in the reading stream d@N” whereas 1 means “impossible to be OFF” (note that it
to short time intervals). Indeed, this is the worst case oéfers to the likelihood of using a certain appliance at aijge
leaking consumers’ privacy since the overall consumptaia r time by most households, which can be simply estimated by
in that time interval (e.g., 15 minutes) accurately refleadts everyone). Then, the adversary can envision a view of the
the appliances which are “ON”. information leakage of all the appliances’ status (baseldam
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likely each appliance is ON at different time). For instance 2) Leakage in a Reading Stream
Z[3am — Microwave] = 0.02, Z[8pm — TV] = 0.3. Thus, First, given a reading streai, the sequential patterns [35]
given a consumption time, the information leakage w.r.t. of appliances in multiple readings can also help adversarie

“appliancea, is ON” can be represented as: identify the usage of appliances. A typical sequentialgratt
can be stated as “if an applianeg is ON at timet, it is likely
Tt — az) € [0,1] (5) tobe ON attimé+1,...,¢t+N". For instance, the information

leakage w.r.t. “dishwasher is ON” is 0.5 at 7pm, and also

Information Leakage Quantification. We then measure the 0-5 at 7:05pm and 7:10pm, respectively. Since a dishwasher
information leakage w.r.t. “an appliance is ON” from a read¥Pically runs for an hour (its sequential pattern) without
ing, which discloses to the adversaries the overall consiemp Nterruption, its information leakage may increase fro .
ratew and timet. 0.8 by correlating the information leakage in multiple riegs.
Definition 4 (Information Leakage of Appliance Status): Second, another type of sequential paFterns res_,ult from the
Given a reading: (consumption rates) at time ¢, we merge correlation between the usage of multiple appliances. For

the information leakage w.r.t. “applianeg is ON” from the instance, if a washer runs at timea dryer will frequently run
consumption rates and timet using their union: at a later time; if a microwave runs at time a dishwasher

will be very likely to run at a later time.
Third, many appliances not only have usage patterns within
T[(w, t) — ag] =Z[(w — az) U (t — ag)] (6) @ sequence of readings .(as described above), but also fre-
qguently run at the same time, e.g., TV and stereo system.

=Tlw = as] + Z[t = aq] In sum, the above usage patterns (for one or multiple

—I{(w = az) N (t — ag)] appliances) could correlate information leakage from iplat
) . . readings and appliances to pose additional privacy risks.
Notice that both the consumption rateand timet leak 3) Summary of Information Leakages

private information regarding,’s status. Nevertheless, in our as described above, adversaries may easily obtain any of
privacy model, the joint information leakad(w,t) — a.] the following common background knowledge:

should be bounded in any case, &, t) — a,] achievesits 14 reading frequency.

maximum value when the two correlated information leakage | A jist of common appliances, their consumption rates and

from thg consumpt!on ratew and timet individually leak temporal usage patterns (e.g., TV frequently runs at 8pm,
information — two fixed amounts of leakage from and ¢ microwave rarely runs at 3am).

haye the leaSt overlap, _a”d thus make the joint leakage (thg Single appliances’ sequential usage patterns (e.g., dish-
union) achieve the maximum value. Then, we only need to -, continuously runs for one hour).

boundmax{Z{(w,t) =+ a.]} in our privacy notion: « The usage patterns of multiple appliances (in sequence),
e.g., washer runs first and then dryer runs.
« The usage patterns of multiple appliances (at the same
time), e.g., TV and stereo system.
—Z[w = aa] - [t — a4 Then, we formally illustrate three kinds of information
leakages based on the above background knowledge:

max{Z[(w,t) = a;|} =Z[w — a,] + Z[t — a.] @)

wherew andt individually leak privacy w.r.t. &, is ON”.

In summary, the information leakage — a, to the = > . . :
adversaries based on the observations of the consumpﬁgﬁammmm’"".Rm[KD} Its consumpho_n rate;’and time
rate w is similar to the information leakage in the datase% COUl.d leak the information O.f the apphances status (per
applied with k-anonymity [36]. Each possible combinatidn guation 6, the worst case of information leakage occurs as

the appliances in the candidate appliance set has an egkal Ti th w and ¢ individually -Ieak information with the least
to be linked to the overall consumption rate and thus the overlap). Then, adversaries can learn the status of many

information leakag&€|w — a,] can be obtained. Furthermore,app“alnces as ON at different times with a hithw, t) — az].

the information leakage from the consumption time in thé@formation Leakage (2). Appliances may have sequential

readingZ[t — a,] can increase the joint information leakagé/sage patterns (e.g., dishwasher, and oven), which occur in

of each appliance’s ON status via the union of two leakageg?me consecutive readings in the stream. Without loss of
Note that the appliances are not necessarily unique 9gnerality, assuming that appliancg has a sequential pattern

A (e.g., multiple lights) and an appliance may have mof@ run in N consecutive readings, the information leakage w.r.t.

than one consumption rate for different running modes (e.g¢= iS ON" in consecutive readings can be obtained:

Microwave). For the former case, we consider such applance o Z[(w1,t + 1) = a.]

as different appliances il to calculate the candidate rate o Z[(wa,t +2) — ay]

set and the candidate appliance set. For the latter case, we ...

consider such appliance as a single appliance (with maltipl ¢« Z[(wn,t+ N) = a,]

possible consumption rates) iA to calculate the candidate Then, the information leakage can be higher than any of the

rate set and candidate appliance set as well as measureath@ve due to their correlation (correlating multiple legdan

information leakage. sequential readings).

