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Abstract. To make the search engine more user-friendly, commercial search engines commonly develop applications to provide
suggestion or recommendation for every posed query. Clustering semantically similar queries acts as an essential prerequisite
to function well in those applications. However, clustering queries effectively is quite challenging, since they are usually short,
incomplete and ambiguous. Existing prevalent clustering methods, such as K-Means or DBSCAN cannot guarantee good perfor-
mance in such a highly dimensional environment. Through analyzing users’ click-through query logs, hierarchical agglomerative
clustering gives good results but is computationally quite expensive.

This paper identifies a novel feature for clustering search queries based on a key insight – queries’ top ranked search results
can themselves be used to quantify query similarity. After investigating such feature, we propose a new similarity metric for
comparing those diverse queries. This facilitates us to develop two very efficient and accurate algorithms integrated in query
clustering. We conduct comprehensive experiments to compare the accuracy of our approach against the known baselines along
two dimensions: 1) quantifying the cohesion/separation of clustered queries, and 2) justifying the results by real-world Internet
users. The experimental results demonstrate that our two algorithms and the similarity metric can generate more accurate results
within a significantly shorter time.
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1. Introduction

As of today, the indexed web contains at least 30
billion pages [1]. In fact, the overall web may con-
sist of over 1 trillion unique URLs, more and more of
which is being indexed by search engines every day.
Out of this morass of data, users typically search for
the relevant information that they want through pos-
ing search queries to search engines. The problem that
the search engines face is that the queries are very di-
verse and often quite vague and/or ambiguous in terms
of user requirements. Many different queries may re-
fer to a single concept, while a single query may corre-
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spond to many concepts. To organize and bring some
order to this massive unstructured dataset, search en-
gines cluster these queries to group similar items to-
gether. To increase usability, most commercial search
engines, such as Google, Yahoo!, and Bing also aug-
ment their search facility through additional services
such as query recommendation or query suggestion by
guessing the users’ search intents. For example, query
recommendation tries to recommend similar search
queries and results based on an executed query [20];
query suggestion tries to provide some candidate com-
pleted queries for the user before he/she keys the entire
keyword(s) into the search engine [12]. These services
make it more convenient for users to issue queries and
obtain accurate results from the search engine, and
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thus are quite valuable. From the search engine per-
spective, effective clustering of search queries is a nec-
essary pre-requisite for these services to function well.
Due to all of these reasons, clustering of search en-
gine queries has attracted significant attention in recent
years. However, existing prevalent clustering methods,
such as K-Means/Medoids or DBSCAN cannot as-
sure a good performance in such highly-dimensional
and diverse environment – with constraints on speci-
fying parameters. Hierarchical agglomerative cluster-
ing [10] gives good results but is computationally
quite expensive – with difficulty on scaling to large
datasets.

There are several challenges raised due to the unique
nature of the environment. The principal issue is to de-
termine how to measure similarity between queries. To
enable more precise information retrieval, a represen-
tative and accurate descriptor is indispensable for com-
puting the similarity between queries. The concept of
query similarity was originally used in information re-
trieval studies [19]. Each query is represented by a vec-
tor of content-based keywords, and then every pair of
queries can be compared using some similarity met-
rics. However, the problem with using this in the query
log environment is that users’ search interests are not
always the same even if the issued queries contain the
same keywords. A typical example is that, the keyword
“Apple” may represent either fruit or the “Apple Inc.”.
Hence, the use of content-based keywords descriptor is
rather limited for this purpose. Subsequently, to mea-
sure the similarity between two queries, their vectors
of the associated clicked URLs in a click-through bi-
partite graph [10,12,45] are adopted. Take “Apple” and
“Apple and Banana” as an example, web users nor-
mally click some URLs after submitting them to the
search engine respectively. Then, the similarity can be
computed by the binary [10] or count [12] vectors of
their clicked URLs.

Nevertheless, no matter how large the query log
dataset may be, the complete search intent of some rel-
evant queries cannot always be effectively represented
by their click-through information. For instance, if
there is no common clicked URL for two queries (e.g.,
“Honda accord Toyota camry”, “Civic vs. Corolla”)
in a given query log (this happens in the AOL real
dataset), “Honda accord Toyota camry” and “Civic vs.
Corolla” will never be clustered together, though they
are semantically similar to each other – also note that
content-based keywords descriptor and similarity mea-
sure do not work either in this case. In other words, if
using query logs, we can only cluster the queries in the

click-through bipartite graph, whereas many of their
semantically similar queries without any clicked URL
in the query log are not available for analysis and appli-
cations. Another reason that causes inaccuracy is that
the query log data comprise users’ click-through infor-
mation in a specific period, while the search interests
might even change over time. Even if we can partition
the query logs in terms of time intervals, the transition
of the varying search interests is not very clear, and
the returned information with respect to the submitted
query might be related to a totally different meaning in
the past. For example, “Sandy” may refer to different
meanings before and after the hurricane happened in
late 2012. If we aggregate them together for clustering
analysis, the result might be inaccurate.

Therefore, describing queries only by content-based
keywords or purely through click-through data is not
always sufficiently accurate for search engine query
clustering. As observed from the query logs, each
clicked URL is logged with a rank number when the
user clicks it. The top ranked search results (shown
in the 3rd column of Table 1) represent the top rel-
evant URLs for any query at the time it was posed.
They perfectly incorporate both content-based and
click-through information by the robust search en-
gine [3,4,32,33,37]. Also, since almost all the queries’
top ranked search results can be generated by the
search engine at any time, the shortcomings of us-
ing query logs for clustering can be appropriately re-
solved (“Honda accord Toyota camry” and “Civic vs.
Corolla” can be recommended for each other; “Sandy”
means either a human name or the hurricane at a spe-
cific time). Along this line of research, in this paper,
we identify a novel feature for clustering search engine
queries, that is – using the top ranked search results.
Furthermore, while using this new feature for clus-
tering, we define a new similarity metric and develop
two early termination strategies for the clustering algo-
rithm, which eliminates some unnecessary processes
in similarity computation. Then, the main contribu-
tions of this paper are summarized as below:

1. To the best of our knowledge, we take the first
step to do query clustering analysis on the top
ranked search results, which is based on a key
insight – search engine results can themselves be
used to quantify query similarity.

2. A new similarity metric is given to measure the
similarity between every pair of queries based on
their top ranked search results, in which every
URL and its rank jointly decide the similarity.
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Table 1

Query Logs vs. Top Ranked Search Results

Search Query Query Logs (Clicked URL and Count) Top 5 Search Results (Rank and URL)

“Honda accord Toyota camry” www.honda.com (3 times)
www.autotrader.com (2 times)

1 www.autotrader.com
2 www.thecarconnection.com
3 www.youtube.com
4 www.autoguide.com
5 automobiles.honda.com

“Civic vs. Corolla” www.kbb.com (2 times) 1 www.autotrader.com
2 www.kbb.com
3 www.autobytel.com
4 www.autoguide.com
5 www.thecarconnection.com

. . . . . . . . .

3. Observing the characteristics of the proposed
similarity metric, we develop two early termina-
tion strategies that can significantly improve the
efficiency of query clustering.

4. The experimental results show that our approach
outperforms the state-of-the-art algorithms such
as hierarchical agglomerative clustering and K-
Means/Medoids clustering in terms of accuracy,
efficiency and scalability.

This paper is significantly extended from our pre-
liminary work [28]. Specifically, we proposed a new
algorithm besides the algorithm in [28], which also
outperforms the state-of-the-art approaches in terms of
the efficiency and accuracy. Moreover, we conducted
more comprehensive groups of experiments in to eval-
uate the quality of clustering using both internal and
external measures [41] which can bring new insight
into the accuracy evaluation of query clustering algo-
rithms from a completely different perspective beyond
[28]. More experimental results on testing the scalabil-
ity and the effectiveness of the parameters in our pro-
posed clustering approach are also presented. Also, we
have given additional theoretical study in this context,
e.g., proving the properties of our proposed similarity
metric, as well as more literature review.

The remainder of this paper is organized as follows.
We first describe some preliminaries in Section 2, and
review the literature in Section 3. Then we present our
similarity metric for the top ranked search results in
Section 4, and give the efficient algorithms in Sec-
tion 5. Before going to the experiments, we discuss the
evaluation measures for comparing the clustering re-
sults in Section 6. Section 7 demonstrates the experi-
mental results. Finally, we conclude this paper and dis-
cuss the future work in Section 8.

