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Privacy Preserving Smart Meter Streaming against Information
Leakage of Appliance Status

Yuan Hong,Member, IEEE,Wen Ming Liu, and Lingyu Wang,Member, IEEE

The smart grid frequently collects consumers’ fine-grainedpower usage data through smart meters to facilitate variousapplications
such as billing, load monitoring, regional statistics, anddemand response. However, the smart meter reading streams may also pose
severe privacy threats to the consumers by leaking their appliances’ ON/OFF status. In this paper, we first quantitatively measure
the information leakage w.r.t. specific appliances’ statusfrom any reading stream, and define a novel privacy notion to bound such
information leakage. In addition, we propose a privacy preserving streaming algorithm with different options to effectively convert
readings and promptly stream safe readings in different fashions. The output time series readings satisfy our privacy notion while
guaranteeing excellent utility, such as extremely low aggregation errors and billing errors. Finally, we experimentally validate the
effectiveness and efficiency of our approach using real datasets.
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I. I NTRODUCTION

The smart grid integrates sensors and communication net-
works into the existing power grid to ubiquitously collect data
from the grid for operational intelligence [14]. As a critical
component in such an infrastructure, smart meters frequently
transmit fine-grained readings to the electric utility, e.g., a
reading every 15 minutes [27]. Such reading streams greatly
benefit the utilities (e.g., load balancing) as well as the energy
consumers (e.g., optimizing electricity usage) [13]. However,
some recent studies show that such features may also lead
to serious breaches of consumers’ privacy [4], [7]. The fine-
grained meter readings could potentially reveal the consumers’
personal daily behavior or habits, e.g., cooking time (by the
stove or microwave), and frequency of going to the bathroom
at night (by the light switched on).

To prevent adversaries from compromising energy con-
sumers’ personal privacy, three major categories of privacy
preserving techniques were proposed. First, some existing
approaches (e.g., [4]) inject tolerable noise into the original
or aggregated meter readings. However, they trade off some
output utility for desired privacy and may not be able to ensure
high aggregation and billing accuracy due to the random
noise. Second, some approaches (e.g., [30]) encrypt the meter
readings with cryptographic primitives and only report the
temporally or geographically aggregated data for specific ap-
plications (e.g., billing [12], regional statistics [7]).However,
without reporting the fine-grained readings, the output cannot
support many real world smart grid applications (e.g., load
monitoring [15]). Finally, some approaches (e.g., [37]) attach
batteries for households to mask the meter readings. However,
they may require expensive devices or facilities to supportthe
scheme and thus result in high cost for both implementation
and maintenance.
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More importantly, the privacy models in most of the existing
solutions (e.g., [30], [7], [37]) only consider all thefine-
grained meter readings(viz. a series of numbers) as sensitive
data and simply aim to anonymize such “numbers”. To the best
of our knowledge, the privacy risks in terms of “appliances’
ON/OFF status at different times” (which directly reflects the
privacy concerns of energy consumers) has not been formally
defined and quantified in literature. Specifically, the following
are unclear in most of the prior privacy models: (1) which
reading is sensitive and vulnerable? (2) how much information
related to the appliance status can be leaked from the readings?
and (3) what kind of background knowledge can be utilized
to identify the appliance status from the reading streams?

To tackle such issues, in this paper, we investigate the
privacy risks by linking the meter readings to appliances’
ON/OFF status at different times, and formally define a privacy
notion (denoted as(ǫ, δm)-Uncertainty) to quantify and bound
such threats of information leakage in any reading stream.
Different from most of the prior work, we propose an effi-
cient privacy preserving algorithm to stream output readings
without any aggregationwhile guaranteeing rigorous privacy
and excellent utility. Therefore, the outputs can support most
smart metering services, e.g., billing [12], regional statistics
[7], and load monitoring [15], and such outputs can also be
fed into the aggregation-based solutions when necessary.

Motivating Example. Table I presents a set of sample time
series readings, and Table II shows the electric appliancesand
the labeled consumption rates in watts for a household [1].

In real world, the adversaries can obtain the readings and
possess the background knowledge of common appliances’
consumption rates. From the first reading 0.08kWh (in 0.1
hour), he/she can learn the overall consumption rate as
800watts. Then, with the background knowledge in Table II,
the adversary can learn that exactly one of the following
possibilities may occur: (1) microwave (800watts) is ON, (2)
PC, light, vacuum cleaner, TV and stereo system (800watts in
total) are ON, or (3) other combinations of appliances with
overall consumption rate 800watts. Moreover, looking at the
reading time 6:30pm, he/she can infer that microwave is highly
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TABLE I
READING STREAM (FREQUENCY: 1 READING PER6 MINUTES)

Time (PM) 6:30 . . . 7:30 . . . 8:00 8:06 8:12 . . . 8:42
Reading (kWh) 0.08 . . . 0.13 . . . 0.05 0.15 0.17 . . . 0.2

Consumption Rate (watts) 800 . . . 1300 . . . 500 1500 1700 . . . 2000

TABLE II
APPLIANCES’ CONSUMPTIONRATES

Light 1 (60watts) Light 2 (100watts)
Vacuum Cleaner (100watts) Waterpik (100watts)
Stereo System (100watts) PC (200watts)
TV (300watts) Microwave (800watts)
Washer (1000watts) Dishwasher (1200watts)
Dryer (1500watts) ...

likely to be ON due to the cooking time.
Second, at 7:30pm, consumption rate 1300watts can be

learned. Thus, dishwasher is likely to be ON at 7:30pm (due
to 1300watts). In reality, a sequential usage pattern of two
appliances “microwave→ dishwasher” (washing the dishes
after dinner) could help the adversary confirm that dishwasher
is ON at 7:30pm. Similarly, TV and stereo system might be
ON at 8:00pm due to the TV’s temporal usage pattern, as
well as the correlation between TV and stereo system to be
ON simultaneously (can be known as background knowledge).

Third, besides the consumption rate/time, some appliances
also have their unique signatures on the length of usage. Then,
adversaries can also utilize it to learn the status of different
appliances. For instance, washer is likely to be ON at 8:06pm
(due to 1500watts) and it is also likely to be ON at 8:12pm
(due to 1700watts). Then, the adversary can confirm that the
washer is extremely likely to ON at both times due to a
common background knowledge that washer runs continuously
for at least 30 minutes in general. ⊡

In this paper, we will investigate a set of possible infor-
mation leakage to breach the consumers’ privacy from smart
meter reading streams, and define a novel privacy notion to
quantify and bound such risks. Then, the primary contributions
of this paper are summarized as below:

• We define a novel privacy notion to quantify and bound
the privacy leakage w.r.t. the readings’ actual implications
on specific appliances’ ON/OFF status.

• We propose an efficient privacy preserving streaming
algorithm with different options to effectively convert
readings and promptly stream safe readings with excellent
output utility, e.g., negligible aggregation/billing errors.

• We conduct experiments to evaluate the performance of
our streaming algorithm on real datasets and provide case
studies for real-life households.

The rest of the paper is organized as follows. Section II
first reviews the related work. Section III formally defines
some models. In Section IV, we present our privacy preserving
streaming algorithm. Then, we give analysis on privacy, com-
plexity and implementation in Section V. Section VI presents
the experimental results, and Section VII summarizes some
limitations and challenges. Finally, we draw the concluding
remarks and discuss the future work in Section VIII.

II. RELATED WORK

In the past decade, various privacy models were proposed
to bound the privacy risks of identifying any individual or
associating any individual with the sensitive values in many
different datasets, such as k-anonymity [36] for anonymizing
tabular data, andρ-uncertainty [6] for preventing inferences
in transaction data. Furthermore, differential privacy [11] has
been extended to tackle the privacy concerns in many different
contexts based on randomizations, such as recommender [23],
search queries [21], [16], [18] and smart metering [4].