Information Leakage (1). For any reading- in a reading



JOURNAL OF BIpX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Information Leakage (3). Multiple appliances may frequently tiered base (TB) plan [2], [27], [20]. In these two plans, the
run in sequence or simultaneously (e.g., washer and dryefectricity tariff may vary at different times (e.qg., in TQdlan,
Specifically, assuming that two appliances and a, fre- peak vs. off-peak) or for different tiered consumption amtsu
guently run in sequence, if the following are relatively iig (e.g., in TB plan< 1000 kWh/month vs> 1000 kWh/month).

o I[(wi,t+1) = ag) Thus, the billing error rate is defined as below:

o I[(wn,t+ N) = ay,] Definition 7 (Billing Error Rate):Given an input reading

Then, the information leakage w.r.t. each of and a,’s S€amMZin, an equal-length output reading stredtp,; and
status (att + 1 andt + N, respectively) can be higher than? Pilling function f(-) of an energy plan, if2... is utilized to
their original information leakage due to their correlatioc@lculate the billed amount, the billing error rate is dedie

correlating two leakages in sequential readings). Sityil# - =
( g g q gs). Siigj |f(Rout) _ f(Rm)|

a, anda, frequently run simultaneously and if the following erry, = = (8)

are relatively high: f(Rin)
o T[(w,t) = ag] Note thatf(-) can be a constant tariff, or a function given
o Z[(w,t) = ay) in the TOU or TB plan.
Therefore, the information leakage w.r.t. eaclupfainda,,’s In addition, for some aggregation based smart grid appli-

status at time can be higher than their original informationcations [12] (e.g., regional statistics [7]), we define &eot

leakage due to their correlation (correlating two leakaiges Measure to quantify the utility of our output reading stream
the same reading). B Definition 8 (Aggregation Error Rate)siven an input read-

ing streamR;,, with K readings and an equal-length output

C. Privacy Notions reading streank,,;, the aggregation error rate is defined as

To prevent the information leakage illustrated in Section S Rowli] = K | Rinlil
. X . ; p - i=1 *lout i=1""n
[11-B3, we first define a privacy notion for quantifying and erry = —— 9)
bounding such risks in any single reading as below: > i1 Rinli]

Definition 5 ¢-Uncertainty): Given an appliance set, we
say a meter reading satisfiese-Uncertainty if Va, € A,
I[(w,t) = az] < € holds, wherew = % and ¢ represent
the readingr's consumption rate and consumption time r

spectivel_y, ancD.S e< 1. . - . [15]), the difference between two reading streafs, and
Thus, if any given reading satisfies:-Uncertainty (or say R;ut should also be measured. Then, we define the reading
is e-Uncertain), the information leakage of all the appliahcetcérror rate to quantify such difference: ’

ON status is no great_er than Note thate-Unpertainty can  pefinition 9 (Reading Error Rate)Given an input reading
only bound thenformation Leakage (1in any single reading. stream R,, with K readings and an equal-length output

To bound thelnformation Leakage (2) and (3 a reading reading streanR,,;, the reading error rate is defined as

where R, [i] and R,.[i] are thei’" reading inR;, and
R;ut, respectively.

Furthermore, since the output reading strefag, might be
€ised to function some real-time services (e.g., load mondo

streami = (r1,...,7rx) (denoting the number of readings in
the st_reg_m ag(), we define the_following priyacy model:_ B ZZK:I |R;ut[i] — R, Bl
Definition 6 (¢,d™)-Uncertainty): A reading streamR erry = ZK I ] (10)
satisfies(e, §™)-Uncertainty if the following conditions hold: i=17n
1) All the readings inR are e-Uncertain; where Rinli] and R,y[i] are thei™ reading in R;, and
2) The information leakage of any appliance’s ON status,.:, respectively.
in any m consecutive readings iRt is bounded bys;
3) The information leakage of any combination of appli- IV. PRIVACY PRESERVINGALGORITHM
ances’ ON status in any. consecutive readings it is  |n this section, we first derive the conditions for deciding
bounded byp. whether a reading is safe to stream or not in Section IV-A,

Note that meeting the three conditions would mitigatand then present our algorithms in Section IV-B and IV-C.
the risks of three categories of information leakages. Two
additional privacy parameteis and m are defineds limits o safe Readings
the information leakage from any usage pattern (of single
or multiple appliances) in anyn consecutive readings in
R. Smallere or § and largerm provides stronger privacy
protection.

Given any appliance sed, the candidate rate set can be
derived per Definition 2 a& and then we can derive:

Definition 10 (Candidate Reading SRY): A set of all the
possible reading® = {r : Vw € G,r = w¢}

Among all the possible readings iR, we define a safe

D. Utility Measures reading as below:

We define three different utility measures for our approach. Definition 11 (Safe Reading)ziven an (e, §™)-Uncertain
We first consider the billing accuracy. In real world, besideeading streami, a readingr is a safe reading, if adding
the standard energy plan (constant tariff), two other papulb- (with a specific timet) into R also results in ar(e, 0™)-
plans are widely used (1) time-of-use (TOU) plan, and (2)ncertain reading stream.
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Information leakage w.r.t. appliances’ ON/OFF statusltesudenoteVi € [1,m], Z[(w;,t +4) — a,] @SZy,...,Z/,. Then,
from the reading’s consumption rates, candidate rate setwe also consider the worst case that information leakages of
c(w) and also the consumption timg thus » might be a q, ora,’s ON status from all then consecutive readings have
safe reading at time but not a safe reading at timé (e.g., the least overlap (which also leads to the highest union @f th
some appliances in(w) may have high information leakageinformation leakages o#, or a,’s ON status from multiple

at ¢’ caused by the temporal usage patterns). As a result, safadings), discussed as below:

readings cannot be determined/precomputed before lodukng

input reading stream with timestamps. Therefore, we dgvelo
a privacy preserving algorithm to stream safe readings in
sequence. The basic idea is — while incrementally gengratin

every safe reading, the algorithm checks the new reading

and previousn — 1 readings whethefe, §™)-Uncertainty is
still satisfied: if yes, then outputs it in the reading stream