2. Preliminaries

Studies on clustering queries using click-through
data [10,12,46] generally extract users’ queries and
clicked URLs from the query logs during a specified
time period. Beeferman and Berger [10] proposed an
agglomerative clustering approach using the Jaccard
similarity metric: for two queries, qx and qy , we have

Sim(qx, qy) = |N (x) ∩ N (y)|
|N (x) ∪ N (y)| (1)

where |N (x) ∩N (y)| denotes the number of common
unique URLs that qx and qy share while |N (x)∪N (y)|
represents the total number of these two queries’
unique URLs in the click-through bipartite graph. The
main idea of this algorithm is to hierarchically ag-
glomerate clusters according to the similarity between
queries. Leung et al. [34] pointed out two limitations
of Beeferman et al.’s agglomerative clustering: 1) its
low recall rate due to small number of common clicks
on the documents; and 2) the susceptibility of the ap-
proach to noise (i.e. “noise URLs” cannot be identified
since all the clicked links are treated in the same way,
and the counts of the clicks are not considered in the
clustering process). Furthermore, the method also has
a high computational cost.

Similarity between queries can also be measured by
other metrics with click-through data such as the Eu-
clidean distance or Cosine similarity. For example, the
Euclidean distance of two clicked URLs vectors[12]
can be obtained by normalizing qx and qy’s clicked
URLs vectors vx , vy into v′

x and v′
y (where the nor-

malized count of two queries’ ith distinct URL are
v′
x(i) = vx(i)√∑

i v2
x(i)

and v′
y(i) = vy(i)√∑

i v2
y(i)

respectively)

http://www.honda.com
http://www.autotrader.com
http://www.autotrader.com
http://www.thecarconnection.com
http://www.youtube.com
http://www.autoguide.com
http://automobiles.honda.com
http://www.kbb.com
http://www.autotrader.com
http://www.kbb.com
http://www.autobytel.com
http://www.autoguide.com
http://www.thecarconnection.com
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and computing the distance between two queries by

‖qx − qy‖ =
√∑

i

∥∥v′
x(i) − v′

y(i)
∥∥2 (2)

Similarly, the Cosine similarity of two clicked URLs
vectors, vx and vy (the number of clicks for each
URL), can be computed as

Sim(qx, qy) =
∑k

i=1 vx(i) × vy(i)√∑m
i=1 v2

x(i) ×
√∑n

i=1 v2
y(i)

(3)

where qx , qy have m, n distinct URLs respectively and
k common URLs.

Once a similarity or distance metric is defined, it
can be utilized by any clustering algorithm, such as
hierarchical agglomerative clustering [10], K-Means/
Medoids [6], and DBSCAN [44], etc.

3. Related work

Search engine queries are a rich source of infor-
mation and many applications have been developed
to extract similar search information for queries, etc.
However, these enhanced query services require ef-
fective query clustering. Specifically, Baeza-Yates et
al. [6] presented a query recommendation method that
is based on clustering groups of semantically sim-
ilar queries. Cao et al. [12] proposed an approach
to context-aware query suggestion by mining click-
through and session data. Baeza-Yates et al. also pre-
sented a framework [7] for clustering search engine
queries that aims at developing relevant applications
based on similar queries (e.g., Answer Ranking, Query
Recommendation).

Query clustering has its roots in information re-
trieval research [19]. Each query is represented by a
vector of keywords while measuring similarity by the
Jaccard coefficient of common keywords. Since most
of the keywords are ambiguous, analyzing the con-
tent of query keywords or phrases by traditional in-
formation retrieval techniques has many limitations.
Following that, click-through query logs have been
mined to yield similar queries [17,20,39,46]. Beefer-
man and Berger [10] first introduced the agglomera-
tive clustering method to discover similar queries us-
ing query logs but with limitations (noise and small
number of common clicks). The query clustering ap-

proach adopted in [6] uses a K-Means clustering ap-
proach. K-Means algorithm cannot adapt well in query
clustering case due to the difficulty on specifying k.
Wen et al. [44,45] analyzed both query contents and
click-through bipartite graph and applied DBSCAN
[21], a density-based method to group similar queries.
Fonseca et al. [23] propose to discover related search
engine queries by association rules. They consider the
query log as a set of transactions while a submitted
query is regarded as a single transaction. As addressed
in [8], two problems in this method arise: it is diffi-
cult to determine query sessions and interesting related
queries submitted by different users cannot be discov-
ered. [8] presents methods on extracting semantic rela-
tions from query logs and represents queries in a vector
space based on a graph derived from click-through bi-
partite graph. Dupret et al. [20] extract relations among
queries that are defined using the rank of clicked
URLs. Their goal is discovering relations by click-
through data, which is different from our purpose.

More specifically, Leung et al. [34] proposed a two-
phase personalized agglomerative clustering algorithm
for generating personalized query clusters. In the query
clustering stage, they extended agglomerative cluster-
ing to a concept-based algorithm. Similar to the ap-
proach proposed by Beeferman et al., this method can-
not scale up to large datasets whereas our partial tran-
sition similarity based algorithms significantly reduce
the computational cost. The similarity of queries in
[34] is based on concepts rather than clicked URLs be-
cause the chance for different queries leading to com-
mon clicked URLs is low if using clicked data. Our so-
lution is also not based on click-through data, we select
top ranked search results to resolve this problem. Sim-
ilar to agglomerative query clustering, DBSCAN algo-
rithm adopted in [44,45] requires high computational
cost. Meanwhile, Wen et al. linearly combine measures
on content-based similarity and cross-references based
similarity but it’s difficult to set parameters for linear
combination of two similarity metrics. However, our
ranked search results data (enforced by [3,4,32,33,37])
naturally consider both factors if the top ranked search
results are provided by a robust search engine. More-
over, Cao et al. [12] use normalized Euclidean dis-
tance to measure similarity between queries in click-
through data. We have compared the performance of
our transition based algorithms and the normalized Eu-
clidean distance based query clustering algorithms in
our experiments. He et al. [26] utilizes the term prox-
imity evidence to improve the probabilistic informa-
tion retrieval models. Another category of query anal-
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ysis methods map queries into knowledge bases such
as linked open data [5,43] and estimate the similarities
of queries and/or keywords based on such mappings.

Furthermore, Fu et al. [24] presented a hybrid
method to cluster queries by utilizing both the query
terms and the returned URLs to the queries. The query
similarity in [24] also considers contents and URLs.
The second portion of the similarity is computed based
on the overlapped URLs of the queries. Bordogna [11]
proposed operators to combine clustered search results
based on the common URLs. Chuang et al. [15] pro-
posed a hierarchical query clustering approach by or-
ganizing the query terms into hierarchical structure
and construct query taxonomies. This approach purely
considers the terms in snippets rather than an overall
similarity/distance measurement for human search in-
tents.

Kendall’s tau [22] and some relevant measures [47]
can be effective in measuring the accuracy of clus-
tered queries. Since our most significant contribution
is observing the fact that search results can be used to
perform clustering of query keywords, they might be
used instead of our proposed similarity metric as well
(though they are not very efficient). Also, since search
queries clustering is a well known hard problem, to
the best of our knowledge, very few algorithms have
been raised for improving the efficiency of clustering
queries. This paper is a complement to the literature
from this perspective.

Finally, silhouette coefficient is employed as one
of our internal measures to measure the cohesion and
separation of query clustering results in our prelimi-
nary work [28]. Greater Silhouette coefficient indicates
large inter-cluster distances and small intra-cluster dis-
tances. Davies-Bouldin index [18,38] seeks the same
objective on clustering validation. The distinction be-
tween silhouette coefficient is that – minimized index
generates the best clustering results. Besides cluster-
ing, some other techniques can be also used for query
suggestion and recommendation (which are relevant to
our work), such as random walks [16] and some work
summarized in [40]. Our proposed approach clusters
search queries using the web search’s feature as the
ranked URLs of the web pages, and some work on web
site/page feature selection [14,42] are also relevant to
our study.

4. Similarity metric for top ranked search results

In this section, we introduce our novel similarity
metric based on the queries’ search results lists.

4.1. Search results list

Recall that Table 1 (2nd column) shows the click-
through information of two search queries. A more de-
tailed description of the motivating example is given as
follows. The table shows all of the associated URLs for
two similar queries – “Honda accord Toyota camry”
and “Civic vs. Corolla”. Looking at this, it is clear that
they cannot be grouped together due to the scarcity
of click-through information among the query logs.
For most prevalent similarity metrics such as Jaccard
Similarity and Euclidean Distance, based on the com-
mon clicked URLs, the similarity between them is “0”.
Thus, if building the query recommendation with this
query log, such two queries cannot be recommended
for each other.

Instead, we utilize a list of search results for each
submitted query at a specific time to measure the query
similarity. As also shown in Table 1 (3rd column), each
of the two queries has a list of search results. The
similarity between them would not be “0” anymore,
and thus those two semantically similar queries can be
grouped together using the feature of top-k search re-
sults. Following this, we define any query q’s search
results as a list of URLs Lq . We only consider q’s “top-
k” search results (viz. top-k list) rather than its entire
URL list since the lower ranked URLs are not that rel-
evant to q. Hence, we have:

Definition 1 (TOP-K LIST Lq(k)). For any query q

with a given list of search results Lq , we define q’s
top-k search results as Lq(k) = {di,∀i ∈ [1, k]} where
di represents q’s ith URL in the list.

