Reliability Concerns

e Systems are getting bigger
— 1024-4096 processors is today’s “medium” size (73.4% of TOP500)
— 0(10,000)~ 0(100,000) processor systems are being designed/deployed

* Even highly reliable HW can become an issue at scale

— 1node fails every 10,000 hours 8 . P ———
— 6,000 nodes fail every 1.6 hours § o7
— 64,000 nodes fail every 5 minutes & %¢f 4096 procs
2 o5t 1024 nodes 126 procs 6152 procs
‘g?_ 0.4 32 nodes A0 odes
w 03
& Need for fault management 5 02|
Losing the entire job dueto & *']
, . . . e ST, S B
one node’s failure is costly in P 2 v 128wy 6wy
2001 2003 1596 2004

time and CPU cycles!

From “Simplicity and Complexity in Data Systems at
Scale”, Garth Gibson, Hadoop Summit, 2008
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The Big Picture

* Checkpoint/restart is widely used for fault tolerance
&, Simple
@ 10 intensive, may trigger a cycle of deterioration
@ Reactively handle failures through rollbacks
* Newly emerging proactive methods
£ Good at preventing failures and avoiding rollbacks
@ But, relies on accurate prediction of failure

FENCE Overview

e Adopt a hybrid approach:

— Offline analysis: reliability modeling and scheduling enables
intelligent system configuration and mapping

— Runtime support: to avoid and mitigate imminent failures
* Explore runtime adaptation:
— Proactive actions prevent applications from anticipated failures
— Reactive actions minimize the impact of unforeseeable failures
e Address fundamental issues
Failure prediction & diagnosis ’";’ /)

Adaptive management

Runtime support

Reliability modeling & scheduling
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Key Components
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Outline

e Overview of FENCE Project

— Project website: http://www.cs.iit.edu/~zlan/fence.html

* This talk will focus on runtime support
— Failure prediction and diagnosis
— Adaptive management
— Runtime support
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¢ Outline .

http://www.cs.iit.edu/~zlan/fence.html

— Failure prediction and diagnosis
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Failure Prediction and Diagnosis

A\ A

A

- 3 1 —

Health/perf monitoring: Fault tolerance methods:
~Hardware sensors » Checkpointing

»System monitoring tools (open MPI, MPICH-V, BLCR, ....)
»Error checking services, ~Process/object migration

e.g. Blue Gene series and Cray XT series »Other resilience supports
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@l Failure Prediction and Diagnosis M

* Challenges:
— Potentially overwhelming amount of data collected across

the system
¢ Fault patterns and root causes are often buried like needles in a
haystack!
>
— Faults are many and complex 3

e There is no one-size-fit-all predictive method!
* Qur approaches:
— Runtime failure prediction
¢ Exploit ensemble learning, data mining, and statistic learning

— Automated anomaly localization

 Utilize pattern recognition techniques
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Runtime Failure Prediction

Data Preprocessor:

Raw Categorizer ¥ weeks
Log 1
Filter T 1
11

I I

Training  Testing  Prediction

Failure Predictor L : M\‘//

Statistical Rules 1J2[3]a]x CT T T 1
& Assoc. Rules
& Prob. Pattern

Effective II

Rule Set

Meta-
Learner

r— Reviser 1 Meta-learner: dynamic training by

integrating multiple base classifiers
2) Reviser: dynamic testing by tracing
prediction accuracy
J—I 3) Predictor: event-driven prediction

\ Predictor

Predicted Actual
Failures Failures
|
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5&5/ 5%5//
Case Studies on Blue Gene/L

Start Date 12/6/2004 1/21/2005
End Date 06/11/2007 2/28/2007
Log Size after clean 704 MB 1.36 GB

e Evaluation metrics:

p

+F

p p

precision =
T

recall =
T +F

p n

* A good prediction should achieve a high value
(close to 1.0) for both metrics
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Preprocessing

* Step 1: Hierarchical event categorization
— Based on LOCATION, FACILITY and ENTRY DATA

» Step 2: temporal compression at a single location

— To coalesce events from the same location with the same
JOB_ID and LOCATION, if reported within time duration of
300 seconds

* Step 3: spatial compression across multiple locations

— To remove entries close to each other within time duration
of 300 seconds, with the same ENTRY_DATA and JOB_ID

Y. Liang, Y. Zhang, A. Sivasubramanium, R. Sahoo, J Moreira, M. Gupta,
“Filtering Failure Logs for a BlueGene/L Prototype”, Proc. of DSN, 2005.
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BGL Event Categories