« Correlating the information leakages @f anda,’s ON
status from one or multiple readings clearly increases the
joint information leakage (which is the union of multiple
individual leakages); as all the information leakages.(e.g
Z; and Z}) are fixed, the union of them achieves the
maximum value when the individual leakages (ed.,
andZ}) are independent to have the least overlap.

otherwise, iteratively checks the next readingRn Again, we need to bound the information leakage w.uf, “

Conditions for Safe ReadingsWe now explore the conditionsand a,, are ON in one or multiple reading”. Specifically, the
for generating a new safe reading in addition to an existingformation leakage w.r.t. “both, anda, are OFF in all the
reading stream. W.l.o.g., we denate consecutive readings m readings” can be represented[d$" , (1 — Z;)(1 — Z}), the
as ri,...,m, at timet + 1,...,t + m respectively and information leakage w.r.t.d; is ON anda, is OFF in the
considerr,,, as the new reading, and the consumption rates consecutive readings” i5_;", [Z; [['_, (1 — Z})], and the
Vi€ [1,m],w; = % Denoting any arbitrary appliance ag, information leakage w.r.t.d; is ON anda, is OFF in the
the new reading,,, should satisfy:-Uncertainty, thus we have: m consecutive readings” 5", [Z; T[], (1 - Z;)]. Thus, the
maximumZa,, a,] can be derived and bounded as:

Vay, € c(wm), max{Z[(wm,t+m) — az]} <€ (11) .
Second, we denote the information leakageagfs ON max{Z(a,,a,]} =1 - [[(1 - Z))(1 - 7))
status from multiple readings in the@ consecutive readings i=1
asZ[a,|, which is bounded by. For simplicity of notations, T , WA _
we denoteVi € [1,m], Z[(wi,t + i) — az] asTi,..., L. _z;[LHl(l_Ij)]_z;[IiHl(l_Ij)] <0 (13
i= j= i= j=

Then, we consider the worst case that information leakafjes o
a,’s ON status from then consecutive readings have the least Notice that the information leakage w.r.t. “any combinatio
overlap (which leads to the highest union of the informatiodf appliances including,. anda,, (w.l.0.g.a;,a,,a.,...) can
leakages from multiple readings), discussed as below: ~ be ON inm consecutive readings” is no greater tfn,, a, |
« Correlating the information leakages of’s ON status (SImPply because leakage w.r.t;"anda, are ON”and leakage
from multiple readings clearly increases the joint inford-I't- “az,...are ON" should concur to leak information of
mation leakage (which is the union of multiple individuafiz: @y: @=:---'S ON status). Hence, such information leakage
leakages). As all the information leakages (efg.and IS @lso bounded by if Equation 13 holds. _
T,,1) are fixed, the union of them achieves the maximum ' Summary, while examining the current reading (safe
value when the individual leakages (eB.andZ;. 1) are ©f Not) along with the previousn — 1 readings, if three
independent to have the least overlap. cond|t|ons hold (Equatl_on 11, _12 an_d 13), thenis safe since
Then, we need to bound the information leakage wd.is the reading S”e"?“.“ (W'thm) still satisty (e, 5)’”-Uncertamty._
ON in multiple readings’. Specifically, sincé € [1,m], T, € Such three conditions will be adopted by our stream algarith

[0, 1] (normalized), the information leakage @f's OFF status to check whether a reading is safe or not.
in all them readings can be represented[d$ , (1 —Z;), and
the information leakage w.r.ta; is ON in exactly one out of
the m consecutive readings” i5°", [Z; [}~ (1 — Z;)].
Thus, the maximunZ[a,] can be derived and bounded as:

B. Initializing the Smart Meter (Offline)

Before running the streaming algorithm, the smart meter
should be initialized to recursively traverse all té! subsets
of A and then identify the candidate rate égtcandidate read-

m m m ing setR as well as candidate appliance s&ts € G, c(w).
max{Zla,)} =1 - [[0-Z) =Y [z [[ -7 Notice that the initialization is a one-time offline process
=1 =1 j=1# Most real-life households typically have a small or medium

number of appliances (e.g.4| < 40). Thus, it is feasible
(1-T) + I H (1-Z;)]<é (12) 5 find the exact candidate rate s6t by traversing every
J=lii element in the power se14. In case that a large number
Third, similarly, lettinga, be another appliance other tharof appliances are attached to a smart meter of a community,
a., we denote the information leakage w.ut, anda,’s ON building or factory (e.g.|4| = 1000), the exponential number
status from one or multiple readings out of theeconsecutive of possible appliance combinations (i's power set24)
readings ag|a, a,], which is also bounded by. Again, we cannot be enumerated in polynomial time. To resolve this,

s

=1

=1
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we define a reasonably large numbher(e.g., 10°) as the
maximum number of traversed elements2ifi to terminate
the recursive traversal in the smart meter initializatioichs
that the approximated, R andVw € G, c¢(w) are generated.

« Dynamic Reading Conversion (DRC): dynamically up-

date every input reading with the previous reading re-
mainder and then find the closest safe reading based on
the updated input reading.

