Cloud Computing and Grid Computing 360-Degree Compared

Ioan Raicu
Computer Science Department, Illinois Institute of Technology
Math and Computer Science Division, Argonne National Laboratory

Loyola University
March 17th, 2011
Clusters, Grids, Clouds, and Supercomputers

The diagram illustrates the relationship between clusters, grids, supercomputers, and clouds in terms of scale and orientation.

- **Scale**: The diagram categorizes systems based on their scale, ranging from small to large.
- **Application Oriented** vs. **Services Oriented**: This axis represents the orientation of systems from application-focused to service-focused.
- **Distributed Systems**: At the core of the diagram, these systems are shown to encompass clusters, grids, supercomputers, and clouds.
- **Clusters**, **Grids**, **Supercomputers**, and **Clouds**: These are the main categories shown, each representing a different type of computing environment.
- **Web 2.0**: This category is shown intersecting with the cloud category, indicating its role in the services-oriented approach.

The diagram highlights the differences and overlaps between these computing paradigms, emphasizing the evolving landscape of computing solutions.

[Reference: GCE08] "Cloud Computing and Grid Computing 360-Degree Compared"
Cluster Computing

Computer clusters using commodity processors, network interconnects, and operating systems.
Supercomputing ~ HPC

Highly-tuned computer clusters using commodity processors combined with custom network interconnects and customized operating system.

- **Rack** Cabled 8x8x16
 - 32 Node Cards
 - **Baseline System**
 - 32 Racks
 - 500TF/s
 - 64 TB
 - 14 TF/s
 - 2 TB

- **Node Card**
 - (32 chips 4x4x2)
 - 32 compute, 0-4 IO cards

- **Compute Card**
 - 1 chip, 1x1x1

- **Chip**
 - 4 processors
 - 13.6 GF/s
 - 13.6 GF/s
 - 8 MB EDRAM

- **Baseline System**
 - 13.6 GF/s
 - 2 GB DDR
 - (32 chips 4x4x2)
 - 32 compute, 0-4 IO cards
 - 435 GF/s
 - 64 GB

Supercomputing
Top 10 Supercomputers from Top500

- Cray XT4 & XT5
 - Jaguar #1
 - Kraken #3
- IBM BladeCenter Hybrid
 - Roadrunner #2
- IBM BlueGene/L & BlueGene/P
 - Jugene #4
 - Intrepid #8
 - BG/L #7
- NUDT (GPU based)
 - Tianhe-1 #5
- SGI Altix ICE
 - Plaiedas #6
- Sun Constellation
 - Ranger #9
 - Red Sky #10
Grids tend to be composed of multiple clusters, and are typically loosely coupled, heterogeneous, and geographically dispersed.
Major Grids

- TeraGrid (TG)
 - 200K-cores across 11 institutions and 22 systems over the US
- Open Science Grid (OSG)
 - 43K-cores across 80 institutions over the US
- Enabling Grids for E-sciencE (EGEE)
- LHC Computing Grid from CERN
- Middleware
 - Globus Toolkit
 - Unicore
Cloud Computing: An Emerging Paradigm

Search Volume Index

Cloud Computing and Grid Computing 360-Degree Compared

- cloud computing
- computer science
- hpc
- university of chicago
- northwestern university
• A large-scale distributed computing paradigm driven by:
 1. economies of scale
 2. virtualization
 3. dynamically-scalable resources
 4. delivered on demand over the Internet

Clouds ~ hosting
Magellan + DOE’s Advanced Network Initiative

Sunnyvale

NYC

Nashville

Chicago

OLCF

ALCF

NERSC

SUI

100 gigabit/sec

Cloud Computing and Grid Computing 360-Degree Compared
• Industry
 – Google App Engine
 – Amazon
 – Windows Azure
 – Salesforce

• Academia/Government
 – Magellan
 – FutureGrid

• Opensource middleware
 – Nimbus
 – Eucalyptus
 – OpenNebula
So is “Cloud Computing” just a new name for Grid?