Recently, privacy-preserving techniques have been devel-
oped for mitigating privacy risks in fine-grained meter readings
[4], [29], [31]. For instance, Rottondi et al. [29] presented
a secure communication protocol which allows utilities to
securely aggregate smart meter readings. Ács and Castelluccia
[4] proposed a differentially private scheme that enables smart
meters to periodically report data to power suppliers and
compute aggregated statistics with rigorous privacy guarantee.
In addition, Shi et al. [33] proposed a differentially private
randomization based aggregation of distributed time series
data (e.g., readings collected from multiple smart meters)with
differential privacy guarantee. Different from the noise based
data perturbation (e.g., state-dependent perturbation [38]),
our privacy preserving streaming algorithm does not report
probabilistic results, which can reduce errors and variance in
general. In the context of smart metering aggregation and
perturbation, more recently, Savi et al. [32] quantitatively
analyzed a tradeoff between the aggregation set size, the
precision on the aggregated measurements, and the privacy.
Finally, renewable energy sources (e.g., battery) can be utilized
to mask the original meter readings of households as well [37].
Non-Intrusive Load Monitoring (NILM) . In some NILM
algorithms [8], [9], [26], [25], privacy concerns have been
identified since the NILM algorithms estimate the specific ap-
pliances’ energy consumption at different times in households,
e.g., [8], [9], [26]. However, such NILM algorithms cannot
provide an upper bound for the probabilities of disaggregation
(this was also indicated in [10]). Then, the privacy enhancing
techniques extended from NILM algorithms (e.g., [26]) cannot
quantify and bound the risks with theoretical guarantee of
privacy. Instead, in this paper, the privacy leaking risks can
be quantified, and can be bounded with our defined privacy
notion to provide theoretical guarantee of privacy. Noticethat,
among the NILM studies, Dong et al. [10] have learned the
upper bounds on the probabilities of distinguishing between
scenarios of appliance usage based on the energy consump-
tion distribution (which was missing in most of the NILM
algorithms). However, in such work, privacy notions are not
defined to quantify the privacy risks, and there does not exist
a privacy preserving algorithm to output safe readings based
on the derived upper bounds either.
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III. M ODELS

We now illustrate the information leakage, privacy notions,
and three utility measures. Table III lists some frequentlyused
notations.

TABLE III
FREQUENTLY USED NOTATIONS

A,E appliance set, a subset ofA
ax, |ax| an appliance,ax ’s labeled consumption rate
|A| number of appliances inA
h(·) consumption rate function

ǫ, δ,m privacy parameters
r, ω, φ reading, consumption rate, reading frequency
c(·) candidate appliance set function
|c(ω)| size of the candidate appliance setc(ω)
~Rin, ~Rout input and output reading streams

K number of readings in a stream

A. Preliminary Models

We denote a smart meter’s associatedappliance setas
A = {a1, . . . , a|A|}, where |A| is the number of appliances
(how smart meter populates and maintains its appliance set
A is discussed in Section V-C). We use|a1|, . . . , |a|A|| to
represent their labeled consumption rates. In addition, we
definereading frequencyasφ: the time interval between two
consecutive readings (e.g., 15 minutes). The readings can be
converted into consumption rates, and vice-versa.

Given an appliance setA and the consumption rate of
each appliance inA, we first define a function to calculate
the overall consumption rate of any subset ofA (which is a
combination of appliances).

Definition 1 (Consumption Rate Functionh(·)): Given any
subset of an appliance setA: ∀E ⊆ A, function h(·) is
defined to calculate the overall consumption rate of all the
appliances inE: h(E) =

∑

∀ax∈E |ax|, where |ax| denotes
ax’s consumption rate.

Then,h(·) can be used to calculate the unique consumption
rates of all the subsets ofA, which are denoted as:

Definition 2 (Candidate Rate SetG): Given the power set
2A of an appliance setA, the set of unique consumption rates:

G = {h(E) : ∀E ⊆ 2A} (1)

whereE is a subset ofA.
As a result, for any consumption rateω ∈ G, we can find

all the subsets ofA whose consumption rate equalsω by
traversing2A. We consider such process as a function:

Definition 3 (Candidate Appliance Set Functionc(·)): Given
any consumption rateω ∈ G, function c(·) is defined as

c(ω) = {E : E ⊆ 2A, h(E) = ω} (2)

B. Privacy Leakage

In this paper, we look at the case that each appliance is either
completely “ON” or completely “OFF” between two adjacent
readings (which occurs very often in the reading stream due
to short time intervals). Indeed, this is the worst case of
leaking consumers’ privacy since the overall consumption rate
in that time interval (e.g., 15 minutes) accurately reflectsall
the appliances which are “ON”.

1) Leakage in a Single Reading
The “ON/OFF” status of any appliance can be possibly

leaked from a single reading which includes the consumption
amount/rate and consumption time.

Consumption Rate.Denoting the size ofω’s candidate appli-
ance setc(ω) as |c(ω)|, we can representc(ω) as {c(ω)1,
c(ω)2, . . . , c(ω)|c(ω)|}. Since there are|c(ω)| combinations
of appliances that would lead to the consumption rateω,
adversaries can enumerate all the entries inc(ω) and infer
a view for all the possible combinations of appliances{c(ω)1,
c(ω)2, . . . , c(ω)|c(ω)|}. Indeed, in such view, each combination
of appliances∀y ∈ [1, |c(ω)|] can have a probabilityPy such
that

∑|c(ω)|
y=1 Py = 1. We can quantify the information leakage

in the adversary’s view using their Entropy [34]:

H(c(ω)) = −

|c(ω)|
∑

y=1

(Py logPy) (3)

Therefore, the maximum information leakage occurs in case
that P1 = P2 = · · · = P|c(ω)| (maximum entropy). In other
words, among all the possible inferences in the adversary’s
view, P1 = P2 = · · · = P|c(ω)| would result in (house-
holds’) maximum privacy leakage (viz. adversary’s maximum
information gain) from the consumption rateω. Then, given
a readingr = ωφ, adversaries can have the maximum privacy
leaking view which isP1 = P2 = · · · = P|c(ω)| =

1
|c(ω)| for

each of the possible combinations of appliances with overall
consumption rateω.

As a result, the information leakage w.r.t. “any applianceax
is ON” can be quantified from all the possible combinations
(entries in the candidate appliance setc(ω)): ∀y ∈ [1, |c(ω)|],
if applianceax is in the appliance setc(ω)y, then 1

|c(ω)| is
added into the overall information leakage. Thus, given the
consumption rateω, the information leakage w.r.t. “appliance
ax is ON” can be represented as:

I[ω → ax] =

|c(ω)|
∑

y=1

Ixy

|c(ω)|
∈ [0, 1] (4)

where∀y ∈ [1, |c(ω)|], Ixy ∈ {0, 1} and if ax ∈ c(ω)y then
Ixy = 1; otherwiseIxy = 0.

Consumption Time. Besides the consumption rate, since
many appliances may have temporal usage patterns, the times-
tamp of a reading can also be exploited by adversaries to
further identify appliances’ “ON/OFF” status at that time.
For instance, microwave might be “ON” with a very high
probability at 6pm, and TV is very likely to be “ON” between
7-9pm. Note that the temporal usage patterns can be readily
estimated by the adversaries via exterior knowledge, e.g.,the
power usage of most households, weather conditions, and other
public resources. Then, we also use the [0,1] range to measure
such information leakage where 0 represents “impossible tobe
ON” whereas 1 means “impossible to be OFF” (note that it
refers to the likelihood of using a certain appliance at a specific
time by most households, which can be simply estimated by
everyone). Then, the adversary can envision a view of the
information leakage of all the appliances’ status (based onhow
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likely each appliance is ON at different time). For instance,
I[3am → Microwave] = 0.02, I[8pm → TV ] = 0.3. Thus,
given a consumption timet, the information leakage w.r.t.
“applianceax is ON” can be represented as:

I[t → ax] ∈ [0, 1] (5)

Information Leakage Quantification. We then measure the
information leakage w.r.t. “an appliance is ON” from a read-
ing, which discloses to the adversaries the overall consumption
rateω and timet.