As will be demonstrated in Section VI, such an approximation With these two options of handling the reading remainders
leads to satisfactory results in terms of generating caxeid (which result from the conversion from input readings toesaf

rate/reading sets.

readings), we detail our streaming algorithm in Algorithm 2

Algorithm 2: Privacy Preserving Reading Streaming

C. Privacy Preserving Streaming (Online)

Assuming that the smart meter originally colledtsread-

Input

: an input reading strearft;,; candidate reading
setR; privacy parameters, J, m

ings in the input strearRm, our streaming algorithm privately — Output: output safe reading streafy,,;
streamsK output readmgé%out Our algorithm incrementally 1 initialize a reading remaindex = 0

generates and outputs safe readings based on the inputgsadi /

in R;, where billing and aggregation errors can be extremely foreach Rinli] € Rin,i € [1, K] do

low while reading errors can also be minimized to some extegt
in the output stream. The basic idea is — for each input rgadin
our algorithm first looks up the closest safe readingRn ,
(which is a key building blockof our streaming algorithm),
and outputs it in different fashions to achieve good utibify
the stream, shown as below.

1) Closest Safe Reading Lookup

Algorithm 1 presents the details of closest safe readin7g
lookup. While the smart meter captures an input readin@,
it iteratively finds the closest reading in R and examine
whetherr is safe or not: whether the output stream with o
satisfies(e, §™)-Uncertainty or not. 10

6

/

Algorithm 1: Closest Safe Reading Lookup

12
13

: an input readingl%:n [7]; current output readings
Rowt = (Rowt[1], ..., Rout[i — 1]); candidate
reading setR; privacy parameters, d, m
Output: an output safe readinﬁgut [¢]

1 initialize Ry,y[i] = argming, .5 |r — Rin|i]| (closest)

2 while R,,,; U R;ut[z'] is not (¢,0™)-Uncertaindo

Input

14
15

* (2)
11 foreach R;,[i] € Rin,i € [1, K] do

* (1) if CRC(roII over renainders) x/
if i = K then
[+ at the |last reading */

call Algorithm 1 to getR;,[K]'s closest safe
readingclosest
Return closest as R, [K]

else

call Algorithm 1 to getclosest as R;n[i]’s closest
safe reading
A = (closest — Riyi])
Return closest as R, [4]

if DRC (roll over renminders) =/
run Algorihtm 1 to getclosest as R;,[i]'s closest
safe reading

A = closest — Riy|i]

| Return closest as Rt [4]

3 | R =R - Rouli]
Rowtli] = argminy, e, |r Rin[i]| (next closest)

CRC Option. Given the;*" readingR;n [i] in the stream, CRC

first verifies whether it is the last reading. If yes, CRC will
sum up the aggregated reading remaindeto the current
readingR?n[ K] and return its closest safe reading Otherwise,
the algorithm returns the original input readtR%[ i|'s closest
safe readingclosest, and A is updated with the difference
closest — R_{n[z']. In summary, Algorithm 2 with the CRC

4
5 check whethe®,,,; U Rout[ | satisfies
(e,8™)-Uncertainty with Equations 11, 12 and 13

6 Return the safe reading%;ut [¢]

2) Streaming Algorithm

In order to minimize the aggregation and billing errors,
while streaming every safe reading (converted from the in-
put reading), our algorithm rolls over the reading remainde
(R;ut [i] — Rin [i] can be positive or negative) to the either (1)
the last reading, or (2) the next input reading of the stream.
We propose two roll over options as below:

« Cyclic Reading Conversion (CRC): find the closest safe
reading for each input reading, aggregate all the input
readings’ remainders (either positive or negative) togeth
and roll over the aggregated remainder to the last reading.
“Cyclic” means every reading remainder is cyclically
reset to0 (does not affect the next reading) and the ag-
gregated remainder will be subtracted in the last reading.

option has the following characteristics:
« Aggregation Error:

since the aggregated reading re-
mainder) is integrated into the last reading, the overall
aggregation error would be the difference between one
single reading B;[K] — \) and its closest safe reading.

It has high possibility of being close to 0, as shown in
experimental section.

Billing Error : assuming the time frame fofi € [1, K],
Rin[i] is the billing cycle, if the tariff functionf(-)

of electricity bill is a constant, the difference between
aggregating the readings iR;, and R,.; results from
the last reading (since reading remainders have been
integrated in the aggregation). Thus, CRC option’s billing
error is identical to its aggregation error (close to 0).
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« Reading Error: since allK readings in the stream excepfFirst, the offline phase recursively traverses the poweofsdt
the last reading can achieve its local optimum towardexponential) to identify the candidate reading set andciptes
minimizing the reading error with its closest safe readingates’ candidate appliance sets. For a large dizhe recursive
the reading error can be minimized to some extent. traversal is terminated with a sufficiently large number of
o Privacy: Ry satisfies(e, 6™)-Uncertainty. traversed elements iz (denoted ag). Second, the online
DRC Option. DRC dynamically updates each reading bphase streamd( readings: for each reading, it iteratively
integrating the previous reading remainderthen returns the l00ks up a closest safe reading fraR (say, O(n) readings
updated reading’s closest safe reading, and finally geggeeat are returned to identify a safe reading) and examines all the
new reading remainder for the next reading. Also, Algorithr@ppliances in every candidate reading’s candidate apian
2 with the DRC option has the following characteristics: ~ set (at mostA| appliances) to check whether the information
. Aggregation Error: since every reading remainder ideakage meetge, 5)-Uncertainty or not for the most recent
integrated into the next reading, the aggregation err8t Output readings. Thus, the computational complexity of the
is the last remainder which is well balanced by all th@nline streaming phase &(K|A[nm), which is polynomial.
readings into a very small number. Then, the aggregation

error is extremgly_ close to O. _ . C. Implementation and Scalability
« Billing Error : similar to the aggregation error, the billing

error (with constant tariff) is also extremely close to 0. ©Our streaming algorithm can be easily integrated into a

« Reading Error: since each reading integrates the prémart meter. Specifically, the appliance sétand privacy
vious remainder, the reading error of DRC is re|‘,jltivew)arametersa,5 andm can be loaded into the smart meter via

higher than CRC. Nevertheless, after integrating tifeWeb interface or a mobile application for generatigR
previous remainder, each reading can also achieve &adVc(w) in the initialization. Privacy parameteiis specified

local optimum towards minimizing the reading error by° bound the information leakage in single readings while
converting the reading to the closest safe reading. and m are specified to bound the information leakage from

« Privacy: Rowi satisfies(e, 5™ )-Uncertainty. the correlations of energy usage in one or multiple readings
ail'he CRC and DRC can be implemented as different privacy-
iGiare running modes in the smart meter. Once a new reading

combinations of appliances in real world (by ensuriag™)- IS capt_ured by the smart meter, a S"?“fe reading is generated
mediately and transmitted to the utility company.