Note that the URLs on the top-k list have been
ranked by the search engine according to the rele-
vance of the URL to the possible search intention of
such query. The first few URLs are generally much
more relevant to the search intent. Therefore, we can
assign a weight ω(i) to denote the relevance of the
ith URL in the list to the exact search intent of that
query. Hence, all relevance weights form a “Weight
Sequence” � = {ω(i), ∀i ∈ [1, k]}. For all queries,
the relevance weight ω(i) ∈ � decreases as the rank i

increases. This can be observed from any robust search
engine and users’ behavior study: the search engine
ranking algorithms sort the URLs according to the rel-
evance beforehand; if a URL ranks higher, it attracts
significantly more clicks (as seen from the query log
[9,25]). So we can hypothesize that ω(i) decreases
sharply as the rank i increases. Then, every query’s
top-k URLs list Lq(k) and the assigned weight se-
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quence of the relevance � can be used to measure the
similarity among them.

4.2. Transition similarity with top-k lists

The key procedure for clustering queries is mea-
suring the similarity between all queries. Since Lq(k)

is the top ranked URLs, we could use the Kendall’s
tau [22] as the underlying distance metric. However,
Kendall’s tau is not that effective if the top-k lists have
little overlap, which is often the case for search engine
queries’ URL lists. Additionally, scalability is an es-
sential concern for the clustering problem of search en-
gine queries, and Kendall’s tau is not quite as efficient
to compute when large number of top-k lists’ compar-
ison is required. To improve on this, we develop a new
metric that measures the similarity between any pair of
queries’ top-k lists. Section 5 shows how to improve
the efficiency of the query clustering with this similar-
ity metric.

With the top-k lists, the similarity between two dif-
ferent queries qx and qy can be measured through
their two ranked URL sets Lqx (k) and Lqy (k). First,
we identify the common URLs in Lqx (k) and Lqy (k).
We denote the number of common URLs as m and
the common URLs as d1, . . . , dm where m ∈ [0, k].
However, simply comparing the two lists through their
common URLs such as by using the Jaccard coefficient
[10], or Euclidean distance [12] is not sufficiently ac-
curate, for the reason – the common URLs determine
the similarity between two queries in terms of not only
how many common URLs, but also their ranks on two
lists. For instance, “Apple” and “Apples” have many
common URLs in their search results. If we do not
consider the influence of the URL ranks, they might be
computed as very similar. Indeed, they refer to two dif-
ferent search intents because users might not use “Ap-
ples” to search the information related to “Apple Inc.”
(the rank of the common URLs varies on these two
lists). We then define:

Definition 2 (RANK TRANSITION VALUE). Given
queries qx and qy with their top-k lists Lqx (k) and
Lqy (k), the common URL di is ranked rx(i) and ry(i)

in Lqx (k) and Lqy (k) respectively, then di’s rank tran-
sition value is defined as �di

(qx, qy) = |rx(i) − ry(i)|
where rx(i), ry(i) ∈ [1, k].

Recall that a common URL in Lqx (k) and Lqy (k)

would have different relevance weight if they are
ranked distinctly. Hence, our similarity measure should
consider two factors: the relevance weight of the URL
on two lists and the rank transition there. We thus de-

fine the “Transition Similarity” between two queries
qx and qy as follows:

Sim(qx, qy) =
m∑

i=1

(ω[rx(i)] + ω[ry(i)])/2

�di
(qx, qy) + 1

(4)

Here, m is the number of common URLs on Lqx (k)

and Lqy (k), rx(i) and ry(i) represent the rank of com-
mon URL di on Lqx (k) and Lqy (k) respectively, and
�di

(qx, qy) denotes the rank transition value for di .
For every common URL di , we average its relevance
weight on two lists. Since �di

(qx, qy) may be valued
at 0, and has an anti-monotonic relationship to the sim-
ilarity, we let �di

(qx, qy) + 1 be the denominator.
Assuming that qx = “Honda accord Toyota camry”,

qy = “Civic vs. Corolla” in Table 1 and ω(i) = 1
2i ,

the rank of three common URLs varies as 1 → 1
(no change), 2 → 5 and 4 → 4 (no change). Thus,
Sim(qx, qy) = 0.5+ (0.25+0.03125)/2

3+1 +0.0625 = 0.703.

4.3. Properties of transition similarity

Proposition 1. For any two queries qx and qy , we
have 0 � Sim(qx, qy) �

∑k
i=1 ω(i).

Proof. Two special cases reflect the maximum and
minimum value of transition similarity:

– If Lqx (k) = Lqy (k), then m = k and ∀di,

�di
(qx, qy) = |rx(i)− ry(i)| = 0. Thus, we have

∀di,
1

�di
(qx,qy)+1 = 1 and max{Sim(qx, qy)} =∑k

i=1 ω(i).
– If Lqx (k) ∩ Lqy (k) = ∅ (no common URL),

Sim(qx, qy) can be simply obtained as 0.

Furthermore, if
∑k

i=1 ω(i) = 1, for instance,
limk→∞

∑k
i=1 ω(i) = 1 when ω(i) = 1

2i , transition
similarity is naturally normalized.

As shown above, the weight sequence ω(i) = 1
2i

can approximately normalize the transition similarity
if k is large. In general, if

∑k
i=1 ω(i) �= 1, we can

normalize the transition similarity by normalizing �

as ω′(i) = ω(i)∑k
i=1 ω(i)

where
∑k

i=1 ω(i) is the max-

imum value derived above. Hence, given two top-k
lists (Lqx (k) and Lqy (k)) with the relevance weight se-
quence �, we have the normalized transition similarity
as below:

Sim′(qx, qy)

= 1∑k
i=1 ω(i)

m∑
i=1

(ω[rx(i)] + ω[ry(i)])/2

�di
(qx, qy) + 1

(5)
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It can be proven that the distance derived from tran-
sition similarity is a metric (detailed proof is given in
Appendix A). The transition similarity referred in the
following sections has been normalized. For simplify-
ing the notation, we let Sim(qx, qy) denote the normal-
ized one.

5. Efficient clustering algorithms

Since computing the transition similarity is an es-
sential step for clustering, we first discuss how to effi-
ciently do so, and then present our approaches for clus-
tering queries with it.

5.1. Partial transition similarity

Some query clustering algorithms (e.g., agglomera-
tive clustering) are implemented based on a given sim-
ilarity or distance threshold where the distances (or
similarities) between every pair of queries in the same
cluster cannot exceed (or be less than) the threshold.
Thus, computing the similarity/distance for every pair
of queries is a preliminary step in such query clustering
algorithm.

Nevertheless in some cases, with a given similarity
threshold δ, if the query similarity comparison can suf-
ficiently return the result that whether the similarity is
over or under δ, the similarity computation can be ter-
minated immediately. Particularly in clustering queries
with top-k lists, the top ranked URLs in the lists dom-
inate the similarity comparison and thus possibly lead
to the early termination in query comparison. We aim
at improving the efficiency of clustering queries by do-
ing so, and term this as “Partial Transition Similarity”.

More specifically, since ω(i) decreases as i in-
creases, the higher ranked URLs essentially contribute
a greater portion to the overall similarity. Making use
of this, we can develop early termination strategies that
only derive the “binary” outcome whether the tran-
sition similarity is �δ or <δ instead of computing
the exact similarity value. Intuitively, we can termi-
nate the similarity computation if the top ranked URLs
have already made the accumulated transition similar-
ity a � δ. On the other hand, if the overall transition
similarity Sim(qx, qy) cannot achieve δ even though all
the remaining URLs in Lqx (k) and Lqy (k) are identical
(this case gets the maximum overall similarity for all
the URLs, but it is still less than δ), we can also termi-
nate the similarity computation process. Hence, we can
derive Partial Transition Similarity based query clus-
tering algorithms with the minimum similarity thresh-

old δ for each cluster. Before that, we first define two
concepts – “Similarity Threshold URL” and “Dissimi-
larity Threshold URL”.

Definition 3 (SIMILARITY THRESHOLD URL
−→
d ).

Given a weight sequence � and a minimum similar-
ity threshold δ, the nth URL (n � k) of qx (or qy) is

called Similarity Threshold URL
−→
d for Sim(qx, qy),

if it is the first URL at which the accumulated partial
transition similarity of qx and qy satisfies a � δ.

Definition 4 (DISSIMILARITY THRESHOLD URL←−
d ). Given a weight sequence � and a minimum

similarity threshold δ, the nth URL (n � k) of qx

(or qy) is called Dissimilarity Threshold URL
←−
d for

Sim(qx, qy) if it is the first URL at which the accu-
mulated partial transition similarity of qx and qy sat-
isfies a < δ − max where max represents the maxi-
mum partial transition similarity obtained from all the
remaining URLs in two lists.

Clearly, for any pair of queries qx and qy , either

the “Similarity Threshold URL”
−→
d or “Dissimilarity

Threshold URL”
←−
d (whichever is detected earlier on

two top-k lists) is sufficient to conclude that qx and qy

should be clustered together or not. Since the density
of the similarity matrix for web query clustering is typ-
ically very low (less than 2% [41]), the similarity be-
tween most queries is “0”. Frequently, we can discover←−
d or

−→
d at the early stage of similarity computation,

and go to the next pair of queries. Thus, the computa-
tional cost can be significantly reduced in either case.