Application 12 loadProgram~Failure, loginFailure,
nodemapCreateFailure,...
lostream 8 socketReadFailure, streamReadFailure,...
Kernel 20 alignmentFailure, dataAddressFailure,
instructionAddressFailure, ...
Memory 22 cachePrefetchFailure, dataReadFailure,
dataStoreFailure, parityFailure,...
Midplane 6 linkcardFailure, ciodSignalFailure,
midplaneServiceWarning,...
Network 11 ethernetFailure, rtsFailure, torusFailure,
torusConnectionErrorinfo,...
NodeCard 10 nodecardDiscoveryError,
nodecardAssemblyWarning, ...
Other 12 BGLMasterRestartinfo,
CMCScontrolinfo, linkcardServiceWarning,...
NS T o 2 -

Base Classifiers

e Statistical rules:

— Discover statistic correlations among fatal events, i.e., how
often and with what probability will the occurrence of one
failure influence subsequent failures

e Association rules:

— Examine causal correlations between non-fatal and fatal
events, where rules are in the form (X =>Y)
e If X occurs, then it is likely that Y will occur

* Probability distribution:

— Use maximum likelihood estimation (MLE) to obtain the
distribution of failures
e For both logs, Weibull is a good fit
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Prediction Results (1)
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Prediction Results (2)
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Automated Anomaly Localization M

e To quickly locate faulty nodes in the system with
little human interaction

* Primary objectives:
— High precision, meaning low false alarm rate
— Extremely high recall (close to 1.0)

e Two key observations:
1) Nodes performing comparable activities exhibit similar
behaviors

2) In general, the majority is functioning normally since
faults are rare events
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et
gl Automated Anomaly Localization i

To obtain the most significant To quickly identify “outliers”
features via feature extraction by applying cell-based algorithm
X Step2: Feature Extracti (Step3: Outlier Detect ;
(mx k) Y_’xn Anomaly
S
n_‘___‘_q_x
—
T —
—
- - —— — ‘H‘_““——--
To assemble a feature space,(Node D (Node 2) @ode n
usually high dimensional {l\ —_—
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C/ . C/
Feature Collection
e Construct feature space of the system:
— Afeature is an individual measurable property of the node being
observed
— Examples: CPU usage, memory usage, |0 performance, ..., using
system calls vmstat, mpstat, iostat & netstat
e Let m be the number of features collected from n nodes
and k samples are obtained per node
— Xi(i=1,2,---,n), each representing the feature matrix collected
from the jth node
— Reorganize each matrix X' into a long (mxk) column vector
* So Feature space X is a (mxk) xn matrix
1,2 n
X =[x, x,...,x"]
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/ Feature Extraction ¢

e Goal:
— Dimension reduction
— Independent features
e Principal Component Analysis (PCA)

— A linear transformation onto new axes (i.e. principal
components) ordered by the amount of data variance that
they capture
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5*5/
¢ Feature Extraction

Normalization X' Zero Mean i PCA
» X (mxk)xn ¥ SXH

X

(mxk)xn (mxkyn

PCA steps:

— Calculates the covariance matrix of X
c=txrx
— Calculates thrze s largest Eigenvalues of C
A2 A, 22 A
— Get projection matrix W =[w,,w,,---,w,] and Cw, =Aw
— Project X” into a new space

Y =WTX
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&
o Outlier Detection

e Qutliers are data points that are quite “different”
from the majority based on Euclidean distance

¢ We choose the cell-based method due to its linear
complexity

— DB (p, d): Point o is a distance-based outlier if at least a
fraction p of the objects lie at a distance greater than d
fromo

— p & d are predefined parameters
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5*5/ 5*5//
C/ E . C/
Xxperime nts

e Use Sunwulf cluster at SCS lab
— Each node is a SUN Blade 100, 500MHz CPU, 256KB
L2 Cache and 128MB main memory, 100Mbps
Ethernet
— Execute a parameter sweep application
e Manual fault injection
1) Memory leaking
2) Unterminated CPU intensive threads
3) High frequent |0 operations
4) Network volume overflow
5) Deadlock
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Result: Single Fault
g
' Ellipse: true positive
35 Rectangle: false positive
ol Triangle: false negative
N — ,
', %
.t ! ! :.‘
- "I .‘
m=11,k=5n=46
p =0.9565,d =0.40, o = the variance of Y
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Result: Single Fault
Memory leaking 1 0.98
Unterminated CPU intensive threads 1 0.80
High frequency 10 1 0.94
Network volume overflow 1 0.85
Deadlock 1 0.94
Type #1 faults (precision>0.90): memory leaking and high frequent 10
operations, deadlock;
Type #2 faults (precision<0.90): unterminated CPU intensive threads
and network volume overflow.
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i - Ellipse: true positive
ol | Rectangle: false positive
Triangle: false negative
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4
) 35 -0 2% 20 156 10 =1 a 1