Uncertainty). Thus, our proposed approach could also ptevém - . L
the privacy risks against NILM algorithms (both supervised SPecifically, the consumers can locally adjust their pyvac
[9], [8], [25] and unsupervised [24], [22]) for two reasonsparameter&6 andm based on their levels of privacy demand

First, safe readings are converted from the true readin any time, but they do not need to change the (CRC and

and the aggregated consumption have been changed ff ﬁ]c based)_privacy preserving streaming algori_thm (which
the original readings. Second, the output safe readings'?n'ntegramd in the smart meter). For better functlonln@so
our algorithm are associated with large number of possidf1erging services (e.g., energy saving recommendatiah, an
combinations of appliances in real world by satisfying thBOn-intrusive load monitoring [15]), the utility compangre
privacy notion, such large number of appliance combinatioHEEP & d(-at.aned inventory of each appliance, W.h'Ch wil not
would increase the estimated consumption amount of md}ase additional privacy concerns to our streaming algorith

appliances (compared to the true readings) and greatl;peedllssmce [\)Ne Essumﬁ tkhat a;d;ersgnes cogld possedssl the a:ppllgn
the learning accuracy. Ist as background knowledge in our privacy model). Upon ad-

dition and/or removal of appliances (e.g., purchasindgdapg
V. ANALYSIS a new appliance, house owners move out, renting the houses to
tenants, and houses with visitors who bring their own desjice
) ) - the consumers can locally reset the smart meter with an up-
We now analyze the privacy leakage in the outlil.:, dated list of appliance set (running smart meter initialization
assuming that the adversary can ppssess.the some or all ofotﬁ@e) and inform the utility company if necessary. Notice
background knowledge described in Section IlI-B3.  that the consumers do not necessarily change the streaming
Lemma 1:The output reading stream of Algorithm Zo.:  gigorithm, and they can switch from CRC to DRC (and vice-
satisfies(e, 5™)-Uncertainty. versa), as well as specify a new group of privacy parameters
Proof.SinceV: € [1, K], R,.:[¢] are generated in time seriese’ & andm according to their privacy demand.
sequence, and each newly streamed output reading togethgfinaly, after implementing our privacy preserving stream
with the most recenin — 1 readings in the stream strictlyjng gigorithm in the smart meters, the utility can offer such
satisfy the three groups of conditions (Equations 11, 12 aBi;?vacy-aware smart metering services to the consumerseSi
13), it is straightforward to see that all the output readilg ,5th CRC and DRC based streaming algorithm would result

A. Privacy Analysis

the stream satisfieg, 5™)-Uncertainty. LV in small billing errors (less thart4% in general), if the
) ) consumers pay 4% more, this is the price traded for better
B. Complexity Analysis privacy protection; if they pay less, the utility can charge

Our approach consists of two phases (1) the offline smartsmall amount of service fee to tackle such non-technical
meter initialization phase, and (2) the online streamingsgh losses. In the meanwhile, there are two alternative appesac
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that can reduce the billing errors to as low as 0: (1) rollimgro the candidate appliance sets € G, c(w). However, if the
the remainder of the last reading in the current billing eycinumber of appliancesn reaches50, we may not be able
to the next billing cycle (instead of discarding it), and (2)o obtain the exact result within a reasonable time due to
we can let the consumers locally calculate the billed amoutie exponential increase of the computational cost. Inethes
without leaking private information. Such approaches wWoukases, we set a termination threshpldh the heuristic safe
need relatively more trust on the consumers, and indeedhmatandidate rate set generation, which runs only once foryever
the fact that utilities in many countries (e.g., US and Cajadsmart meter and requiresoae-time offlineeomputational cost.
allow consumers to submit their readings by themselves. Figure 1 presents the experimental results for smart meter
initialization. As p tends close tal0%, the exact results of
VI. EXPERIMENTS G, R andVw € G, ¢(w) for |A| = 20 can be derived, and the
A. Experimental Setup results of|A| = 40 and |A| = 100 become relatively stable.

: N Therefore, if|A| increases, the approximated resd#tsR and
Datasets Richardson et al. [28] collected 22 dwellings powe%w € @, ¢(w) can be sufficiently accurate.

consumption over two years in East Midlands, UK. Eac

of the 22 smart meters has reported 1,051,200 readings (1 - )

reading per minute). Furthermore, in UMass Trace ReposiC: Utility Evaluation

tory (http://traces.cs.umass.edu/), Barker et al. [Slectéd 3 In the experiments, we have evaluated all three error rates

smart meters’ consumption data over three months in 201Billing, aggregation and reading) for both CRC and DRC

respectively (1 reading per second). options with constant tariff. Specifically, we conduct exper-
We conducted the experiments on these two datasets (iheents using both UK and UMass datasets to test CRC and

noted as “UK” and “UMass”, respectively), and averageDRC's utility on varyinge, § andm, respectively.

the results of multiple smart meters in each dataset. TheWe selecte € [0.1,0.3], § € [0.05,0.15] andm € [10, 30].