Definition 4 (Information Leakage of Appliance Status):
Given a readingr (consumption rateω) at time t, we merge
the information leakage w.r.t. “applianceax is ON” from the
consumption rateω and timet using their union:

I[(ω, t) → ax] =I[(ω → ax) ∪ (t → ax)] (6)

=I[ω → ax] + I[t → ax]

− I[(ω → ax) ∩ (t → ax)]

Notice that both the consumption rateω and time t leak
private information regardingax’s status. Nevertheless, in our
privacy model, the joint information leakageI[(ω, t) → ax]
should be bounded in any case, andI[(ω, t) → ax] achieves its
maximum value when the two correlated information leakage
from the consumption rateω and time t individually leak
information – two fixed amounts of leakage fromω and t

have the least overlap, and thus make the joint leakage (the
union) achieve the maximum value. Then, we only need to
boundmax{I[(ω, t) → ax]} in our privacy notion:

max{I[(ω, t) → ax]} =I[ω → ax] + I[t → ax] (7)

− I[ω → ax] · I[t → ax]

whereω and t individually leak privacy w.r.t. “ax is ON”.
In summary, the information leakageω → ax to the

adversaries based on the observations of the consumption
rate ω is similar to the information leakage in the datasets
applied with k-anonymity [36]. Each possible combination of
the appliances in the candidate appliance set has an equal risk
to be linked to the overall consumption rateω, and thus the
information leakageI[ω → ax] can be obtained. Furthermore,
the information leakage from the consumption time in the
readingI[t → ax] can increase the joint information leakage
of each appliance’s ON status via the union of two leakages.

Note that the appliances are not necessarily unique in
A (e.g., multiple lights) and an appliance may have more
than one consumption rate for different running modes (e.g.,
Microwave). For the former case, we consider such appliances
as different appliances inA to calculate the candidate rate
set and the candidate appliance set. For the latter case, we
consider such appliance as a single appliance (with multiple
possible consumption rates) inA to calculate the candidate
rate set and candidate appliance set as well as measure the
information leakage.

2) Leakage in a Reading Stream
First, given a reading stream~R, the sequential patterns [35]

of appliances in multiple readings can also help adversaries
identify the usage of appliances. A typical sequential pattern
can be stated as “if an applianceax is ON at timet, it is likely
to be ON at timet+1, . . . , t+N ”. For instance, the information
leakage w.r.t. “dishwasher is ON” is 0.5 at 7pm, and also
0.5 at 7:05pm and 7:10pm, respectively. Since a dishwasher
typically runs for an hour (its sequential pattern) without
interruption, its information leakage may increase from 0.5 to
0.8 by correlating the information leakage in multiple readings.

Second, another type of sequential patterns result from the
correlation between the usage of multiple appliances. For
instance, if a washer runs at timet, a dryer will frequently run
at a later time; if a microwave runs at timet, a dishwasher
will be very likely to run at a later time.

Third, many appliances not only have usage patterns within
a sequence of readings (as described above), but also fre-
quently run at the same time, e.g., TV and stereo system.

In sum, the above usage patterns (for one or multiple
appliances) could correlate information leakage from multiple
readings and appliances to pose additional privacy risks.

3) Summary of Information Leakages
As described above, adversaries may easily obtain any of

the following common background knowledge:
• The reading frequencyφ.
• A list of common appliances, their consumption rates and

temporal usage patterns (e.g., TV frequently runs at 8pm,
microwave rarely runs at 3am).

• Single appliances’ sequential usage patterns (e.g., dish-
washer continuously runs for one hour).

• The usage patterns of multiple appliances (in sequence),
e.g., washer runs first and then dryer runs.

• The usage patterns of multiple appliances (at the same
time), e.g., TV and stereo system.

Then, we formally illustrate three kinds of information
leakages based on the above background knowledge:

Information Leakage (1). For any readingr in a reading
stream〈 ~Rin[1], . . . , ~Rin[K]〉, its consumption rateω and time
t could leak the information of the appliances’ status (per
Equation 6, the worst case of information leakage occurs as
both ω and t individually leak information with the least
overlap). Then, adversaries can learn the status of many
appliances as ON at different times with a highI[(ω, t) → ax].

Information Leakage (2). Appliances may have sequential
usage patterns (e.g., dishwasher, and oven), which occur in
some consecutive readings in the stream. Without loss of
generality, assuming that applianceax has a sequential pattern
to run inN consecutive readings, the information leakage w.r.t.
“ax is ON” in consecutive readings can be obtained:

• I[(ω1, t+ 1) → ax]
• I[(ω2, t+ 2) → ax]
• . . .
• I[(ωN , t+N) → ax]

Then, the information leakage can be higher than any of the
above due to their correlation (correlating multiple leakage in
sequential readings).
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Information Leakage (3).Multiple appliances may frequently
run in sequence or simultaneously (e.g., washer and dryer).
Specifically, assuming that two appliancesax and ay fre-
quently run in sequence, if the following are relatively high:

• I[(ω1, t+ 1) → ax]
• I[(ωN , t+N) → ay]

Then, the information leakage w.r.t. each ofax and ay ’s
status (att + 1 and t + N , respectively) can be higher than
their original information leakage due to their correlation
(correlating two leakages in sequential readings). Similarly, if
ax anday frequently run simultaneously and if the following
are relatively high:

• I[(ω, t) → ax]
• I[(ω, t) → ay]

Therefore, the information leakage w.r.t. each ofax anday ’s
status at timet can be higher than their original information
leakage due to their correlation (correlating two leakagesin
the same reading). ⊡

C. Privacy Notions

To prevent the information leakage illustrated in Section
III-B3, we first define a privacy notion for quantifying and
bounding such risks in any single reading as below:

Definition 5 (ǫ-Uncertainty):Given an appliance setA, we
say a meter readingr satisfiesǫ-Uncertainty if ∀ax ∈ A,
I[(ω, t) → ax] ≤ ǫ holds, whereω = r

φ
and t represent

the readingr’s consumption rate and consumption time re-
spectively, and0 ≤ ǫ ≤ 1.

Thus, if any given readingr satisfiesǫ-Uncertainty (or sayr
is ǫ-Uncertain), the information leakage of all the appliances’
ON status is no greater thanǫ. Note thatǫ-Uncertainty can
only bound theInformation Leakage (1)in any single reading.
To bound theInformation Leakage (2) and (3)in a reading
stream~R = 〈r1, . . . , rK〉 (denoting the number of readings in
the stream asK), we define the following privacy model:

Definition 6 ((ǫ, δm)-Uncertainty): A reading stream~R

satisfies(ǫ, δm)-Uncertainty if the following conditions hold:

1) All the readings in~R are ǫ-Uncertain;
2) The information leakage of any appliance’s ON status

in anym consecutive readings in~R is bounded byδ;
3) The information leakage of any combination of appli-

ances’ ON status in anym consecutive readings in~R is
bounded byδ.

Note that meeting the three conditions would mitigate
the risks of three categories of information leakages. Two
additional privacy parametersδ andm are defined:δ limits
the information leakage from any usage pattern (of single
or multiple appliances) in anym consecutive readings in
~R. Smaller ǫ or δ and largerm provides stronger privacy
protection.