We propose two different ways to efficiently find
←−
d

or
−→
d . They differ primarily in terms of the how the

URLs on the top-k lists are traversed, whether “tra-
verse all the URLs on one top-k list (sequence) first” or
“traverse two URLs with the same rank (level) first”.
Note that we can indeed regard all URLs on a top-k list
as a URL sequence and the URLs on two top-k lists
with the same rank as a level. Therefore, we denote
these two algorithms as “Sequence-first Traversal” and
“Level-first Traversal” respectively, and now present
them below.

5.2. Sequence-first traversal algorithm

We first introduce the sequence-first traversal for
finding

←−
d and

−→
d between two queries’ top-k lists.

With sequence-first traversal, it is immaterial which of
the two URL sequences is traversed. As long as all
URLs from the first to the last in either sequence are
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traversed, the overall transition similarity computed is
the same since the transition similarity shares of all
common URLs in both sequences have been accumu-
lated. Since the accumulated transition similarity a can
be simply calculated by summing over the transition
similarity share of each URL on one top-k list, the
“Similarity Threshold URLs”

−→
d can be easily discov-

ered by terminating the process as soon as a � δ.
However, the steps for discovering

←−
d is more compli-

cated: we must somehow compute the maximum par-
tial transition similarity (denoted as max) among the
remaining URLs in the traversal route, and use it to
check the satisfaction condition. Since finding max is
an optimization problem (Bipartite Matching [36]), the
sequence-first traversal is not that efficient if we try to
solve the problem at each URL visit. Instead, we can
find a slack upper bound – max′ for the partial sim-
ilarity of all the remaining untraversed URLs which
is no less than the exact maximum untraversed partial
similarity max (Lemma 1 shows how to derive this).
As a result, the early termination can be efficiently im-
plemented with max′ and Lemma 1 (Proven in Ap-
pendix B).

Lemma 1. At qx’s nth URL (sequence-first traversal),
the partial transition similarity for untraversed URLs

is bounded by value
∑k

i=n+1 max{ω(i),
ω(i)+ω(ry)

2(|i−ry |+1)
}

where ry is the current highest rank of all untraversed
URLs on Lqy (k).

Since most queries have a very small number of
common URLs on their top-k lists, most ranks on qy’s
top-k list haven’t been occupied while we are travers-
ing qx’s sequence. Therefore, the ranks ω(ry) and ω(i)

are generally available. Meanwhile, since ω(i) drops
down sharply, the comparison should be terminated
in a very early stage. Then, Algorithm 1 presents the
approach to discover dissimilarity threshold URL and
similarity threshold URL by sequence-first traversal.

For example in Fig. 1, we traverse URLs in qx’s
sequence. Implementing Lemma 1 to compute the
slack upper bound max′, we can obtain max′ =
0.72, 0.47, 0.34, 0.19, . . . (as shown in Fig. 1, a is ac-
cumulated by adding the transition similarity share of
the current URL, and max′ decreases). Even though
0.72, 0.47, . . . cannot be achieved by max, through
relaxing the max to them, Algorithm 1 can greatly
reduce the complexity of clustering and acquire the
same result as completely computing the similarity. Fi-
nally, the 4th URL in Lqx (k) can be identified as the

dissimilarity threshold URL
←−
d . Conversely, if we let

δ = 0.15 in the example, the similarity threshold URL

Algorithm 1 Sequence-first Traversal
Input: two queries qx and qy , δ and �

Output: Sim(qx, qy) � δ at
−→
d or Sim(qx, qy) < δ at←−

d

1: {di is the ith URL of qx where i ∈ [1, k]}
2: while di is neither

−→
d nor

←−
d do

3: if di is the j th URL of qy where j ∈ [1, k] then
4: Sim(qx, qy) ← Sim(qx, qy) + ω(i)+ω(j)

2(|i−j |+1)
;

5: end if
6: max′ ← ∑k

s=i+1 max{ω(s),
ω(s)+ω(ry)

2(|s−ry |+1)
} and ry

is the highest available rank in Lqy (k);
7: i + +;
8: di is

−→
d if Sim(qx, qy) � δ, and is

←−
d if max′ +

Sim(qx, qy) < δ;
9: end while

10: return Sim(qx, qy) � δ or Sim(qx, qy) < δ.

Fig. 1. Sequence-First Traversal (δ = 0.35).

−→
d is detected at the 3rd URL and the algorithm termi-

nates.
Note that while traversing URLs in two queries’ top-

k URL sequences, the algorithm can choose either qx

or qy’s sequence. In some special cases, e.g., the com-
mon URLs d1, d2 and d3 are ranked 1st, 2nd, 3rd in
qx’s sequence and 1st, 2nd, 100th in qy’s sequence.
At this time, traversing URLs in qx’s sequence might
terminate earlier than traversing URLs in qy’s se-
quence. Indeed, the runtime difference between these
two traversals can be not very significant for two rea-
sons. First, the rank difference of d3 in two sequence is
97, which makes the accumulated similarity of d3 very
close to 0. Then, traversing d3 in qx’s sequence cannot
increase the similarity significantly, and traversal has
to continue (like traversing URLs in qy’s sequence).
Second, another criterion can terminate the traversal –
the sum of max′ and accumulated similarity cannot
reach the similarity threshold δ in any case. In the
aforementioned special case, the traversal is very likely
to be terminated at the top few levels while traversing
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URLs in either sequence by meeting one of the follow-
ing two conditions: (1) d1 and d2 make the accumu-
lated similarity greater than δ, or (2) max′ decreases
rapidly and thus the sum of max′ and accumulated sim-
ilarity cannot reach δ. In summary, Algorithm 1 can
traverse either query’s URL sequence, though the run-
time might be slightly different.

5.3. Level-first traversal algorithm

Besides traversing URLs along one query’s top-k
URLs list, we can also traverse URLs level by level
(the URLs in the same level of two top-k lists hold the
same rank) for discovering similarity threshold URLs
and dissimilarity threshold URLs. For sequence-first
traversal method, we consider all possibilities in the
other query’s top-k list and choose the greater one from
ω(i) and ω(i)+ω(ry)

2(|i−ry |+1)
as the individual upper bound of

transition similarity with respect to every remaining
URL. However, if we check the two URLs in the same
level, max can only be reached when the two URLs
in all the lower levels are identical. More specifically,
if some of the lower level URLs have been chosen to
match URLs in higher levels, max cannot be reached
for all URLs in lower levels. At this time, we still as-
sume that all URLs in lower levels can be identical on
both URLs and ranks such that a slack upper bound
of max is also employed (Lemma 2 is also proven in
Appendix C).

Lemma 2. At the nth level (level-first traversal), the
partial transition similarity for untraversed URLs is
bounded by

∑k
i=n+1 ω(i).

We thus derive the level-first traversal algorithm
(Algorithm 2) to find the “Similarity Threshold URLs”
or “Dissimilarity Threshold URLs” by traversing
URLs along two queries’ top-k lists level by level. As
shown in Fig. 2, we use the same example to describe
this method. a is accumulated by adding the transition
similarity share of the URLs at the current level, and
the decreasing slack upper bound of max can be com-
puted with Lemma 2. Therefore, we can easily identify
a URL (either from Lqx (k) or Lqy (k)) in the 4th level

as the “Dissimilarity Threshold URL”
←−
d . Conversely,

if we let δ = 0.15 in the example, it turns out to dis-
cover “Similarity Threshold URL”

−→
d by terminating

at the 2nd level.

5.4. Applying early termination to query clustering

While clustering queries using their top-k lists, our
contributions primarily lie in two folds.

Algorithm 2 Level-first Traversal
Input: two queries qx and qy , δ and �

Output: Sim(qx, qy) � δ at
−→
d or Sim(qx, qy) < δ at←−

d

1: {di (or d ′
i) is the ith URL of qx(or qy) where i ∈

[1, k]}
2: while di (or d ′

i) is neither
−→
d nor

←−
d do

3: if di is the j th URL of qy where j ∈ [1, k] then
4: Sim(qx, qy) ← Sim(qx, qy) + ω(i)+ω(j)

2(|i−j |+1)
;

5: end if
6: if d ′

i is the j ′th URL of qx where j ′ ∈ [1, k]
then

7: Sim(qx, qy) ← Sim(qx, qy) + ω(i)+ω(j ′)
2(|i−j ′|+1)

;
8: end if
9: max ← ∑k

s=i+1 ω(s); i + +;

10: di (or d ′
i) is

−→
d if Sim(qx, qy) � δ, and is

←−
d if

max + Sim(qx, qy) < δ;
11: end while
12: return Sim(qx, qy) � δ or Sim(qx, qy) < δ.

Fig. 2. Level-first traversal (δ = 0.25).

