Failure Prediction with Cray Log

Ziming Zheng^a, Zhiling Lan^a, Byung H. Park^b, and Al Geist^b

- ^a Illinois Institute of Technology, {zzheng11, lan} @iit.edu
- ^b Oak Ridge National Laboratory, {parkbh,gst}@ornl.gov

An Overview of Cray Log

- There are 6 top-level files and 8 directories
- The EVENTLOGS folder accumulate occurrences of all event types that are strictly ordered by the timestamps

Timestamp	CRMS Event Type	SRC	SVC	Entry
2007-08-01 12:25:00	ec_mesh_link_failed	src:::c2-2c0s4	svc:::c2-2c0s4s0	c2-2c0s4s0l5=S

- The SEDC_FILES folder contains environmental data, e.g. temperature of LO controller, etc.
 - However, the logging time is not matched with EVENTLOGS
- Our analysis is solely based on the EVENTLOGS

Our Effort – Failure Prediction

Log Preprocessing

Event categorizing

- Five event types are identified as interested failures:
 - 1. node heartbeat fault (NHF)
 - 2. node failed fault (NFF)
 - 3. seastar hearbeat fault (SHF)
 - 4. VERTY health check fault (VHC)
 - 5. L0 voltage fault (LOV)

Event filtering

- Temporal and spatial filtering is used to remove the redundant events
- The clean log keeps --- event start and end time, event count and event location
- Totally, there are 18 failures in the log

Prediction W/O Location Info

- First, we have discovered the following rules by using decision tree and association rule methods
 - 1. uPacket squash fault occurred more than 506 times \rightarrow A failure will occur
 - 2. Lustre PTL timeout fault occurred \rightarrow A failure will occur
 - 3. Segmentation Fault occurred more than 6 times \rightarrow A failure will occur
- uPacket squash fault, Lustre PTL timeout fault and Segmentation Fault are always reported from different locations from that of the failure
 - These rules can only forecast that a failure will occur in the near future, without pinpointing the location
- Result: 70% of failures are predicted with 14% of false alarms

Prediction W/ Location Info

- We have also identified the following rule set
 - "no more processes left in this runlevel" in c0-0c0s1n3 → A failure will occur in c0-0c0s1n3
 - ec_console_log occurred in c1-0c1s2n1 more than 200 times → A
 failure will occur in c1-0c1s2n1
- Out of 18 failures, 8 do not have any precursor events from the same location
- Result: 49% of failures are predicted with 30% of false alarms

Discussion

- Prediction accuracy could be improved via metalearning
 - It is improper to expect a single method to capture various failure patterns alone!
 - Both DT and AR are limited by the proportion of fatal events without any precursor warning
 - Suggest the use of meta-learning to combine different methods [ICPP07 & ICPP08]
 - An alternative method like probability distribution can be combined with DT or AR to boost prediction
 - However, the limited size of the RAS log prevents us from performing this alternative method

Discussion (cont.)

- Prediction could be improved by including other data sources (i.e., in addition to RAS events)
 - The environmental data might be helpful to identify failure location
 - Further, our previous study shows that environmental/performance data could be used to pinpoint failure location [Cluster'07]
 - Pattern recognition techniques like PCA and ICA

Discussion (cont.)

- We have also analyzed the Cray XT system jaguar at ORNL
 - 45G data are collected from 2007-05-05 09:32:55 to 2007-11-27 03:14:14
 - Result: 87% of failures are predicted with 13% of false alarms (without location info)

<u>Reference</u>

- [ICPP07] P. Gujrati, Y. Li, Z. Lan, R. Thakur, and J. White, "Exploring Metalearning to Improve Failure Prediction in Supercomputing Clusters", *Proc. of ICPP'07*, 2007
- [ICPP08]J. Gu, Z. Zheng, Z. Lan, J. White, E. Hocks, and B-H. Park, "Dynamic Meta-Learning for Failure Prediction in Large-scale Systems: A Case Study", Proc. of ICPP'08, 2008.
- [Cluster07] Z. Zheng, Y. Li, and Z. Lan, "Anomaly Localization in Large-scale Clusters", Proc. Of Cluster'07, 2007.
- [SC08] B-H. Park, Z. Zheng, Z. Lan and A. Geist, "Poster: Analyzing Failure Events on ORNL's Cray XT4", Proc. of ACM/IEEE SuperComputing, 2008.