D. Utility Measures

We define three different utility measures for our approach.
We first consider the billing accuracy. In real world, besides
the standard energy plan (constant tariff), two other popular
plans are widely used (1) time-of-use (TOU) plan, and (2)

tiered base (TB) plan [2], [27], [20]. In these two plans, the
electricity tariff may vary at different times (e.g., in TOUplan,
peak vs. off-peak) or for different tiered consumption amounts
(e.g., in TB plan,< 1000 kWh/month vs.≥ 1000 kWh/month).
Thus, the billing error rate is defined as below:

Definition 7 (Billing Error Rate):Given an input reading
stream ~Rin, an equal-length output reading stream~Rout and
a billing functionf(·) of an energy plan, if ~Rout is utilized to
calculate the billed amount, the billing error rate is defined as

errb =
|f( ~Rout)− f( ~Rin)|

f( ~Rin)
(8)

Note thatf(·) can be a constant tariff, or a function given
in the TOU or TB plan.

In addition, for some aggregation based smart grid appli-
cations [12] (e.g., regional statistics [7]), we define another
measure to quantify the utility of our output reading streams:

Definition 8 (Aggregation Error Rate):Given an input read-
ing stream ~Rin with K readings and an equal-length output
reading stream ~Rout, the aggregation error rate is defined as

erra =

∣

∣

∣

∑K

i=1
~Rout[i]−

∑K

i=1
~Rin[i]

∣

∣

∣

∑K

i=1
~Rin[i]

(9)

where ~Rin[i] and ~Rout[i] are theith reading in ~Rin and
~Rout, respectively.
Furthermore, since the output reading stream~Rout might be

used to function some real-time services (e.g., load monitoring
[15]), the difference between two reading streams~Rin and
~Rout should also be measured. Then, we define the reading

error rate to quantify such difference:
Definition 9 (Reading Error Rate):Given an input reading

stream ~Rin with K readings and an equal-length output
reading stream ~Rout, the reading error rate is defined as

errr =

∑K

i=1 |
~Rout[i]− ~Rin[i]|

∑K
i=1

~Rin[i]
(10)

where ~Rin[i] and ~Rout[i] are theith reading in ~Rin and
~Rout, respectively.

IV. PRIVACY PRESERVINGALGORITHM

In this section, we first derive the conditions for deciding
whether a reading is safe to stream or not in Section IV-A,
and then present our algorithms in Section IV-B and IV-C.

A. Safe Readings

Given any appliance setA, the candidate rate set can be
derived per Definition 2 asG and then we can derive:

Definition 10 (Candidate Reading SetR): A set of all the
possible readingsR = {r : ∀ω ∈ G, r = ωφ}

Among all the possible readings inR, we define a safe
reading as below:

Definition 11 (Safe Reading):Given an(ǫ, δm)-Uncertain
reading stream~R, a readingr is a safe reading, if adding
r (with a specific timet) into ~R also results in an(ǫ, δm)-
Uncertain reading stream.
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Information leakage w.r.t. appliances’ ON/OFF status results
from the readingr’s consumption rateω, candidate rate set
c(ω) and also the consumption timet, thus r might be a
safe reading at timet but not a safe reading at timet′ (e.g.,
some appliances inc(ω) may have high information leakage
at t′ caused by the temporal usage patterns). As a result, safe
readings cannot be determined/precomputed before loadingthe
input reading stream with timestamps. Therefore, we develop
a privacy preserving algorithm to stream safe readings in
sequence. The basic idea is – while incrementally generating
every safe reading, the algorithm checks the new reading
and previousm − 1 readings whether(ǫ, δm)-Uncertainty is
still satisfied: if yes, then outputs it in the reading stream;
otherwise, iteratively checks the next reading inR.

Conditions for Safe Readings.We now explore the conditions
for generating a new safe reading in addition to an existing
reading stream. W.l.o.g., we denotem consecutive readings
as r1, . . . , rm at time t + 1, . . . , t + m respectively and
considerrm as the new reading, and the consumption rates
∀i ∈ [1,m], ωi =

ri
φ

. Denoting any arbitrary appliance asax,
the new readingrm should satisfyǫ-Uncertainty, thus we have:

∀ax ∈ c(ωm), max{I[(ωm, t+m) → ax]} ≤ ǫ (11)

Second, we denote the information leakage ofax’s ON
status from multiple readings in them consecutive readings
asI[ax], which is bounded byδ. For simplicity of notations,
we denote∀i ∈ [1,m], I[(ωi, t + i) → ax] as I1, . . . , Im.
Then, we consider the worst case that information leakages of
ax’s ON status from them consecutive readings have the least
overlap (which leads to the highest union of the information
leakages from multiple readings), discussed as below:

• Correlating the information leakages ofax’s ON status
from multiple readings clearly increases the joint infor-
mation leakage (which is the union of multiple individual
leakages). As all the information leakages (e.g.,Ii and
Ii+1) are fixed, the union of them achieves the maximum
value when the individual leakages (e.g.,Ii andIi+1) are
independent to have the least overlap.

Then, we need to bound the information leakage w.r.t. “ax is
ON in multiple readings”. Specifically, since∀i ∈ [1,m], Ii ∈
[0, 1] (normalized), the information leakage ofax’s OFF status
in all them readings can be represented as

∏m

i=1(1−Ii), and
the information leakage w.r.t. “ax is ON in exactly one out of
the m consecutive readings” is

∑m

i=1[Ii
∏m

j=1;j 6=i(1 − Ij)].
Thus, the maximumI[ax] can be derived and bounded as:

max{I[ax]} =1−

m
∏

i=1

(1− Ii)−

m
∑

i=1

[Ii

m
∏

j=1;j 6=i

(1 − Ij)]

= 1−

m
∏

i=1

[(1− Ii) + Ii

m
∏

j=1;j 6=i

(1 − Ij)] ≤ δ (12)

Third, similarly, lettingay be another appliance other than
ax, we denote the information leakage w.r.t.ax anday ’s ON
status from one or multiple readings out of them consecutive
readings asI[ax, ay], which is also bounded byδ. Again, we

denote∀i ∈ [1,m], I[(ωi, t+ i) → ay] asI ′
1, . . . , I

′
m. Then,

we also consider the worst case that information leakages of
ax or ay’s ON status from all them consecutive readings have
the least overlap (which also leads to the highest union of the
information leakages ofax or ay’s ON status from multiple
readings), discussed as below:

• Correlating the information leakages ofax anday’s ON
status from one or multiple readings clearly increases the
joint information leakage (which is the union of multiple
individual leakages); as all the information leakages (e.g.,
Ii and I ′

i) are fixed, the union of them achieves the
maximum value when the individual leakages (e.g.,Ii
andI ′

i) are independent to have the least overlap.

Again, we need to bound the information leakage w.r.t. “ax
anday are ON in one or multiple reading”. Specifically, the
information leakage w.r.t. “bothax anday are OFF in all the
m readings” can be represented as

∏m
i=1(1−Ii)(1−I ′

i), the
information leakage w.r.t. “ax is ON anday is OFF in the
m consecutive readings” is

∑m

i=1[Ii
∏m

j=1(1 − I ′
j)], and the

information leakage w.r.t. “ay is ON andax is OFF in the
m consecutive readings” is

∑m

i=1[I
′
i

∏m

j=1(1−Ij)]. Thus, the
maximumI[ax, ay] can be derived and bounded as:

max{I[ax, ay]} =1−

m
∏

i=1

(1 − Ii)(1− I ′
i)

−
m
∑

i=1

[Ii

m
∏

j=1

(1− I ′
j)]−

m
∑

i=1

[I ′
i

m
∏

j=1

(1− Ij)] ≤ δ (13)

Notice that the information leakage w.r.t. “any combination
of appliances includingax anday (w.l.o.g.ax, ay, az, . . . ) can
be ON inm consecutive readings” is no greater thanI[ax, ay]
(simply because leakage w.r.t. “ax anday are ON” and leakage
w.r.t. “az,. . . are ON” should concur to leak information of
ax, ay, az, . . . ’s ON status). Hence, such information leakage
is also bounded byδ if Equation 13 holds.