First, we can easily apply sequence-first or level-
first traversal method to the “Hierarchical Agglomer-
ative Clustering” algorithm with a specified similarity
threshold [10]. We replace the process of query sim-
ilarity computation in the hierarchical agglomerative
clustering by Algorithm 1 or 2. Then, the new algo-
rithms become more efficient as demonstrated in Sec-
tion 7.

Second, if we formulate a similarity matrix by com-
pletely computing the transition similarity for ev-
ery pair of queries, as a similarity/distance metric,
our transition similarity can be equally well adapted
in most of the traditional query clustering meth-
ods (e.g., hierarchical agglomerative clustering, K-
Means/Medoids clustering). To validate this, we also
compare the performance of our transition similar-
ity metric with the existing similarity/distance metrics
such as Kendall’s tau [22], Jaccard similarity, Cosine
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similarity and Euclidean distance under the same ex-
perimental setup in Section 7.

Indeed, our early termination (sequence-first or
level-first traversal) strategies can be also applied to
other similarity metrics (besides the transition similar-
ity) in hierarchical agglomerative clustering based on
either top-k search results or query logs. By traversing
the URLs in two top-k lists, partial Jaccard similarity,
partial Cosine similarity, or partial Euclidean distance
can be derived and compared with the threshold to ter-
minate the similarity/distance computation earlier than
the prior work.

6. Query clustering evaluation

To validate that search engine query clustering with
top ranked search results outperforms that of click-
through query logs, we need effective cluster evalua-
tion measures to compare the quality of the cluster-
ing results. In this section, we define some measures to
evaluate the clustering quality along two dimensions:
1) the internal measure – considering query cluster-
ing as a generic clustering problem, evaluate the co-
hesion and separation of the clustered queries using
silhouette coefficient [41], and 2) external measures –
since clustered queries represent users’ search intents
when they use search engine, we also define preci-
sion, recall and F-measure for evaluating the accu-
racy of query clustering based on human search behav-
ior.

6.1. Internal measure: Cohesion and separation of
clusters

Silhouette coefficient is a composite measure that
judges the clustering quality by the cohesion and
separation of the clustered objects. In query clus-
tering, we regard every distinct query as a point in
the highly-dimensional space and measure the dis-
tances between points in the same cluster and the dis-
tances between clusters. Referring the definition in
[28,41], we can let Dis1 be the average distance be-
tween queries to their centroid query in correspond-
ing clusters, and let Dis2 be the minimum distance be-
tween every pair of centroid queries (the query holding
the greatest global similarity to all other queries in the
same cluster is chosen as the centroid query). We thus
have:

ŜC = Dis2 − Dis1

max{Dis1, Dis2} (6)

where ŜC ∈ [−1, 1] and higher value means better
quality of clustering. Since ŜC is derived based on dis-
tances measured among the clustered objects, it can
be calculated based on any underlying distance met-
ric such as Euclidean distance, the distance metric de-
rived from the Jaccard similarity, Cosine similarity
or Transition similarity where distance ||qx − qy || =
1 − Sim(qx, qy).

6.2. External measure: Accuracy of query clustering

Besides the internal measure (e.g., ŜC), we also
evaluate the accuracy of query clustering using some
external measures, including Precision, Recall and F-
Measure based on the behavioral study on Internet
users’ search intents. Ideally, the external measures can
be applied after capturing the benchmark query clus-
ters for a given set of queries, where queries in the
benchmark query clusters are the most similar. Then,
with the benchmark query clusters, the scores of Preci-
sion, Recall and F-measure (external measures) can be
calculated for all the query clustering results derived
from different features and/or similarity metrics with
the same input – a set of queries.

Therefore, we conducted a similar evaluation as
Wen et al. [45] – randomly selecting a subset of query
clusters from the query clustering result and manually
checking whether the queries in the same cluster are
indeed similar or not. More details of our evaluation
methodology are given as below:

1. In our external measure evaluations, we com-
pare the clustering accuracy of our proposed ap-
proach (Transition similarity and feature top-k
search results) with other four previously studied
similarity metrics (Kendall’s tau, Jaccard simi-
larity, Cosine similarity and Euclidean distance)
and the corresponding features.
For each of the five metrics, we select each of two
different features (top-k search results and click-
through query logs) to derive a query clustering
result (viz. grouped queries) with the same ag-
glomerative clustering algorithm [10], input set
of queries and parameters. Then, we apply the
external measures to compare the accuracy of the
above 10 different query clustering results (de-
noted by CR1, . . . , CR10), so as to justify the ef-
fectiveness of Transition similarity (applied to
search queries’ top-k search results).

2. We recruited 20 undergraduate students on cam-
pus to determine whether two queries are seman-
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tically similar or dissimilar, and whether some
query clusters in different clustering results re-
fer to the same search intent or not. Considering
the university students as generic Internet users,
we invite students from a wide variety of ma-
jors to participate in this study (e.g., informa-
tion technology, nursing, supply chain manage-
ment, finance, and accounting). As sophomores,
juniors or seniors in college, they are supposed to
possess the basic computer & Internet skills and
have a general understanding of linguistics.

3. In the empirical study, we randomly select 100
query clusters from the first query clustering re-
sult (w.l.o.g., derived by the Transition simi-
larity & top-k search results). Then, we gener-
ate the benchmark query clusters for these 100
query clusters from 10 different clustering results
CR1, . . . , CR10.
More specifically, for each query cluster in CR1
(e.g., “yahoo map, google map”), each of 20
students independently identifies another 9 sim-
ilar query clusters from the remaining 9 clus-
tering results (e.g., “yahoo map, maps.com, on-
line map”, “yahoo map, ask.com”). Notice that
the most similar query cluster (to “yahoo map,
google map”) in each of the 9 other clustering
results is decided by all 20 students together:
for instance, every student selects the most sim-
ilar query cluster (to “yahoo map, google map”)
from the 2nd clustering results CR2, and the ma-
jority of the 20 selected query clusters is “ya-
hoo map, maps.com, online map”; 20 students
do this again in the CR3, . . . , CR10 to generate
10 different query clusters (close to “yahoo map,
maps.com, online map”) respectively.
We consider the union of 10 different groups
of queries for each of the 100 query clusters as
the benchmark query cluster (e.g., “yahoo map,
google map, maps.com, online map, ask.com,
. . . ”). Then, the new 100 query clusters (bench-
mark query clusters) are slightly expanded com-
pared to the original 100 query clusters randomly
selected from the first query clustering result,
since each of them is a union of 10 similar query
clusters. Also, the students manually remove out-
liers (e.g., “ask.com”) in the above benchmark
query clusters. Again, all the outliers are decided
by all the 20 students – any query is considered
as an outlier if at least half of the students (10
students) think so, then it will be removed in the
benchmark query clusters.

4. For the corresponding 100 query clusters in each
of the 10 clustering results CR1, . . . , CR10, we
then compute the scores of Precision, Recall, and
F-Measure using the benchmark query clusters.
More specifically, we have:

(a) Precision: for every clustering result, the ra-
tio of the number of similar queries out of
the total number of queries in all 100 clus-
ters, where similar queries can be defined in
the benchmark query clusters.

(b) Recall: for every clustering result, the ratio
of the number of similar queries out of the to-
tal number of all similar queries in the bench-
mark query clusters.

(c) F-Measure: a combination of precision and
recall (2 · precision·recall

precision+recall ).

7. Experimental results

7.1. Experimental setup

Datasets. In our experiments, we make use of
search queries’ two features (top-k search results and
click-through query logs) for search engine query clus-
ter analysis. Since we should cluster the same set of
queries for comparing the clustering results of top-k
search results versus click-through query logs, we ran-
domly pick 50,000 distinct queries Q from the AOL
query log [9,25] and collect the top-10 search results
for Q from “University Research Program for Google
Search” [2]. We send the set of queries to Google and
the ranked search results are returned in XML format.
Clearly, all of the search engines can internally query
themselves to get the results.1 The characteristics of
the datasets are shown in Table 2.

1Note that the AOL query log data was collected in 2006. Unfor-
tunately in our experiments, it is extremely challenging to retrieve
a big set of queries’ full lists of top-k search results in 2006. In-
stead we collected a set of queries’ top-k search results from an-
other source when we design the experiments, where the queries
in two collections of data are identical. Since the top-k search re-
sults collected within two different time frames might be different,
possible bias may occur in the experimental evaluation. To justify
that the bias could be insignificant, we further extracted a small set
(∼1000) of queries’ top-10 search results from the AOL data (col-
lecting such data requires that all the top-k URLs of the queries
should be clicked by AOL users in 2006, and thus constrains the data
size), and compared the top-k URLs of those queries (retrieved from
the AOL dataset) with our experimental data. Each query’s two top
ranked search results are quite similar. Due to the small size of such
data, we did not conduct cluster analysis on it.
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Table 2

Characteristics of The datasets

AOL AOL (Q) Top-10 (Q)

# queries (with
clicks)

1,864,860 50,000 50,000

# dist. queries
(with clicks)

583,084 50,000 50,000

# dist. query
and URL pairs

1,190,491 107,761 500,000

# dist. URLs 373,837 56,904 215,083

We fix the query set by picking the same subsets of
queries from Q for testing all the metrics (e.g., 10000
distinct queries), and cluster these queries using their
click-through data or top-k search results. In addition,
we select a separate set of queries from Q to tune
the parameters of our algorithms in the experiments,
where the sets of queries as well as their features used
for testing and tuning are disjointed sets.