characteristics of the two datasets are presented in T&ble IWhile testing every privacy parameter, the other two param-

eters are fixed to achieve the best privacy protection. d-or

TABLE IV we fix 6 = 0.05 and m = 30; for §, we fix e = 0.1 and

CHARACTER":VT;; %F;HEPATASETS m = 30; for m, we fixe = 0.1 andd = 0.05. The experimental

Datasets | Meters # Appli%mces Readings #| Time | results _of aggreggtion/billing error rate_s are plotted iguFe

UK Data 2 24.0 1,051,200 Zvears | 2 (varying e in Figure 2(a), varyingd in Figure 2(b) and
UMass Data 3 35.7 7,776,000 | 3 months| varying m in Figure 2(c)). Furthermore, the corresponding

experimental results of reading error rates are plottedgare
Parameters.e is selected from 0.01 to 0.2 whileis selected 3. Then, we have the following observations:
from 0.01 to 0.1 in the experiments. In the evaluation of
heuristic smart meter initialization, we run additionadteeby CRC and DRC) could stream outputs with lower aggre-
letting the number of appliances bd| = 20,40,100 and

) ) - i gation/billing and reading errors.
each appliance’s consumption rate (watts) is selected from, Aggregation/billing error rates are low (UK data:1.2%
a real-world list of appliances and consumption rates [1]. .4 UMass datas 4.1%).
For the tariffs of energy usage, we set the rates per the rea| '

- " _“ The CRC option in the streaming generates higher ag-
world energy pricing plans offered by Pacific Gas and Electri gregation/billing errors but lower reading errors than the
Company (PG&E) [2].

DRC option (for both UK and UMass data).
Platform. All the experiments were performed on a DELL PC « Privacy parametee impacts utility more significantly
with Intel Core i7-4790 CPU 3.60GHz and 16G RAM running  than § and m in our privacy model. Utility improves

o Smallere and 6 or greaterm in the algorithm (both

Microsoft Windows 8.1 Operating System. more quickly as increases (all the errors decrease more
quickly) compared to increasingor reducingm.
=TT In case of dynamic energy billing, e.g., TOU and TB plans

60000 | _o-|Al=40
50000 1AI=100

40000
30000
20000 D. Efficiency Evaluation
10000

0

[2], [27], [20], we have discussed a possible solution taieas
0 billing error in Appendix A.

Size of G or R

Computational Performance. Figure 4(a) presents the one-

time offline runtime for the number of appliancéd| =

000) 20,25, 30,...,1000. When |A|] > 60, we implement the
heuristic smart meter initialization by specifying a large-
mination thresholech = 10°. As expected, the one-time offline

B. Smart Meter Initialization (Offline) cost is tolerable for any smart meter (e.g., 120MHz [3]). On

Be other hand, Figure 4(b) presents the total online runtim

R R I — I I ]
AT OO S =AM TN O
o -

d (

Termination Threshol

Fig. 1. Smart Meter Initialization

Both UK and UMass Data include specific appliances ar*
their time series consumption information. We can obtainipggeqation error raterr,

: i ] always equals the billing error rate-r;, in
the exact candidate rat&, candidate reading seR and case of constant tariff.
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Fig. 4. Computational Performance (UK Data)

for a varying number of readings in the input stream (from 5he case study. In the three houses, 18, 26 and 33 appliances
days to 1 year, with 1440 readings per day). Both CRC amde installed, respectively. Specifically, we simulate the

DRC take less than 2 hours to convert and stream 1 yeddsmation leakage and the privacy preserving algorithm on
readings in the UK data (525,600 readings in total). The CR@e data collected from the three houses on Jan 1, 2008.
option is slightly more efficient than DRC in the streaminglote that we aggregate the high-resolution readings into 15
algorithm. Note that our streaming algorithm also has similminutes per reading, which is a commonly used reading
performance on the UMass data. frequency. Also, some non-electric appliances (e.g., iHgat

Streaming Latency. Figure 4(c) demonstrates the runtiméVater Heating, and Gas Oven) do not consume electricity and
consumed by streaming every single reading on averagepwh@i€ Not considered as leaking privacy. In this case study, we
e € [0.1,0.3],0 € [0.05,0.15] and m € [10,30]. Such specifye = 0.3, _6 = 0.2 andm =5 (5 consecutive r_eadlng_s
runtime is less than 0.016 secong (1 second) for both form one hour interval for testing usage patterns in mutipl
CRC and DRC. As a result, although smart meters hal@adings). Then, safe readings should make the information
relatively weaker computation power (e.g., 120MHz [3])rthal®akage of each appliance not excéetiand the information
an experimental PC (e.g., 3.60GHz), our privacy preservitgkage of any appliance or combination of appliances ineve
streaming algorithm can be implemented in the smart metér§onsecutive readings not exceed.
for high resolution reading streams without any latency. Due to fluctuated power quality, the actual reading may not
equal the candidate reading derived from the labeled copsum
E. Case Study tion rates of the appliances (they are indeed close to each
Besides conducting experiments on the overall meterig§ier). For every reading, we find its closest candidateingad
datasets, we also Study the cases of Specific houses. to derive the information |eakage. This matches the fadt tha
1) Case Study Setup real-life adversaries also utilize the labeled consunmptades
We select three sample houses with different types (tedrac# their mind to learn the appliances’ ON/OFF status.
semi-detached and detached) from the UK dataset [28] forTo estimate thénformation leakage of appliances from their
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Fig. 6. Information Leakage in the Detached House at 6:30pm (.3, 6 = 0.2, m = 5)

temporal usage patterrig[t — a,| € [0, 1] for the day Jan 1, 6:30pm in the detached house. The privacy-leaking apm®nc
2008, we perform empirical study by surveying 10 students @m those readings are listed as below:

campus. Every student estimates the likelihood of eachef th | Terraced (7:45am): Bathroom Bulb, Kitchen Bulb, Bed-
appliances is ON at all the timestamps on Jan 1, 2008 (which 5om Bulb (1), Bedroom Bulb (2), Refrigerator, Toaster,
is a generic estimate for all the households without looking  kettle, Microwave.