In summary, while examining the current readingrm (safe
or not) along with the previousm − 1 readings, if three
conditions hold (Equation 11, 12 and 13), thenrm is safe since
the reading stream (withrm) still satisfy (ǫ, δ)m-Uncertainty.
Such three conditions will be adopted by our stream algorithm
to check whether a reading is safe or not.

B. Initializing the Smart Meter (Offline)

Before running the streaming algorithm, the smart meter
should be initialized to recursively traverse all the2|A| subsets
of A and then identify the candidate rate setG, candidate read-
ing setR as well as candidate appliance sets∀ω ∈ G, c(ω).
Notice that the initialization is a one-time offline process.

Most real-life households typically have a small or medium
number of appliances (e.g.,|A| ≤ 40). Thus, it is feasible
to find the exact candidate rate setG by traversing every
element in the power set2A. In case that a large number
of appliances are attached to a smart meter of a community,
building or factory (e.g.,|A| = 1000), the exponential number
of possible appliance combinations (inA’s power set2A)
cannot be enumerated in polynomial time. To resolve this,
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we define a reasonably large numberp (e.g., 109) as the
maximum number of traversed elements in2A to terminate
the recursive traversal in the smart meter initialization such
that the approximatedG, R and∀ω ∈ G, c(ω) are generated.
As will be demonstrated in Section VI, such an approximation
leads to satisfactory results in terms of generating candidate
rate/reading sets.

C. Privacy Preserving Streaming (Online)

Assuming that the smart meter originally collectsK read-
ings in the input stream~Rin, our streaming algorithm privately
streamsK output readings ~Rout. Our algorithm incrementally
generates and outputs safe readings based on the input readings
in ~Rin where billing and aggregation errors can be extremely
low while reading errors can also be minimized to some extent
in the output stream. The basic idea is – for each input reading,
our algorithm first looks up the closest safe reading inR
(which is a key building blockof our streaming algorithm),
and outputs it in different fashions to achieve good utilityof
the stream, shown as below.

1) Closest Safe Reading Lookup
Algorithm 1 presents the details of closest safe reading

lookup. While the smart meter captures an input reading,
it iteratively finds the closest readingr in R and examine
whetherr is safe or not: whether the output stream withr
satisfies(ǫ, δm)-Uncertainty or not.

Algorithm 1: Closest Safe Reading Lookup

Input : an input reading ~Rin[i]; current output readings
~Rout = 〈 ~Rout[1], . . . , ~Rout[i− 1]〉; candidate

reading setR; privacy parametersǫ, δ,m
Output: an output safe reading~Rout[i]

1 initialize ~Rout[i] = argmin∀r∈R |r − ~Rin[i]| (closest)
2 while ~Rout ∪ ~Rout[i] is not (ǫ, δm)-Uncertaindo
3 R′ = R− ~Rout[i]

4 ~Rout[i] = argmin∀r∈R′ |r − ~Rin[i]| (next closest)
5 check whether ~Rout ∪ ~Rout[i] satisfies

(ǫ, δm)-Uncertainty with Equations 11, 12 and 13

6 Return the safe reading ~Rout[i]

2) Streaming Algorithm
In order to minimize the aggregation and billing errors,

while streaming every safe reading (converted from the in-
put reading), our algorithm rolls over the reading remainder
( ~Rout[i]− ~Rin[i] can be positive or negative) to the either (1)
the last reading, or (2) the next input reading of the stream.
We propose two roll over options as below:

• Cyclic Reading Conversion (CRC): find the closest safe
reading for each input reading, aggregate all the input
readings’ remainders (either positive or negative) together
and roll over the aggregated remainder to the last reading.
“Cyclic” means every reading remainder is cyclically
reset to0 (does not affect the next reading) and the ag-
gregated remainder will be subtracted in the last reading.

• Dynamic Reading Conversion (DRC): dynamically up-
date every input reading with the previous reading re-
mainder and then find the closest safe reading based on
the updated input reading.

With these two options of handling the reading remainders
(which result from the conversion from input readings to safe
readings), we detail our streaming algorithm in Algorithm 2.

Algorithm 2: Privacy Preserving Reading Streaming

Input : an input reading stream~Rin; candidate reading
setR; privacy parametersǫ, δ,m

Output: output safe reading stream~Rout

1 initialize a reading remainderλ = 0
/* (1) if CRC (roll over remainders) */

2 foreach ~Rin[i] ∈ ~Rin, i ∈ [1,K] do
3 if i = K then

/* at the last reading */

4 ~Rin[K] = ~Rin[K]− λ

5 call Algorithm 1 to get ~Rin[K]’s closest safe
readingclosest

6 Return closest as ~Rin[K]

7 else
8 call Algorithm 1 to getclosest as ~Rin[i]’s closest

safe reading
9 λ+ = (closest− ~Rin[i])

10 Return closest as ~Rout[i]

/* (2) if DRC (roll over remainders) */

11 foreach ~Rin[i] ∈ ~Rin, i ∈ [1,K] do
12 ~Rin[i] = ~Rin[i]− λ

13 run Algorihtm 1 to getclosest as ~Rin[i]’s closest
safe reading

14 λ = closest− ~Rin[i]

15 Return closest as ~Rout[i]

CRC Option. Given theith reading ~Rin[i] in the stream, CRC
first verifies whether it is the last reading. If yes, CRC will
sum up the aggregated reading remainderλ to the current
reading ~Rin[K] and return its closest safe reading. Otherwise,
the algorithm returns the original input reading~Rin[i]’s closest
safe readingclosest, and λ is updated with the difference
closest − ~Rin[i]. In summary, Algorithm 2 with the CRC
option has the following characteristics:

• Aggregation Error : since the aggregated reading re-
mainderλ is integrated into the last reading, the overall
aggregation error would be the difference between one
single reading (~Rin[K]− λ) and its closest safe reading.
It has high possibility of being close to 0, as shown in
experimental section.

• Billing Error : assuming the time frame for∀i ∈ [1,K],
~Rin[i] is the billing cycle, if the tariff functionf(·)

of electricity bill is a constant, the difference between
aggregating the readings in~Rin and ~Rout results from
the last reading (since reading remainders have been
integrated in the aggregation). Thus, CRC option’s billing
error is identical to its aggregation error (close to 0).
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• Reading Error : since allK readings in the stream except
the last reading can achieve its local optimum towards
minimizing the reading error with its closest safe reading,
the reading error can be minimized to some extent.

• Privacy: ~Rout satisfies(ǫ, δm)-Uncertainty.
DRC Option. DRC dynamically updates each reading by
integrating the previous reading remainderλ, then returns the
updated reading’s closest safe reading, and finally generates a
new reading remainder for the next reading. Also, Algorithm
2 with the DRC option has the following characteristics:

• Aggregation Error : since every reading remainder is
integrated into the next reading, the aggregation error
is the last remainder which is well balanced by all the
readings into a very small number. Then, the aggregation
error is extremely close to 0.

• Billing Error : similar to the aggregation error, the billing
error (with constant tariff) is also extremely close to 0.

• Reading Error : since each reading integrates the pre-
vious remainder, the reading error of DRC is relatively
higher than CRC. Nevertheless, after integrating the
previous remainder, each reading can also achieve its
local optimum towards minimizing the reading error by
converting the reading to the closest safe reading.

• Privacy: ~Rout satisfies(ǫ, δm)-Uncertainty.
Furthermore, our privacy preserving algorithm outputs safe

readings which are associated with large number of possible
combinations of appliances in real world (by ensuring(ǫ, δm)-
Uncertainty). Thus, our proposed approach could also prevent
the privacy risks against NILM algorithms (both supervised
[9], [8], [25] and unsupervised [24], [22]) for two reasons.
First, safe readings are converted from the true readings,
and the aggregated consumption have been changed from
the original readings. Second, the output safe readings in
our algorithm are associated with large number of possible
combinations of appliances in real world by satisfying the
privacy notion, such large number of appliance combinations
would increase the estimated consumption amount of more
appliances (compared to the true readings) and greatly reduce
the learning accuracy.