Parameters. We let ω(i) = 1
2i (the weight se-

quence ω(i) is also tuned by comparing the cluster-
ing performance of using other common sequences
e.g., ω(i) = 1

i
and ω(i) = 1

3i ) and normalize the
transition similarity for � where i represents the nu-
meric item rank number of each URL. The similar-
ity/distance value of all the metrics are normalized
into [0, 1]. Furthermore, we select k from the range
[1, 10] for top-k search results in additional parameter
tuning using a separate dataset (Section 7.5). In other
tests, all the results are based on top-5 search results.
We test the clustering results by varying the similar-
ity threshold δ in {0.1, 0.2, 0.3, . . . , 0.7} for all met-
rics.

Experimental Platform. All the experiments are
performed on a Dell machine with Intel Core i7-3770
3.4 GHz CPU and 8 GB RAM running Windows 7
Professional.

7.2. Internal measure evaluation: Cohesion and
separation

On one hand, since any pair of queries’ top-k search
results are two ranked sets of URLs, we can apply
not only our transition similarity or Kendall’s tau, but
also some traditional metrics (e.g., Cosine similarity,
Jaccard similarity, and Euclidean distance) to cluster
search queries using their top-k search results. On the
other hand, each query’s clicked URLs in the click-
through query log data can be ranked in terms of their
clicked counts, then we can extract a list of top-k URLs
for each query from the query logs. Thus, not only

the traditional metrics (e.g., Cosine similarity, Jaccard
similarity, and Euclidean distance) but also the transi-
tion similarity and Kendall’s tau can be applied to clus-
ter search queries using their query logs. In summary,
all five different metrics can be applied to two different
features for query clustering analysis.

Hence, we compare the clustering results generated
by 5 similarity/distance metrics and search queries’ 2
features – top-k search results and query logs, such as
Transition similarity & top-k search results, Kendall’s
tau & top-k search results, and Cosine similarity &
query logs. To simplify notation, we denote the met-
rics as “TS”, “KT”, “Cos”, “JS” and “ED”, and uti-
lize “S” and “C” represent top-k search results and
click-through query logs respectively. Then, 10 differ-
ent clustering results can be generated: “TS-S”, “KT-
S”, “Cos-S”, “JS-S”, “ED-S”, “TS-C”, “KT-C”, “Cos-
C”, “JS-C”, and “ED-C”.2

One point is worth noting that, since we have to
specify a minimum similarity threshold δ for the ag-
glomerative clustering algorithm based on different
similarity/distance metrics, the clustering results are
not directly comparable even if they use an identical
δ value. This is because, TS-S/C, KT-S/C, Cos-S/C,
JS-S/C and ED-S/C, are defined in different ways so
that the same δ value may stand for different levels
of minimum similarity threshold. For example, 0.1 is
computed with 10 different formulas even though all
of them are normalized to [0, 1]. To justify this, we
plot a simple illustrative example’s normalized simi-
larity scores, measured by different similarity/distance
metrics in Fig. 3. In this illustrative example, we have
(1) each of two queries has 100 URLs; the number
of common URLs varies from 0 to 100, (2) we as-
sume that the common URLs’ positions on two lists are
identical, otherwise we cannot compare the Transition
similarity with other metrics such as JS, Cos and ED,
(3) under the above assumption, TS has two cases: the
common URLs are ranked from top to bottom (denoted
as TS-TopDown) or from bottom to top while increas-
ing the number of common URLs from 0 to 100 (de-
noted as TS-BottomUp), and (4) we cannot simulate
the similarity scores of KT since rank order changes
are not applicable to JS, Cos and ED. In Fig. 3, we can
find out that the same similarity score refers to com-
pletely different number of common URLs in two lists
if measuring the similarity by different metrics.

2Note that we employ the hierarchical agglomerative clustering
algorithm [10] to test the metrics and features for query clustering,
and set δ = {0.1, 0.2, 0.3, . . . , 0.7}.
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Fig. 3. Normalized Similarity Scores of Different Metrics.

Hence, for each of the 10 clustering results, we
should capture the distribution of silhouette coefficient
ŜC with a varying δ = {0.1, 0.2, 0.3, . . . , 0.7} and
then 10 ŜC curves become comparable since all the
curves converge to 1.

Recall that the silhouette coefficient ŜC is derived
based on “distances” between queries. To make the ŜC
of the clustering results comparable, we have to com-
pute ŜC using the same distance/similarity metric for
all the clustering results. In other words, when 10 com-
binations of metrics and features are used for generat-
ing 10 different clustering results, a metric and a fea-
ture should be chosen for the evaluation (computing
ŜC). At this time, we again have 10 different combi-
nations of the metrics and features used for the evalua-
tion (measuring different versions of ŜC) respectively.
In each subfigure of Figs 4 and 5, a distance metric
and a feature are chosen to compute ŜC in the evalua-
tion, and then we can obtain 10 clustering results’ ŜC
curves based on δ = {0.1, 0.2, 0.3, . . . , 0.7}.

Essentially the higher ŜC curves are, the better the
queries are separated (with large inter-cluster distances
and smaller internal distances in the same cluster).
Thus, we summarize the comparison of the results in
Figs 4 and 5 in Table 3.3

Thus, we can draw the following conclusions for the
comparison of all the query clustering results (by dif-
ferent metrics and/or features) evaluated by the inter-
nal measure cohesion and separation:

3In Table 3, two ŜC curves in Figs 4 and 5 are ranked at the
equivalent place if and only if the following two criteria are met:
(1) they are intersected (if one curve outperforms the other curve
for all δ = {0.1, 0.2, 0.3, . . . , 0.7}, then the higher ŜC curve is
ranked higher no matter how close the curves are). (2) for all
δ = {0.1, 0.2, 0.3, . . . , 0.7}, the ratio of the maximum difference
between the ŜC values on two curves to the ŜC values is less than
10%. Although the ŜC values computed for two different clustering
results (by different metrics and/or features, but the same δ) are in-
comparable, these two criteria can explicitly measure the closeness
of two ŜC curves in Figs 4 and 5.

Table 3

Comparison of Different Metrics and Features for Query Clustering
(10 Different ŜC in the Evaluations)

ŜC (10 Evaluation
Metrics/Features)

Best Second Best

TS-S based ŜC TS-S TS-C

KT-S based ŜC TS-S, KT-S –

KT-C3

JS-S based ŜC JS-S JS-C

ED-S based ŜC ED-S ED-C

Cos-S based ŜC Cos-S TS-S, Cos-C3

TS-C based ŜC TS-C TS-S

KT-C based ŜC KT-C TS-C, KT-S3

JS-C based ŜC JS-C KT-S

ED-C based ŜC ED-C TS-S, ED-S

TS-C, KT-C3

Cos-C based ŜC Cos-C TS-S, TS-C3

1. In all 10 cases (ŜC values are computed by 10
different combinations of metrics and features),
the same metric/feature selected both for clus-
tering and evaluation produces the best result,
as shown in 10 subfigures in Figs 4 and 5. This
fact is true, because the clustering algorithm in-
deed tries to optimize the separation and cohe-
sion based on the selected metric and feature, and
the generated result should outperform other re-
sults if they are evaluated with such metric and
feature.

2. Apart from the best result in each of the 10 cases,
the second best results of the 10 cases are ob-
tained as: TS-S 5 times, TS-C 4 times, KT-S 2
times, KT-C 2 times, Cos-C 1 time, JS-C 1 time,
ED-C 1 time, ED-S 1 time (notice that in the sec-
ond row we move TS-S, KT-C to the second best
category, though they perform very close to the
best result KT-S). Hence, our Transition similar-
ity can produce good clustering results in most
of the cases (using either top-k search results or
click-through query logs).

3. All the ŜC values are obtained by Eq. (6), though
the distances in the formula are derived by 10
different combinations of the metrics and fea-
tures in the evaluations. All the ŜC values (re-
gardless of the evaluation metrics/features) fall
into the range [−1, 1]. However, the ŜC values
of the same clustering result obtained for the dif-
ferent evaluation metrics/features are incompara-
ble: e.g., the ŜC values of TS-S in 10 different
subfigures are incomparable. This is because the



AUTHOR  C
OPY

132 Y. Hong et al. / Accurate and efficient query clustering via top ranked search results

Fig. 4. Silhouette Coefficient ŜC for Clustering Results of TS-S/C, KT-S/C, Cos-S/C, JS-S/C and ED-S/C – note that distances are measured by
the feature top-k results and all metrics respectively; # distinct queries = 10,000 out of Q (50,000).