at the reading), where 24 time slots are given and every 4, semi-detached (5:45pm): Refrigerator, Kitchen Bulb and
readings ghare the same result,_ e.g., thg information deaka Living Room Bulb (as a combination), Electric Oven,

w.r.t. “TV is ON” in [8pm, 9pm) is 0.3. Finally, we average Microwave, Kettle, Bathroom Bulb (1).

the results for each appliance and time in all the surveys. , petached (6:30pm): Kitchen Bulb, Living Room Bulb,

2) Information Leakage Analysis Refrigerator, TV (CRT), Computer (1), Computer (2),

From the reading stream of each house, if the information Electric Oven, Dishwasher.

leakage of any appliance’s ON status at titie greater than Furthermore, we sele_ct an unsafe_ reading_ at 6:30pm in_ the
¢ = 0.3, or the information leakage of any appliance or an?etached house (6 appliances have information leakagethigh
combination of appliances’ ON status in afiyconsecutive than_0.3) to demonstrate.the privz?\cy risks of all the appliance_s.
readings (including time) is greater tha = 0.2, then such [N Figure 6, we _pIot the |nfor_mat|on Ieakagg pf the 30 elec_trl
appliance(s) are considered as “privacy-leaking appiarat appl!ances, which are qbtalned by examining the candidate
time ¢*. Following this rule of information leakage analysisaPpliance set of the reading/consumption rate (4.94kWenTh
on the reading stream of three sample houses, we can ideniy have the following observations:

the number of “privacy-leaking appliances” for each regdin « Refrigerator is the most easily detected at any time (with
time, and then plot such results for three houses in a tiniesser an information leakage higher than 0.9 due to its high
manner in Figure 5. It shows the number of privacy-leaking Z[t — a.]). This poses a challenge that an extremely
appliances at different times in such three houses. We can high Z[t — a,] of an appliance (such as refrigerator)
also observe which original reading is safe (no privacyiteg would lead to a high overall information leakage all
appliances at a specific time), and which original reading is the time. Nevertheless, its ON status does not leak any
unsafe and how unsafe (based on the number of privacy- private information of the consumer since almost all the
leaking appliances at a specific time). Specifically, we find households keep their such appliances (e.qg., refriggrator
out that some readings are originally safe in every housé w.r  running all the time.

the given parameters 6 andm (e.g., 9:45am in the terraced « Although the bulbs in different rooms of each house
house, 3:30am in the semi-detached house, and 10:45pm in may have the same consumption rate, their information
the detached house on Jan 1, 2008). On the contrary, some leakage at the same time might be different (since such
readings in three houses are highly unsafe, e.g., 7:45am in bulbs may have differerf[t — a,] at the same time).

the terraced house, 5:45pm in the semi-detached house, and In the detached house, at 6:30pm, TV is also a privacy-
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leaking appliance with high information leakage whereas 3) CRC and DRC
electric shower is the hardest to identify with the low- To bound the privacy leakage in a reading stream, our
est information leakage. Similarly, in the semi-detachqgtivacy preserving algorithm has two streaming options CRC
house, at 5:45pm, kitchen bulb is the easiest to detewid DRC that satisfye, §™)-Uncertainty. Due to space limit,
(besides the refrigerator) whereas two computers ame only demonstrate the reading conversion results in the
the hardest to detect. In the terraced house, at 7:45aample detached house on Jan 1, 2008 in Figure 8. We can
microwave is the easiest to detect (besides refrigeratéirjd out the safe readings w.r.t. to privacy parametets0.3,
whereas tumble dryer is the hardest to detect. Notice that= 0.2 andm = 5 are close to the original readings, then
the ON status of some appliances can be leaked ashae reading errors can be minimized in two different ways
combination (e.g., kitchen bulb and living room bulb innote that the aggregation and billing errors are negl&ibl
the semi-detached house), and some appliances canM®anwhile, we have plotted the reading conversion resatts f
detected from the correlations of energy usage in multiptifferential privacy [11] by adding the generic Laplace swi
readings (e.g., dishwasher in the detached house). to ensure5-DP for the reading stream in which the multi-
Note that all the above observations match the ground triphicative differences between the probabilities of getiega
of power consumption in households. The information leaka@ny identical output from two neighboring inputs are bouhde
of each appliance’s ON status can either increase or decrely ¢®. The results show that differentially private algorithm
over time due to the highly fluctuated consumption amouwwould lead to much higher errors and also greatly fluctuate
and the usage patterns of such appliance at different timeghe output readings.
Finally, in order to learn how reading frequency affect 4) Phantom Load
the privacy risks applied to different readings, we conddct We also examined how phantom load (power consumption
experiments to examine the number of privacy-leaking aps some appliances are OFF, e.g., computers, microwave,
pliances at 6 selected times in the same day (3 AM, 7AM]ectric oven and TV) affect the performance of information
11AM, 3PM, 7PM, 11PM) by varying the reading frequencieleakage and the privacy preserving algorithm in our case
(from 1 reading per minute to 1 reading per 15 minutesjtudy. The phantom loads for such appliances are referred
Then, we plot the number of privacy-leaking appliances &t sites such as http://standby.lbl.gov/summary-tabid.H-or
those 6 different times with 4 different reading frequesdi®e instance, computer's phantom load 4s 3.84% its regular
Figure 7 (the results obtained from each house is plotted ircansumption rate, TV isv 3.53%, Microwave is~ 0.21%,
subfigure). Therefore, we can learn that readings would leakd Washing Machine is- 0.48%. In the case study, for the
more private information if they are reported more freqiyentappliances with phantom load, we assign the phantom load
(e.g., adversaries can identify the largest number of pyiva to their OFF status and derive the number of privacy-leaking
leaking appliances if the readings are reported with thbésty appliances (PL App #) and the reading errors of the CRC and
frequency 1 minute/reading). This matches the fact that-fin@RC. Table V shows that phantom loads can slightly make the
grained readings would result in more privacy leakage. readings safer and lead to less errors in reading convarsion
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TABLE V the smart meter privacy issues tackled in literature, i thi
PERFORMANCE VS PHANTOM L OAD paper, we have quantitatively measured and mitigated the
Terraced | Semi-Detached Detached information leakage in such streaming data based on a wide
PLApp # | —0.27% —0.31% —0.43% . . . .
CRC Error | —0.094% —0.113% —0.186% variety of background knowledge, including appliances\-co
DRC Error | —0.093% —0.109% —0.179% sumption rates and temporal patterns of usage, other aerrel