V. A NALYSIS

A. Privacy Analysis

We now analyze the privacy leakage in the output~Rout,
assuming that the adversary can possess the some or all of the
background knowledge described in Section III-B3.

Lemma 1:The output reading stream of Algorithm 2:~Rout

satisfies(ǫ, δm)-Uncertainty.
Proof.Since∀i ∈ [1,K], ~Rout[i] are generated in time series

sequence, and each newly streamed output reading together
with the most recentm − 1 readings in the stream strictly
satisfy the three groups of conditions (Equations 11, 12 and
13), it is straightforward to see that all the output readings in
the stream satisfies(ǫ, δm)-Uncertainty. ⊡

B. Complexity Analysis

Our approach consists of two phases (1) the offline smart
meter initialization phase, and (2) the online streaming phase.

First, the offline phase recursively traverses the power setof A
(exponential) to identify the candidate reading set and possible
rates’ candidate appliance sets. For a large sizeA, the recursive
traversal is terminated with a sufficiently large number of
traversed elements in2A (denoted asp). Second, the online
phase streamsK readings: for each reading, it iteratively
looks up a closest safe reading fromR (say,O(n) readings
are returned to identify a safe reading) and examines all the
appliances in every candidate reading’s candidate appliance
set (at most|A| appliances) to check whether the information
leakage meets(ǫ, δm)-Uncertainty or not for the most recent
m output readings. Thus, the computational complexity of the
online streaming phase isO(K|A|nm), which is polynomial.

C. Implementation and Scalability

Our streaming algorithm can be easily integrated into a
smart meter. Specifically, the appliance setA and privacy
parametersǫ, δ andm can be loaded into the smart meter via
a web interface or a mobile application for generatingG, R
and∀c(ω) in the initialization. Privacy parameterǫ is specified
to bound the information leakage in single readings whileδ

and m are specified to bound the information leakage from
the correlations of energy usage in one or multiple readings.
The CRC and DRC can be implemented as different privacy-
aware running modes in the smart meter. Once a new reading
is captured by the smart meter, a safe reading is generated
immediately and transmitted to the utility company.

Specifically, the consumers can locally adjust their privacy
parametersǫ, δ andm based on their levels of privacy demand
at any time, but they do not need to change the (CRC and
DRC based) privacy preserving streaming algorithm (which
is integrated in the smart meter). For better functioning some
emerging services (e.g., energy saving recommendation, and
non-intrusive load monitoring [15]), the utility company can
keep a detailed inventory of each appliance, which will not
pose additional privacy concerns to our streaming algorithm
(since we assume that adversaries could possess the appliance
list as background knowledge in our privacy model). Upon ad-
dition and/or removal of appliances (e.g., purchasing/replacing
a new appliance, house owners move out, renting the houses to
tenants, and houses with visitors who bring their own devices),
the consumers can locally reset the smart meter with an up-
dated list of appliance setA (running smart meter initialization
once) and inform the utility company if necessary. Notice
that the consumers do not necessarily change the streaming
algorithm, and they can switch from CRC to DRC (and vice-
versa), as well as specify a new group of privacy parameters
ǫ, δ andm according to their privacy demand.

Finally, after implementing our privacy preserving stream-
ing algorithm in the smart meters, the utility can offer such
privacy-aware smart metering services to the consumers. Since
both CRC and DRC based streaming algorithm would result
in small billing errors (less than±4% in general), if the
consumers pay 4% more, this is the price traded for better
privacy protection; if they pay less, the utility can charge
a small amount of service fee to tackle such non-technical
losses. In the meanwhile, there are two alternative approaches
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that can reduce the billing errors to as low as 0: (1) rolling over
the remainder of the last reading in the current billing cycle
to the next billing cycle (instead of discarding it), and (2)
we can let the consumers locally calculate the billed amount
without leaking private information. Such approaches would
need relatively more trust on the consumers, and indeed match
the fact that utilities in many countries (e.g., US and Canada)
allow consumers to submit their readings by themselves.

VI. EXPERIMENTS

A. Experimental Setup

Datasets.Richardson et al. [28] collected 22 dwellings’ power
consumption over two years in East Midlands, UK. Each
of the 22 smart meters has reported 1,051,200 readings (1
reading per minute). Furthermore, in UMass Trace Reposi-
tory (http://traces.cs.umass.edu/), Barker et al. [5] collected 3
smart meters’ consumption data over three months in 2012,
respectively (1 reading per second).

We conducted the experiments on these two datasets (de-
noted as “UK” and “UMass”, respectively), and averaged
the results of multiple smart meters in each dataset. The
characteristics of the two datasets are presented in Table IV.

TABLE IV
CHARACTERISTICS OF THEDATASETS

Datasets Meters # Average # of Readings # TimeAppliances
UK Data 22 24.0 1,051,200 2 years

UMass Data 3 35.7 7,776,000 3 months

Parameters.ǫ is selected from 0.01 to 0.2 whileδ is selected
from 0.01 to 0.1 in the experiments. In the evaluation of
heuristic smart meter initialization, we run additional tests by
letting the number of appliances be|A| = 20, 40, 100 and
each appliance’s consumption rate (watts) is selected from
a real-world list of appliances and consumption rates [1].
For the tariffs of energy usage, we set the rates per the real
world energy pricing plans offered by Pacific Gas and Electric
Company (PG&E) [2].

Platform. All the experiments were performed on a DELL PC
with Intel Core i7-4790 CPU 3.60GHz and 16G RAM running
Microsoft Windows 8.1 Operating System.
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Fig. 1. Smart Meter Initialization

B. Smart Meter Initialization (Offline)

Both UK and UMass Data include specific appliances and
their time series consumption information. We can obtain
the exact candidate rateG, candidate reading setR and

the candidate appliance sets∀ω ∈ G, c(ω). However, if the
number of appliancesm reaches50, we may not be able
to obtain the exact result within a reasonable time due to
the exponential increase of the computational cost. In these
cases, we set a termination thresholdp in the heuristic safe
candidate rate set generation, which runs only once for every
smart meter and requires aone-time offlinecomputational cost.
Figure 1 presents the experimental results for smart meter
initialization. As p tends close to106, the exact results of
G, R and∀ω ∈ G, c(ω) for |A| = 20 can be derived, and the
results of|A| = 40 and |A| = 100 become relatively stable.
Therefore, if|A| increases, the approximated resultsG, R and
∀ω ∈ G, c(ω) can be sufficiently accurate.

C. Utility Evaluation

In the experiments, we have evaluated all three error rates
(billing, aggregation and reading) for both CRC and DRC
options with constant tariff.1 Specifically, we conduct exper-
iments using both UK and UMass datasets to test CRC and
DRC’s utility on varyingǫ, δ andm, respectively.

We selectǫ ∈ [0.1, 0.3], δ ∈ [0.05, 0.15] andm ∈ [10, 30].
While testing every privacy parameter, the other two param-
eters are fixed to achieve the best privacy protection. Forǫ,
we fix δ = 0.05 and m = 30; for δ, we fix ǫ = 0.1 and
m = 30; for m, we fix ǫ = 0.1 andδ = 0.05. The experimental
results of aggregation/billing error rates are plotted in Figure
2 (varying ǫ in Figure 2(a), varyingδ in Figure 2(b) and
varying m in Figure 2(c)). Furthermore, the corresponding
experimental results of reading error rates are plotted in Figure
3. Then, we have the following observations:

• Smaller ǫ and δ or greaterm in the algorithm (both
CRC and DRC) could stream outputs with lower aggre-
gation/billing and reading errors.

• Aggregation/billing error rates are low (UK data:< 1.2%
and UMass data:< 4.1%).