Results of localizing simultaneous Type #1 faults. The left point is from the node
injected with high frequent 10 operations, and the right one is from the node
injected with a memory leaking error.
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g Result: Multiple Faults g

sl
sl +
ar | * ‘ Ellipse: true positive
5L | Rectangle: false positive
Triangle: false negative
ol
* **
2
4 ‘ . . ‘ .
28 20 -16 -0 -6 ul 5]

Results of localizing simultaneous Type #1 and #2 faults. The points inside of the
ellipse are true outliers caused by network volume overflow, the point in the
rectangle is a false alarm, and the point in the triangle is the missed fault caused by
memory leaking.
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Result: Multiple Faults

Hiry | Ellipse: true positive
s @ . Rectangle: false positive
of s &5 . .
& | *?p Triangle: false negative
= £
s 4
+
10 5 1
- , ‘ , ‘ ‘ y ‘
20 £5 20 -5 -10 5 a 5 10

Results of localizing simultaneous Type #2 faults. The identified outliers,
including both true outliers and false alarms, spread across the space.
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Result: Multiple Faults

Memory leak & high frequency 1/0 1 1.0
Memory leak & network volume flow 0.87 0.85
Unterminated CPU intensive threads 1 0.80

& network volume flow

Conclusion: mixed Type #1 and #2 faults are difficult to identified; and
multiple Type #2 faults could lead to a high cost for finding the real faults
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Outline

http://www.cs.iit.edu/~zlan/fence.html

— Adaptive management
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bs,
Adaptive Management

* To reduce application completion time
* Runtime adaptation:
— SKIP, to remove unnecessary overhead

— CHECKPOINT, to mitigate the recovery cost in case of
unpredictable failures

— MIGRATION, to avoid anticipated failures
* Challenges:

— Imperfect prediction

— Overhead/benefit of different actions

— The availability of spare resources

LNols INSTITUTE W Z. Lan (IIT)
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Mam Idea

AP, AP2 AP; AP, AP5 AP6 AP,
L
Predlctlon Adaptatlon Cost
Engine Manager Monitor

11 Skip E Migration DCheckpointingE Recovery (Downtime/Restart)

T
'
[

* Failure Missed Failure ® False Alarm
(True Positive) (False Negative) (False Positive)
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4 : 2
Adaptation Manager
° .
MIGRATION' Enext=(2|+Cr+Cpm)*fappl+(I+Cpm)*(1_ fa\ppl) n §
Ny —N& =}
— — isi f h -+
where f,, = 1 ];[ (- precision) N,/ > N/ =
0 NS < NP a8
o
° . 5
CHECKPOINT' Enext :(ZI +Cr+Cckp)*fappI +(I +Cckp)*(1_ fappl) §
N, £
where f,, =1—1;[(1— precision) g
. SKIP: 2
Enext = (Cr + (2+ Icurrem _Ilast)* I )* fappl + I *(l_ fappl) - %\_
Ny
where f,, =1—] ] (1 precision)
i-1
) MTBF
e Anenforced FT window: 77 reca)
':> Adaptation SKIP,
Prediction accuracy, ’
. Operation cost, Manager O;rcafégf\%m'
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¢ Adaptive Manager

* |t can be easily implemented with existing
checkpointing tools
— MPICH-V, LAM/MP], ...

* Being fully operational with
— Runtime failure prediction
— Checkpoint support

— Migration support
e Currently, a stop-and-restart approach

ILLINOIS INSTITUT t“" Z. Lan (11T)
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Experiments

* Fluid Stochastic Petri Net (FSPN) modeling

— Study the impact of computation scales, number of spare
nodes, prediction accuracies, and operation costs

* Case studies
— Implementation with MPICH-V, as a new module
— Applications: ENZO, GROMACS, NPB

— TeraGrid/ANL IA32 Linux Cluster

r"r
Dispatzher P/ [PM.
Netwark |
Rt i 1 1 L e,
om Om) Ow ©Cw - @©O®w @) @)
. b Coenputation Nodes b Spare Nodes
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N4 Impact of Computation Scale