- IT reinvents itself every five years
- The answer is complicated…

- **YES**: the vision is the same
 - to reduce the cost of computing
 - increase reliability
 - increase flexibility by transitioning from self operation to third party
NO: things are different than they were 10 years ago
- New needs to analyze massive data, increased demand for computing
- Commodity clusters are expensive to operate
- We have low-cost virtualization
- Billions of dollars being spent by Amazon, Google, and Microsoft to create real commercial large-scale systems with hundreds of thousands of computers
- The prospect of needing only a credit card to get on-demand access to *infinite computers is exciting; *infinite<O(1000)
So is “Cloud Computing” just a new name for Grid?

• **YES:** the problems are mostly the same
 – How to manage large facilities
 – Define methods to discover, request, and use resources
 – How to implement and execute parallel computations
 – Details differ, but issues are similar
Outline

• Business model
• Architecture
• Resource management
• Programming model
• Application model
• Security model
Business Model

• Grids:
 – Largest Grids funded by government
 – Largest user-base in academia and government labs to drive scientific computing
 – Project-oriented: service units

• Clouds:
 – Industry (i.e. Amazon) funded the initial Clouds
 – Large user base in common people, small businesses, large businesses, and a bit of open science research
 – Utility computing: real money
Why is this a big deal?
- No owned infrastructure
- All resources rented on demand

Critical for startups with risky business plans

Not possible without Cloud Computing and a credit card
- Launched in 2007/2008 timeframe
An Example of an Application in the Cloud

- **Animoto**
 - Makes it really easy for people to create videos with their own photos and music.
Architecture

• Grids:
 – Application: *Swift, Grid portals (NVO)*
 – Collective layer: *MDS, Condor-G, Nimrod-G*
 – Resource layer: *GRAM, Falkon, GridFTP*
 – Connectivity layer: *Grid Security Infrastructure*
 – Fabric layer: *GRAM, PBS, SGE, LSF, Condor, Falkon*

• Clouds:
 – Application Layer: *Software as a Service (SaaS)*
 – Platform Layer: *Platform as a Service (PaaS)*
 – Unified Resource: *Infrastructure as a Service (IaaS)*
 – Fabric: *IaaS*
Resource Management

- Compute Model
 - batch-scheduled vs. time-shared
- Data Model
 - Data Locality
 - Combining compute and data management
- Virtualization
 - Slow adoption vs. central component
- Monitoring
- Provenance
• Grids:
 – Tightly coupled
 • High Performance Computing (MPI-based)
 – Loosely Coupled
 • High Throughput Computing
 • Workflows
 – Data Intensive
 • Map/Reduce

• Clouds:
 – Loosely Coupled, transactional oriented
Multi-core processors
Massive task parallelism
Massive data parallelism
Integrating black box applications
Complex task dependencies (task graphs)
Failure, and other execution management issues
Dynamic task graphs
Documenting provenance of data products
Data management: input, intermediate, output
Dynamic data access involving large amounts of data
Aimed to simplify usage of complex resources

Grids
 – Front-ends to many different applications
 – Emerging technologies for Grids

Clouds
 – Standard interface to Clouds
An Example of an Application in the Grid
Security Model

• Grids
 – Grid Security Infrastructure (GSI)
 – Stronger, but steeper learning curve and wait time
 • Personal verification: phone, manager, etc

• Clouds
 – Weaker, can use credit card to gain access, can reset password over plain text email, etc
Conclusion

• Move towards a mix of micro-production and large utilities, with load being distributed among them dynamically
 – Increasing numbers of small-scale producers (local clusters and embedded processors—in shoes and walls)
 – Large-scale regional producers
• Need to define protocols
 – Allow users and service providers to discover, monitor and manage their reservations and payments
 – Interoperability
Need to combine the centralized scale of today’s Cloud utilities, and the distribution and interoperability of today’s Grid facilities

Need support for on-demand provisioning

Need tools for managing both the underlying resources and the resulting distributed computations

Security and trust will be a major obstacle for commercial Clouds by large companies that have in-house IT resources to host their own data centers
• More information:
 – http://www.cs.iit.edu/~iraicu/
 – iraicu@cs.iit.edu
• Questions?