• The CRC option in the streaming generates higher ag-
gregation/billing errors but lower reading errors than the
DRC option (for both UK and UMass data).

• Privacy parameterǫ impacts utility more significantly
than δ and m in our privacy model. Utility improves
more quickly asǫ increases (all the errors decrease more
quickly) compared to increasingδ or reducingm.

In case of dynamic energy billing, e.g., TOU and TB plans
[2], [27], [20], we have discussed a possible solution to ensure
0 billing error in Appendix A.

D. Efficiency Evaluation

Computational Performance. Figure 4(a) presents the one-
time offline runtime for the number of appliances|A| =
20, 25, 30, . . . , 1000. When |A| ≥ 60, we implement the
heuristic smart meter initialization by specifying a largeter-
mination thresholdp = 109. As expected, the one-time offline
cost is tolerable for any smart meter (e.g., 120MHz [3]). On
the other hand, Figure 4(b) presents the total online runtime

1Aggregation error rateerra always equals the billing error rateerrb in
case of constant tariff.
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Fig. 2. Aggregation/Billing Error Rate (Constant Tariff) –UK and UMass Datasets
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Fig. 3. Reading Error Rate – UK and UMass Datasets
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Fig. 4. Computational Performance (UK Data)

for a varying number of readings in the input stream (from 50
days to 1 year, with 1440 readings per day). Both CRC and
DRC take less than 2 hours to convert and stream 1 year’s
readings in the UK data (525,600 readings in total). The CRC
option is slightly more efficient than DRC in the streaming
algorithm. Note that our streaming algorithm also has similar
performance on the UMass data.

Streaming Latency. Figure 4(c) demonstrates the runtime
consumed by streaming every single reading on average, where
ǫ ∈ [0.1, 0.3], δ ∈ [0.05, 0.15] and m ∈ [10, 30]. Such
runtime is less than 0.016 second (≪ 1 second) for both
CRC and DRC. As a result, although smart meters have
relatively weaker computation power (e.g., 120MHz [3]) than
an experimental PC (e.g., 3.60GHz), our privacy preserving
streaming algorithm can be implemented in the smart meters
for high resolution reading streams without any latency.

E. Case Study

Besides conducting experiments on the overall metering
datasets, we also study the cases of specific houses.

1) Case Study Setup
We select three sample houses with different types (terraced,

semi-detached and detached) from the UK dataset [28] for

the case study. In the three houses, 18, 26 and 33 appliances
are installed, respectively. Specifically, we simulate thein-
formation leakage and the privacy preserving algorithm on
the data collected from the three houses on Jan 1, 2008.
Note that we aggregate the high-resolution readings into 15
minutes per reading, which is a commonly used reading
frequency. Also, some non-electric appliances (e.g., Heating,
Water Heating, and Gas Oven) do not consume electricity and
are not considered as leaking privacy. In this case study, we
specify ǫ = 0.3, δ = 0.2 andm = 5 (5 consecutive readings
form one hour interval for testing usage patterns in multiple
readings). Then, safe readings should make the information
leakage of each appliance not exceed0.3 and the information
leakage of any appliance or combination of appliances in every
5 consecutive readings not exceed0.2.

Due to fluctuated power quality, the actual reading may not
equal the candidate reading derived from the labeled consump-
tion rates of the appliances (they are indeed close to each
other). For every reading, we find its closest candidate reading
to derive the information leakage. This matches the fact that
real-life adversaries also utilize the labeled consumption rates
in their mind to learn the appliances’ ON/OFF status.

To estimate theinformation leakage of appliances from their
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Fig. 5. Number of Privacy-leaking Appliances vs. Time in OneDay (ǫ = 0.3, δ = 0.2, m = 5)
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Fig. 6. Information Leakage in the Detached House at 6:30pm (ǫ = 0.3, δ = 0.2, m = 5)

temporal usage patternsI[t → ax] ∈ [0, 1] for the day Jan 1,
2008, we perform empirical study by surveying 10 students on
campus. Every student estimates the likelihood of each of the
appliances is ON at all the timestamps on Jan 1, 2008 (which
is a generic estimate for all the households without looking
at the reading), where 24 time slots are given and every 4
readings share the same result, e.g., the information leakage
w.r.t. “TV is ON” in [8pm, 9pm) is 0.3. Finally, we average
the results for each appliance and time in all the surveys.

2) Information Leakage Analysis

From the reading stream of each house, if the information
leakage of any appliance’s ON status at timet is greater than
ǫ = 0.3, or the information leakage of any appliance or any
combination of appliances’ ON status in any5 consecutive
readings (including timet) is greater thanδ = 0.2, then such
appliance(s) are considered as “privacy-leaking appliances at
time t”. Following this rule of information leakage analysis
on the reading stream of three sample houses, we can identify
the number of “privacy-leaking appliances” for each reading
time, and then plot such results for three houses in a time series
manner in Figure 5. It shows the number of privacy-leaking
appliances at different times in such three houses. We can
also observe which original reading is safe (no privacy-leaking
appliances at a specific time), and which original reading is
unsafe and how unsafe (based on the number of privacy-
leaking appliances at a specific time). Specifically, we find
out that some readings are originally safe in every house w.r.t.
the given parametersǫ, δ andm (e.g., 9:45am in the terraced
house, 3:30am in the semi-detached house, and 10:45pm in
the detached house on Jan 1, 2008). On the contrary, some
readings in three houses are highly unsafe, e.g., 7:45am in
the terraced house, 5:45pm in the semi-detached house, and

6:30pm in the detached house. The privacy-leaking appliances
in those readings are listed as below:

• Terraced (7:45am): Bathroom Bulb, Kitchen Bulb, Bed-
room Bulb (1), Bedroom Bulb (2), Refrigerator, Toaster,
Kettle, Microwave.

• Semi-detached (5:45pm): Refrigerator, Kitchen Bulb and
Living Room Bulb (as a combination), Electric Oven,
Microwave, Kettle, Bathroom Bulb (1).

• Detached (6:30pm): Kitchen Bulb, Living Room Bulb,
Refrigerator, TV (CRT), Computer (1), Computer (2),
Electric Oven, Dishwasher.

Furthermore, we select an unsafe reading at 6:30pm in the
detached house (6 appliances have information leakage higher
than0.3) to demonstrate the privacy risks of all the appliances.
In Figure 6, we plot the information leakage of the 30 electric
appliances, which are obtained by examining the candidate
appliance set of the reading/consumption rate (4.94kW). Then,
we have the following observations:

• Refrigerator is the most easily detected at any time (with
an information leakage higher than 0.9 due to its high
I[t → ax]). This poses a challenge that an extremely
high I[t → ax] of an appliance (such as refrigerator)
would lead to a high overall information leakage all
the time. Nevertheless, its ON status does not leak any
private information of the consumer since almost all the
households keep their such appliances (e.g., refrigerator)
running all the time.

• Although the bulbs in different rooms of each house
may have the same consumption rate, their information
leakage at the same time might be different (since such
bulbs may have differentI[t → ax] at the same time).

• In the detached house, at 6:30pm, TV is also a privacy-
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Fig. 7. Number of Privacy-leaking Appliances vs. Reading Frequency (ǫ = 0.3, δ = 0.2, m = 5)
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Fig. 8. CRC and DRC (ǫ = 0.3, δ = 0.2, m = 5) vs. Original Reading and Differential Privacy (5-DP)

leaking appliance with high information leakage whereas
electric shower is the hardest to identify with the low-
est information leakage. Similarly, in the semi-detached
house, at 5:45pm, kitchen bulb is the easiest to detect
(besides the refrigerator) whereas two computers are
the hardest to detect. In the terraced house, at 7:45am,
microwave is the easiest to detect (besides refrigerator)
whereas tumble dryer is the hardest to detect. Notice that
the ON status of some appliances can be leaked as a
combination (e.g., kitchen bulb and living room bulb in
the semi-detached house), and some appliances can be
detected from the correlations of energy usage in multiple
readings (e.g., dishwasher in the detached house).