Fig. 5. Silhouette Coefficient ŜC for Clustering Results of TS-S/C, KT-S/C, Cos-S/C, JS-S/C and ED-S/C – note that distances are measured by
the feature query logs and all metrics respectively; # distinct queries = 10,000 out of Q (50,000).
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Fig. 6. Query Clustering Accuracy (External Measures).

ŜC values are obtained using different formulas
defined by different evaluation metrics.

4. In Figs 4 and 5 (10 subfigures), the average rank-
ing of TS-S is the highest among all 10 ŜC
curves: 1st, 1st3, 2nd3, 4th, 3rd, 2nd, 4th, 2nd3,
∼5th, 2nd3. Based on the internal measure eval-
uation, Transition similarity and queries’ top-k
search results can generate the best clustering re-
sult for the hierarchical agglomerative clustering
algorithm [10].

7.3. External measure evaluation: Accuracy

Recall that we have described our external measures
and the validation setup in Section 6.2. For every simi-
larity threshold δ ∈ {0.1, 0.2, 0.3, . . . , 0.7}, we calcu-
late the Precision, Recall and F-measure for 10 clus-
tering results (TS-S, KT-S, JS-S, ED-S, Cos-S, TS-C,
KT-C, JS-C, ED-C, Cos-C) derived from two features
respectively. Figure 6 presents the average Precision,
Recall and F-measure for all the results with a similar-
ity threshold δ varying from 0.1 to 0.7.

First, we examine the Precision scores of 10 clus-
tering results. The clustering using top-k search re-
sults (especially the Transition similarity) gives more
accurate semantically similar queries, since the aver-
age Precision is clearly greater than other clustering
results. Since the Precision scores of the clustering re-
sults of KT-S is also better than that of TS-C, KT-C,
JS-C, Cos-C and ED-C, we can conclude that cluster-
ing queries using top-k search results is more accurate
than using query logs.

Second, as illustrated in Section 6.2, applying the
Recall measure to compare the query clustering results
is not always appropriate since the complete “bench-
mark clustering results” cannot be directly obtained.
We assume that the similar queries from the union of
all the query clustering results as the complete “bench-
mark clustering results”, and plot the Recall scores in

Fig. 6(b) for the same clustering results as Precision.
We observe that the Recall scores of TS-S is slightly
worse than JS-C and ED-C, better than KT-S and al-
most identical to the remaining results. Since the dif-
ference between them is minor, the performance is still
tolerable.

Finally, by combining the Precision and Recall to-
gether, we can observe that TS-S reaches the highest
F-measure scores in almost all the cases. Thus, top-
k search results and transition similarity can be uti-
lized to effectively produce accurate clustering results
in terms of the external measures (Precision, Recall
and F-measure) as well.

7.4. Scalability

Since many unique URLs link to arbitrarily input
queries and every unique URL represents one dimen-
sion in the computation, the “curse of dimensional-
ity” problem [41] has attracted increasing attention in
query clustering. Compared to the existing work, our
partial TS based algorithms can significantly reduce
the computational cost. We now present the experi-
mental results on the efficiency and scalability.

Our sequence-first and level-first traversal algo-
rithms are mainly based on the early termination strat-
egy in similarity computation by discovering “Simi-
larity Threshold URL” and “Dissimilarity Threshold
URL”. We applied a pair of partial TS based traversal
approaches to the hierarchical agglomerative cluster-
ing, and name the new algorithms as “Partial TS (Se-
quence)” and “Partial TS (Level)” respectively. The
computational costs of the “Partial TS (Sequence)” and
“Partial TS (Level)” are very close in our tests (k = 5),
thus we merge them and mark the results as “Partial
TS-S” in Figs 7(a) and 7(b). Also, note that TS-S and
the “Partial TS-S” (both Sequence-first and Level-first
traversal) produce the same clustering results. In other
words, two early termination strategies only improves
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Fig. 7. Scalability on Varying Size of Datasets.

the efficiency and scalability, but do not change the
clustering results.

Figure 7 shows the scalability of the above two al-
gorithms – runtime on varying size of datasets, com-
pared to the original hierarchical agglomerative clus-
tering (Fig. 7(a)) and K-Medoids (Fig. 7(b)). Note that
in K-Medoids clustering, K is selected as the average
number of clusters derived from JS-C, ED-C, Cos-C,
TS-S and KT-S under the same input setup. Since the
required runtime of JS-C/S, Cos-C/S and ED-C/S are
quite similar, we only plot JS-C as a representative
in both Figs 7(a) and 7(b). Besides the early termina-
tion strategies applied to TS-S, we also tested the run-
time of applying early termination strategies to JS-C.
As shown in Figs 7(a) and 7(b), although the “Partial
JS-C” outperforms the original JS-C per the compu-
tational cost, the “Partial TS-S” is more efficient and
scalable than the “Partial JS-C”.

In summary, clustering large number of search en-
gine queries by either the original hierarchical agglom-
erative clustering or K-Medoids clustering algorithms
is not the best choice. Instead, the “Partial TS-S (Se-
quence)” and “Partial TS-S (Level)” exhibit better ef-
ficiency and scalability than any other algorithms –
Figs 7(a) and 7(b) show that a very slow linear runtime
increase occurs as the dataset size increases for both of
them.

7.5. Parameter tuning

To cluster queries using our two partial TS based al-
gorithms, we first specify an appropriate k for top-k

Fig. 8. Tuning Parameter k (Top-k Search Results).

URLs sequence L(k), a similarity threshold δ and a
weight sequence for ranked URLs. Essentially, it is im-
portant to discuss how to select parameters with re-
spect to the robustness of novel approaches. We now
illustrate additional parameter tuning with regard to
these parameters: k value of the top-k search results,
similarity threshold δ and estimated weight sequence
� for ranked URLs. Note that the set of queries and
the corresponding feature (top-k search results) for pa-
rameter tuning are completely different from the test-
ing data. Both of these two datasets are randomly se-
lected from the 50,000 distinct queries, however the
two datasets do not include any common query.

7.5.1. k value and δ

Fixing the estimated weight sequence � = {∀i ∈
[1, k], ωi = 1

2i }, we plot the ŜC values on varying
k = {1, 2, . . . , 10} and δ = {0.1, 0.3, 0.5} in Fig. 8(a).
Given any normalized similarity threshold δ, ŜC gets
smaller when k increases, but quickly converges to a
constant. For different similarity thresholds, ŜC con-
verges to different constants. Thus, to pursue more pre-
cise clusters, we can either set a small k or higher
threshold δ.

As shown in Fig. 8(b), sequence-first traversal re-
quires less runtime than level-first traversal if we
choose a small k for top-k search results. If k is large,
the runtime of level-first traversal converges to a con-
stant but the runtime of sequence-first traversal shows
a small increasing trend.
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Fig. 9. Tuning Different Weight Sequence.

7.5.2. Normalized weight sequence
The last question is how to determine weight se-

quence �. As we have discussed, ω(i) should decrease
as i increases. For any arbitrary decreasing sequence,
we can implement our partial TS based algorithms.
Fixing δ = 0.3, k = 5 (an average setup for param-
eters δ and k), we examined ŜC, Precision, Recall,
F-measure, and the runtime of four weight sequences
ωi = { 1

i
, 1

i2 , 1
2i ,

1
3i } (as described in Section 4.3, we

normalize every sequence before running this group of
experiments). Note that the Precision, Recall, and F-
measure are derived by the methods in Section 6.2.

The common advantage of these weight sequences
is that the clustered queries can be extremely accurate
(with high Precision as shown in Fig. 9(a)). For sharply
decreasing weight sequences (i.e. ωi = 1

3i ), the Recall,
F-measure and runtime become lower (See Figs 9(a)
and 9(b)). Based on these, we can select an appropriate
weight sequence to meet different requirements.

8. Conclusion and future work

Commercial search engines collect Internet users’
search queries from their aggregated query logs ev-
eryday. In order to make the search engine more con-
venient, they develop some applications such as pro-
viding accurate suggestion or recommendation for ev-
ery posed query. Clustering search engine queries is
one of the most important tasks built in those applica-
tions. Thus, search engines are always trying to gener-

ate more precise and multi-functional clusters of sim-
ilar queries. However, most prevalent algorithms suf-
fer from certain limitations on clustering this highly
dimensional and diverse set of queries.

In this paper, we presented a novel feature for clus-
tering queries – top ranked search results. It incor-
porates both content and click-through information:
while ranking the search results by any robust search
engine (e.g., Google, Yahoo! or Bing), the top ranked
search results of every query would be quite rele-
vant to the users’ search intent. Then, we took advan-
tage of this relevance to quantify the query similarity
with a new similarity/distance metric, which facilitated
us to develop more efficient algorithms for clustering
queries.