tions/patterns of running the same or different appliaretes
different times. We have defined a novel privacy model for
Finally, if some specific smart meters are deployed by cofime series reading stream and developed a privacy presgrvi
sumers with high-resolution readings (e.g., microgrid8]}1 streaming algorithm that efficiently outputs safe readinigh
e.g., the households established by UMass [5], informati@Rcellent utility. We have conducted experiments on real
leakage may still exist if explicitly disclosing such reagé gatasets to validate the performance of our approach.
to other parties. For instance, as the deployed smart metefye can extend our work in several directions. First, for
is integrated into the main grid, the high-resolution re@di 5 exponential number of candidate consumption rates and
might be analyzed in some applications (e.g., NILM [15], anghe corresponding appliance subsetsiia power set, we can
regional statistics [7]). Given any reading in such appito® try to develop other heuristic or approximation algorithtos
(aggregated or fine-grained), adversaries can still leb&n fyenerate the safe candidate rate set instead of simplpgetti
status of appliances with their background knowledge.  the termination threshold for recursively traversiAls power
set, e.g., designing rules to prune the search space. Second
o _ _ for some real-time applications (e.g., load monitoring]]15
Limitations. First, the reading errors of our CRC or DRCypich have high demand on reducing the reading errors, we
based streaming algorithm can be relatively high if sp&ufy can explore other privacy preserving streaming algoritfons
a small e, 6 and/or largem (for high privacy demand), smart meters to further minimize such errors. Third, irespir
compared to the aggregation and billing errors (which can Bgm many state-of-the-art NILM solutions which start to
close to 0). Therefore, it may affect the accuracy of SOM@e the transient of the power consumption signal or the
real-time services based on the smart meter streams (§@mnsition between power consumption states (e.g., HMN], [24
load mon|t.or|ng). Second, as discussed in Section VI-E?,{QZD to estimate the specific-appliance’s consumption, we
some appliances are very likely to be ON at most of the timgg, 1o investigate the background knowledge of consumptio
(Z[t — as] lies close to 1) such as refrigerator and heatingansient and the corresponding privacy leakage, and define
in winter, the information leakage of such appliances canng rigorous privacy notion to quantify and bound such risks.
be effectively bounded without sacrificing too much Uti”tyMoreover, information leakage may also occur in other time
Nevertheless, its ON status leaks very limited privacy @& thseries data, such as stock market data, and system/segser lo

consumers since almost all the households keep them runnjgg plan to explore efficient privacy preserving solutions to
all the time. Finally, once a new appliance is connected ¢o thyckle all of these problems in our future work.
home, smart meter needs to be re-initialized for the privacy
model. Also, the reading conversion may also violate some
regulations for guaranteeing the integrity of the bills onmse
countries/regions. This research is supported in part by the National Science
Challenges.First, smart meter initialization requires an eXFoundau.on un_der t.he Grant N.O' CNS-1618221. Authors with
ponential complexity (offline) to generate the candidate raCo_ncord|a Umversﬁy are partially supporteq by the Natura
set and each possible consumption rate’s candidate ap ciences and Engineering Research Council of Canada under
ance set. For a small or medium number of appliances, covery Grant NO1035. We also acknowl_edgethe real world
gta support from the UMass Trace Repository and the Center

algorithm can be executed once to obtain the exact res
However, for a large number of appliances, we have to iy Renewable Energy Systems Technology at Loughborough

a heuristic algorithm (e.g., specifying a terminating pdor Unlversny_, UK. I;/Ieaﬂvyhne, we S|ncergly thank the anony-
the algorithm) to obtain an approximated result. Seconel, ffjrous reviewers for their very constructive comments.
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APPENDIXA
PRIVACY PRESERVING STREAMING FOR DYNAMIC
ENERGY BILLING

Besides the constant tariff in a standard energy billing
plan, two different dynamic pricing policies (TOU and TB)
are widely adopted by utility companies [2], [27], [20]. To
minimize the billing errors under such plans, the smart mete
(e.g., household) can locally compute the bill using theutnp
readmgsRm (but without dISC|OSInng) At this time,
billing can be separated from the CRC or DRC based privacy
preserving streaming. Then, output reading stream, can
be transmitted to the utility company in sequence while the
smart meter can still privately usk;, and TOU or TB plan
to calculate the hill (disclosing the bill would not leak any
information in the vector?;,, [17]). In this case, we assume
that the smart meter (e.g., a household) is a trusted ewtity t
report the true bill (dynamic pricing) to the utility compan
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