EECS 395 / EECS 495: Hot Topics in Distributed Systems: Data-Intensive Computing

Syllabus

Ioan Raicu
Center for Ultra-scale Computing and Information Security
Department of Electrical Engineering & Computer Science
Northwestern University

EECS 395 / EECS 495
Hot Topics in Distributed Systems: Data-Intensive Computing
January 5th, 2010
Introductions

• Ioan Raicu

– More information at:
 • http://www.eecs.northwestern.edu/~iraicu/

• Everyone else
Course Overview

- Data Intensive Computing is critical to advancing modern science
 - Applies to cluster computing, grid computing, supercomputing, and cloud computing
- Increasing gap between compute capacity and storage bandwidth
- Need for advanced techniques to manipulate, visualize and interpret large datasets
- Building large-scale distributed systems is hard
 - network (e.g., transport, routing)
 - algorithmic (e.g., data distribution, resource management)
 - social (e.g., incentives)
• Understand methods and approaches to:
 – Design, implement, and evaluate distributed systems

• Topics include:
 – Resource management (e.g. discovery, allocation, compute models, data models, data locality, virtualization, monitoring, provenance), programming models, application models, and system characterization

• Course involves:
 – Lectures, outside invited speakers, discussions of research papers, homeworks, and a major project
Prerequisites

• Undergraduates
 – EECS110, EECS111, EECS211, EECS311, EECS 340, EECS 343, EECS345

• Graduates
 – None

• Topics
 – Programming (C, C++, or Java)
 – Networking
 – Operating systems
 – Distributed systems
Course Topics

- Distributed Systems: Clusters, Supercomputers, Grids and Clouds
- Data Intensive Computing Overview
- Local Resource Management Systems
- Storage Systems
- Shared, Distributed and Parallel File Systems
- Parallel I/O
- Scientific Computing and Applications
- Parallel Programming Systems and Models
Course Topics (cont)

- MapReduce & Hadoop
- Sphere/Sector
- Parrot and Chirp
- Swift/Falkon
- Data-Intensive Computing with GPUs
- Data-Intensive Computing with Databases
- Many-core Computing Era and New Challenges
- Open Research Questions in Data-Intensive Computing
Computer Usage

• falkon.eecs.northwestern.edu
 – Request account from iraicu@eecs.northwestern.edu
 – Intel Xeon, 16-cores @ 2.33GHz, 48GB RAM, 7TB RAID5 disk, 1Gb/s network
 • Primary: Linux Suse 11.2 x64
 • Virtual Machine: Windows Server 2008 x64
 – AMD Atholon II X4, 4-cores @ 2.6GHz, Nvidia GTX295 with 2GB RAM and 800 cores, 4GB RAM, 75GB disk, 1Gb/s network
 • Primary: Windows 7 x64
 • Virtual Machine: Linux SuSe 11.2 x64
• PADS Cluster at University of Chicago (1K cores x64)
• IBM BlueGene/P at Argonne National Laboratory (160K PPC)
• SiCortex at Argonne National Laboratory (5832 MIPS)
• ANL/UC TG Cluster at Argonne National Laboratory (~200 IA32)
• TeraGrid (150K of all variety of CPUs)
• Sun Constellation at TACC (62K x64)
• Magellan at Argonne National Laboratory (10K x64 cloud)
• Amazon EC2
Research Papers
Reading and Discussion

• 1~2 papers per lecture
• Each paper must be summarized in writing
• Serve as background to the lecture
• Serve as basis for discussion
 – Each paper will have a student discussion leader
Homeworks

- Up to 5 assignments
- Will give hand-on experience with some specific technology or theoretical concept
- Generally will have 1 week to complete
- Must be completed individually
Projects

- Major quarter long project
 - Topic of choice of the student
 - Can work in groups
 - May require the following things:
 - Reading research papers
 - Using open source software
 - Implementation of a real/simulated system
 - Analysis of theoretical work
 - Performance evaluation of theoretical/real systems
 - Written report(s)
 - Oral presentation(s)
Project Ideas

- Distributed file systems
- Data aware scheduling algorithms
- Distributed operating systems
- Distributed job management systems
- Parallel programming languages
- Distributed workflow systems
- Distributed monitoring systems
• Scientific computing with GPUs
• Scientific computing with MapReduce
• Distributed caching strategies
• Distributed cache eviction policies
• Distributed hash tables
• Virtualization impact for data-intensive computing
• More ideas at:
 http://dev.globus.org/wiki/Project_Ideas
Useful Software for your Projects

- **Operating systems:** Linux, Windows
- **Scripting:** BASH
- **Source control:** SVN
- **Programming languages:** Java, C/C++
- **Job submission systems:** GRAM, PBS, Condor, Cobalt, SGE, Falkon
- **Programming models:** MapReduce (Hadoop), MPI (MPICH), Multi-Threading (PTHreads), Workflows (Swift, Pegasus/DAGMan, Nimrod, Taverna, BPEL)
- **File systems:** FUSE
Parallel file systems: GPFS, PVFS, Lustre
Distributed file systems: GPS, HDFS
Data services: GridFTP
Grid middleware: Globus
Cloud middleware: Nimbus, Eucalyptus, OpenNebula
Distributed hash tables: Chord, Tapestry
Simulation environments: GridSim, SimGrid, OptorSim, GangSim, Bricks
Virtualization: Sun Virtual Box, XEN, VMWare
Grading

- Participation in paper discussions: 15%
- Homeworks: 20%
- Mid-quarter oral presentation: 5%
- Final oral presentation: 10%
- Project / Report: 50%
Course Outcomes

- Understand the importance of data-intensive computing
- Understand the difference between cluster computing, grid computing, supercomputing, and cloud computing
- Understand how to build large scale distributed systems
- Understand applications that require data-intensive computing
- Understand trends in many-core computing and challenges that will come with them
- Build distributed systems
- Be familiar with multiple programming models
- Read and understand a research paper
- Make a formal presentation on a technical topic
- Write up a formal report (and a research paper) on the project
Required texts
- None
- Readings will be from online material
Questions

• Write me:
 – iraicu@eecs.northwestern.edu

• Skype me:
 – ioan.raicu

• Call me:
 – 1-847-491-8163

• Mailing list
 – http://www.eecs.northwestern.edu/mailman/listinfo/eecs495-dic