To validate our approach, we conducted extensive
experimental evaluation along several dimensions –
quality of the clustering, computational scalability and
parameter tuning. The results of quality of clustering
were derived by both internal measures (i.e. cohesion
and separation of the query clusters) and external mea-
sures (i.e. Precision, Recall and F-measure). We com-
pared the clustering results of our method with sev-
eral other state-of-the-art metrics and features. The ex-
perimental results demonstrated: 1) top-k lists produce
query clusters with better cohesion and separation than
the click-through query logs, 2) top-k lists generate
more accurate query clusters than click-through query
logs, 3) two early termination strategies significantly
reduces the clustering runtime and scales well to large
datasets, and 4) our approach is robust in terms of pa-
rameter tuning.

There are several directions for extending the work
in the future. For example, if the condition permits,
we can evaluate our approach with real-world search
engine applications of query suggestion and recom-
mendation. Also, we can look at other utilities of the
top ranked search results, such as improving query ex-
pansion [31], web personalized application [35], query
spelling correction [13] and/or query sanitization with
privacy concern [27,29,30]. Finally, besides the search
engine queries, we can investigate some other cluster-
ing problems in which the similarity between objects
can be measured with given ranked lists, e.g., the on-
line items sold at Amazon. We intend to explore all of
these in the future.
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Appendix A. Metric proof for transition similarity

Proof. Since Sim(qx, qy) = ∑m
i=1

[ω(rx(i))+ω(ry(i))]/2
�di

(qx ,qy)+1

(assuming that ω(i) is normalized), first, we have
D(qx, qy) = 1 − ∑m

i=1
[ω(rx(i))+ω(ry(i))]/2

�di
(qx,qy)+1 � 0. Sec-

ond, if D(qx, qy) = 0, we have ∀i,�di
(qx, qy) = 0.

Hence, Lqx (k) = Lqy (k) and vice versa. Third, since
di is the common URL of qx and qy and we use
ω(rx(i)) + ω(ry(i)) and �di

(qx, qy) for calculating
D(qx, qy), it is symmetric.

We now prove the triangle inequality. For qx , qy

and qz, we should prove D(qx, qy) + D(qy, qz) �
D(qx, qz) ⇔ Sim(qx, qy) + Sim(qy, qz) � 1 +
Sim(qx, qz). Assuming that S(xy − z) denotes the set
of URLs in the lists of qx and qy but not qz. Similarly,
we define S(yz − x), S(xz − y) and S(xyz). Since
the partial similarities for S(xyz) are different when
we are comparing different pairs of queries, we use
Sim(S(xyz))xy to represent the partial similarity be-
tween lists of qx and qy , so on and so forth. Hence,
we have to prove Sim(S(xy − z)) + Sim(S(yz − x)) +
Sim(S(xyz))xy + Sim(S(xyz))yz � 1 + Sim(S(xz −
y)) + Sim(S(xyz))xz. Suppose that Sim(S(xy − z)) +
Sim(S(yz − x)) + Sim(S(xyz))xy + Sim(S(xyz))yz >

1+Sim(S(xz−y))+Sim(S(xyz))xz. For Sim(S(xy −
z)) + Sim(S(yz − x)) � 1, then Sim(S(xyz))xy +
Sim(S(xyz))yz must be greater than Sim(S(xz − y))+
Sim(S(xyz))xz. Because Sim(S(xyz))xy +
Sim(S(xyz))yz is incomparable to Sim(S(xyz))xz (if
a common URL of those three queries locates at high
levels of qx and qz, but lower levels of qy , we have
Sim(S(xyz))xy + Sim(S(xyz))yz < Sim(S(xyz))xz),
which is a contradiction. Hence, Sim(qx, qy) +
Sim(qy, qz) � 1 + Sim(qx, qz) and D(qx, qy) +
D(qy, qz) � D(qx, qz).

Hence, the distance based on our transition similar-
ity is a metric.

Appendix B. Proof of Lemma 1

Proof. Let the ith URL on Lqx (k) be di and
Sim(qx, qy)i represent the partial transition similarity
from di where i ∈ [n + 1, k]. We seek max, that is
the sum of ∀di, Sim(qx, qy)i , while the ranks of di

can be any untraversed rank on Lqy (k). We thus have

max = max{∑k
i=n+1{Sim(qx, qy)i}}. Hence, the par-

tial transition similarity derived from qx and qy’s un-
traversed URLs is bounded by the objective value of
this bipartite matching problem which is known to be
O(V 2 log(V ) + VE) where the bipartite graph is rep-
resented by G = {V = (X, Y ), E} [36]. In our case,
the number of vertices in Lqx (k) is k − n whereas the
number of vertices in Lqy (k) can be any number in
[k − n, k].

However, we can improve on the efficiency by com-
puting a slack upper bound max′ instead of the ex-
act value max. Let ry be the current highest rank of
all untraversed URLs in Lqy (k). Since Sim(qx, qy)i =
ω(i)+ω(j)
2(|i−j |+1)

where di is ranked at the j th rank of Lqy (k),
we have the local maximum partial transition sim-
ilarity for di if j = ry or j = i (according to

Discussion 1). That is max{ω(i),
ω(i)+ω(ry)

2(|i−ry |+1)
} where

ry � i because at most i − 1 ranks in Lqy (k) can
be traversed prior to ui . Therefore, ∀i ∈ [n + 1, k],
we have Sim(qx, qy)i � max{ω(i),

ω(i)+ω(ry)

2(|i−ry |+1)
} and

max′ = ∑k
i=n+1 max{ω(i),

ω(i)+ω(ry)

2(|i−ry |+1)
}. Since max′

still decreases rapidly in the traversal due to the de-
creasing weight and a small number of common URLs,
we can adopt

∑k
i=n+1 max{ω(i),

ω(i)+ω(ry)

2(|i−ry |+1)
} to ap-

proximately setup upper bound for untraversed URLs
with a time complexity O(n).

Discussion 1 (Similarity on Rank Difference). For a
common URL di with a fixed position rx(i) on qx’s
top-k list, we have Sim(qx, qy)i = ω(rx(i))+ω(ry(i))

2(�di
(qx ,qy)+1)

=
ω(rx(i))+ω(ry(i))

2(|rx(i)−ry(i)|+1)
. Without loss of generality, we let

rx(i) � ry(i), s = rx(i) − ry(i) and ω(ry(i)) =
(1 + g(s))ω(rx(i)) where g(s) is a function with the
variable s ∈ [0, rx(i) − 1]. Hence, Sim(qx, qy)i =
ω(rx(i)) · 1+g(s)

2(s+1)
. The derivative

d[ω(rx(i))· 1+g(s)
2(s+1)

]
ds

=
ω(rx(i)) ·

d
ds

g(s)·2(s+1)−2g(s)

4(s+1)2 .

If ω(i) = 1
2i , we have g(s) = 2s and the deriva-

tive is ω(rx(i)) · ln 2·2s (s+1)−2s

2(s+1)2 . For s � 1, it is
greater than 0, so Sim(qx, qy)i is monotonic on s and
Sim(qx, qy)i is maximized as s = rx(i) − 1. There ex-
ists s ∈ (0, 1) such that the derivative is less than 0
while we have Sim(qx, qy)i = ω(i) for s = 0. Hence,

max{Sim(qx, qy)i} = max{ω(i),
ω(i)+ω(ry)

2(i−ry+1)
} where

ry = rx(i) − max{d}.
For other weight sequences, we can also prove

max{Sim(qx, qy)i} = max{ω(i),
ω(i)+ω(ry)

2(i−ry+1)
} or
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find alternative slack upper bound in similar discus-
sion.

Appendix C. Proof of Lemma 2

Proof. To prove that the partial similarity is bounded,
we first consider that all the URLs in lower levels
where i > n haven’t been matched with URLs in
higher levels j � n. Since all the higher level URLs
in both sequences have been traversed by prior level-
first route, the lower-level URL (di at the ith level of
Lqx (k)) cannot be matched to higher-level URL (at the
j th level of Lqy (k)). Similar to Lemma 1, we are seek-
ing maximum weighted matching. Once all lower-level
URLs of one query can only find matching URLs from
positions lower than n in the other sequence, the match
should be one-to-one and the number of vertices is no
greater than k − n in each side. The maximum partial
transition similarity is

∑k
i=n+1 ω(i) when all the lower

level URLs (greater than i where i ∈ [n + 1, k]) have
a one-to-one match in the same levels. (We can easily
prove it by contradiction proof: suppose that there exist
two pairs of URLs match at different levels (lower than
i) satisfying

∑k
i=n+1 Sim(qx, qy)i >

∑k
i=n+1 ω(i).

Hence, there exists a pair of equal transition value
� > 0, thus we have 2(ω(i)+ω(j))

2(�+1)
> ω(i)+ω(j) which

means � < 0. This is a contradiction).
Now we consider that some URLs (ranked lower

than n) have been traversed through the match of
URLs in the higher levels of Lqx (k) and Lqy (k). Then,
the number of traversable URLs in lower levels of
Lqx (k) and Lqy (k) is less than the maximum case
above. Hence, the partial similarity is bounded by∑k

i=n+1 ω(i).
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