Note that all the above observations match the ground truth
of power consumption in households. The information leakage
of each appliance’s ON status can either increase or decrease
over time due to the highly fluctuated consumption amount
and the usage patterns of such appliance at different times.

Finally, in order to learn how reading frequency affect
the privacy risks applied to different readings, we conducted
experiments to examine the number of privacy-leaking ap-
pliances at 6 selected times in the same day (3 AM, 7AM,
11AM, 3PM, 7PM, 11PM) by varying the reading frequencies
(from 1 reading per minute to 1 reading per 15 minutes).
Then, we plot the number of privacy-leaking appliances at
those 6 different times with 4 different reading frequencies in
Figure 7 (the results obtained from each house is plotted in a
subfigure). Therefore, we can learn that readings would leak
more private information if they are reported more frequently
(e.g., adversaries can identify the largest number of privacy-
leaking appliances if the readings are reported with the highest
frequency 1 minute/reading). This matches the fact that finer-
grained readings would result in more privacy leakage.

3) CRC and DRC
To bound the privacy leakage in a reading stream, our

privacy preserving algorithm has two streaming options CRC
and DRC that satisfy(ǫ, δm)-Uncertainty. Due to space limit,
we only demonstrate the reading conversion results in the
sample detached house on Jan 1, 2008 in Figure 8. We can
find out the safe readings w.r.t. to privacy parametersǫ = 0.3,
δ = 0.2 andm = 5 are close to the original readings, then
the reading errors can be minimized in two different ways
(note that the aggregation and billing errors are negligible).
Meanwhile, we have plotted the reading conversion results for
differential privacy [11] by adding the generic Laplace noise
to ensure5-DP for the reading stream in which the multi-
plicative differences between the probabilities of generating
any identical output from two neighboring inputs are bounded
by e5. The results show that differentially private algorithm
would lead to much higher errors and also greatly fluctuate
the output readings.

4) Phantom Load
We also examined how phantom load (power consumption

as some appliances are OFF, e.g., computers, microwave,
electric oven and TV) affect the performance of information
leakage and the privacy preserving algorithm in our case
study. The phantom loads for such appliances are referred
to sites such as http://standby.lbl.gov/summary-table.html. For
instance, computer’s phantom load is∼ 3.84% its regular
consumption rate, TV is∼ 3.53%, Microwave is∼ 0.21%,
and Washing Machine is∼ 0.48%. In the case study, for the
appliances with phantom load, we assign the phantom load
to their OFF status and derive the number of privacy-leaking
appliances (PL App #) and the reading errors of the CRC and
DRC. Table V shows that phantom loads can slightly make the
readings safer and lead to less errors in reading conversions.
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TABLE V
PERFORMANCE VS. PHANTOM LOAD

Terraced Semi-Detached Detached
PL App # −0.27% −0.31% −0.43%

CRC Error −0.094% −0.113% −0.186%

DRC Error −0.093% −0.109% −0.179%

Finally, if some specific smart meters are deployed by con-
sumers with high-resolution readings (e.g., microgrids [19]),
e.g., the households established by UMass [5], information
leakage may still exist if explicitly disclosing such readings
to other parties. For instance, as the deployed smart meter
is integrated into the main grid, the high-resolution readings
might be analyzed in some applications (e.g., NILM [15], and
regional statistics [7]). Given any reading in such applications
(aggregated or fine-grained), adversaries can still learn the
status of appliances with their background knowledge.

VII. L IMITATIONS AND CHALLENGES

Limitations. First, the reading errors of our CRC or DRC
based streaming algorithm can be relatively high if specifying
a small ǫ, δ and/or largem (for high privacy demand),
compared to the aggregation and billing errors (which can be
close to 0). Therefore, it may affect the accuracy of some
real-time services based on the smart meter streams (e.g.,
load monitoring). Second, as discussed in Section VI-E2, if
some appliances are very likely to be ON at most of the times
(I[t → ax] lies close to 1) such as refrigerator and heating
in winter, the information leakage of such appliances cannot
be effectively bounded without sacrificing too much utility.
Nevertheless, its ON status leaks very limited privacy of the
consumers since almost all the households keep them running
all the time. Finally, once a new appliance is connected to the
home, smart meter needs to be re-initialized for the privacy
model. Also, the reading conversion may also violate some
regulations for guaranteeing the integrity of the bills in some
countries/regions.

Challenges.First, smart meter initialization requires an ex-
ponential complexity (offline) to generate the candidate rate
set and each possible consumption rate’s candidate appli-
ance set. For a small or medium number of appliances, the
algorithm can be executed once to obtain the exact result.
However, for a large number of appliances, we have to run
a heuristic algorithm (e.g., specifying a terminating point for
the algorithm) to obtain an approximated result. Second, the
information leakage of an appliance is derived based on both
the consumption rate and time. It is challenging to quantify
the information leakage from the temporal usage patterns of
different appliancesI[t → ax]. In the case study on Jan 1,
2008 (Section VI-E), we survey energy consumers to obtain
such patterns (the likelihood that most energy consumers use
each appliance at different times). Alternatively, we can use
the probability distribution function in [10] to estimate such
patterns and the corresponding information leakage.

VIII. C ONCLUSION AND FUTURE WORK

Smart meter reading streams have posed severe privacy
threats to electricity consumers on the power grid. Beyond

the smart meter privacy issues tackled in literature, in this
paper, we have quantitatively measured and mitigated the
information leakage in such streaming data based on a wide
variety of background knowledge, including appliances’ con-
sumption rates and temporal patterns of usage, other correla-
tions/patterns of running the same or different appliancesat
different times. We have defined a novel privacy model for
time series reading stream and developed a privacy preserving
streaming algorithm that efficiently outputs safe readingswith
excellent utility. We have conducted experiments on real
datasets to validate the performance of our approach.

We can extend our work in several directions. First, for
an exponential number of candidate consumption rates and
the corresponding appliance subsets inA’s power set, we can
try to develop other heuristic or approximation algorithmsto
generate the safe candidate rate set instead of simply setting
the termination threshold for recursively traversingA’s power
set, e.g., designing rules to prune the search space. Second,
for some real-time applications (e.g., load monitoring [15])
which have high demand on reducing the reading errors, we
can explore other privacy preserving streaming algorithmsfor
smart meters to further minimize such errors. Third, inspired
from many state-of-the-art NILM solutions which start to
use the transient of the power consumption signal or the
transition between power consumption states (e.g., HMM [24],
[22]) to estimate the specific-appliance’s consumption, we
plan to investigate the background knowledge of consumption
transient and the corresponding privacy leakage, and define
a rigorous privacy notion to quantify and bound such risks.
Moreover, information leakage may also occur in other time
series data, such as stock market data, and system/server logs.
We plan to explore efficient privacy preserving solutions to
tackle all of these problems in our future work.
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APPENDIX A
PRIVACY PRESERVINGSTREAMING FOR DYNAMIC

ENERGY BILLING

Besides the constant tariff in a standard energy billing
plan, two different dynamic pricing policies (TOU and TB)
are widely adopted by utility companies [2], [27], [20]. To
minimize the billing errors under such plans, the smart meter
(e.g., household) can locally compute the bill using the input
readings ~Rin (but without disclosing ~Rin). At this time,
billing can be separated from the CRC or DRC based privacy
preserving streaming. Then, output reading stream~Rout can
be transmitted to the utility company in sequence while the
smart meter can still privately use~Rin and TOU or TB plan
to calculate the bill (disclosing the bill would not leak any
information in the vector ~Rin [17]). In this case, we assume
that the smart meter (e.g., a household) is a trusted entity to
report the true bill (dynamic pricing) to the utility company.
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