FT-Pro vs. Periodic CKP | OGain via Selective CKP BGain via Migration |
BTime Reduction OService Unit Reduction 100%
o B80%
g 60%
g
@ 40%
[
20%
5% 1 32 64 96 128 160 192 16 a2 64 96 128 160 192
Number of Computation Nodes Number of Computation Nodes
@) (6)
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Impact of Prediction Accuracy

Distribution of Time Reduction Distribution of Service Unit Reduction
| |' 1
L 0.9 - 0.9
L 0.8 - 0.8
- 07 8 —T 07 &
n 2
06 = 5 06 =
0.5 0.5
0.4 : 0.4
L 04 — — 0.3
== -+ 02 N | 0.2
0.1 T 0.1
T B T T A T R T T = T R A T
o o o o o0 o o o O o o o o o o o o o
precision precision

820.00%-30.00% 0@10.00%-20.00% 00.00%-10.00% O-10.00%-0.00%

It outperforms periodic checkpointing as long as
recall and precision are higher than 0.30
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http://www.cs.iit.edu/~zlan/fence.html

— Runtime support
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g Runtime Support g

* Fault-aware runtime rescheduling

— Focus on re-allocating active jobs (i.e., running jobs) to
avoid imminent failures
. Allocate spare nodes for failure prevention

. Select active jobs for rescheduling in case of resource
contention

* Fast failure recovery
— Enhance checkpoint/recovery to reduce restart latency
— To appear in the Proc. of DSN’'08
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/ Spare Node Allocation 7

e Observation:

— Idle nodes are common in production
systems, even in the systems under high
load

— Our studies have shown that prob(at least |
2% of system nodes are idle) >= 70% Py ' %r
6

P,
Py

P, 4

e A dynamic and non-intrusive strategy ° j ) |

ottt ot

— Spare nodes are determined at runtime """/ EI .....

— Guarantee job reservations made by J0b Queu
batch scheduler
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s,
Job Rescheduling

* Transform into a general 0-1 Knapsack model

To determine a binary vector X ={x, |1<i < J } such that
maximize D" X -V, , X =0o0r 1

1<i<dg
st. D x-p<S
1<i<dg
* Generate three different strategies by setting v;:
— Service unit loss driven, to minimize the loss of service units
— Job failure rate driven, to reduce number of failed jobs

— Failure slowdown driven, to minimize the slowdown caused
by failures

ILLINOCIS INSTITUT t\"" Z Lan(IIT) el
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Experiments

¢ Event-based simulations
— FCFS/EASY Backfilling

— Compare system productivity W/ vs. W/O fault-aware runtime
rescheduling

— Evaluation metrics

e Performance metrics -- system utilization, response time, throughout
¢ Reliability metrics -- service unit loss, job failure rate, failure slowdown

* Aslong as failure prediction is capable of predicting 20%
of failures with a false alarm rate lower than 80%, a
positive gain is observed by using fault-aware runtime
rescheduling
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g Results with System Traces g

Response Time(Seconds) Utilization Rate Throughput
260000 || 80.0% — 0.08
250000 {1 79.0% 0.079 []
240000 | 78.0% 0.078
230000 _ 77,00 0077
220000 S I — 1 - o
210000 1 1| 76.0% 0.076 |-|
200000 — AL ] 75.0% ’ ’ : 0.075 —
FCFS FSD-D SUL-D JFR-D FCFS FSD-D SUL-D JFR-D FCFS FSD-D SUL-D JFR-D
Service Unit Loss Failure SlowDown Job Failure Rate
(CPU*Hour) 10% 5.0% -
20000 || ase 122
8% |
1 1 !
9000 | 4.0% 325. 844 a7
18000 - 6% | 3.5% —
3.0%
17000
16000 ] e M i I 25% 11
29, | 2.0%
14000 S 0% L — I | R A IS S S —
FCFS FSD-D SUL-D JFR-D FCFS FSD-D SUL-D JFR-D FCFS FSD-D SUL-D JFR-D
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¢ Summary (1/2)

e Preliminary results are very encouraging
— It’s possible to capture failure cause and effect relations by
exploring data mining and pattern recognition technologies
* Towards automated failure prediction and diagnosis
— Runtime adaptation can significantly improve system
productivity and application performance

* But, many issues remain open

— Development of automated failure prediction and diagnosis
engine
* Stream data processing

e Extensive evaluation with production systems, such as Blue Gene
series
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Summary (2/2)

* Development of fault-aware resource management
and job scheduling
— Resource allocation for failure prevention & recovery
— Automated job recovery
e Fault-aware batch scheduler
e Simulation study
* A close collaboration with national labs and
supercomputing centers is essential!

* Integration with Fault Tolerant Backplane
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