Data Intensive Distributed Computing

Ioan Raicu
Center for Ultra-scale Computing and Information Security
Department of Electrical Engineering & Computer Science
Northwestern University

EECS 395 / EECS 495
Hot Topics in Distributed Systems: Data-Intensive Computing
January 7th, 2010
The users should be able to focus their attention on the information content of the data, rather than how to discover, access, and use it.

Climate Change Science Program report, 2003
A supercomputer is a device for turning compute-bound problems into I/O-bound problems.

Seymour Cray
Projected Growth Trends

Pat Helland, Microsoft, The Irresistible Forces Meet the Movable Objects, November 9th, 2007

Top500 Projected Development,
• Local Disk:
 – 2002-2004: ANL/UC TG Site (70GB SCSI)
 – Today: PADS (RAID-0, 6 drives 750GB SATA)

• Cluster:
 – 2002-2004: ANL/UC TG Site (GPFS, 8 servers, 1Gb/s each)
 – Today: PADS (GPFS, SAN)

• Supercomputer:
 – 2002-2004: IBM Blue Gene/L (GPFS)
 – Today: IBM Blue Gene/P (GPFS)
• Segregated storage and compute
 – NFS, GPFS, PVFS, Lustre
 – Batch-scheduled systems: Clusters, Grids, and Supercomputers
 – Programming paradigm: HPC, MTC, and HTC

• Co-located storage and compute
 – HDFS, GFS
 – Data centers at Google, Yahoo, and others
 – Programming paradigm: MapReduce
 – Others from academia: Sector, MosaStore, Chirp
State of the Art: Storage Systems

- Segregated storage and compute
 - NFS, GPFS, PVFS, Lustre
 - Batch-scheduled systems: Clusters, Grids, and Supercomputers

- Co-located storage and compute
 - HDFS, GFS
 - Data centers at Google, Yahoo, and others

- Programming paradigms
 - HPC, MTC, and HTC
 - Others from academia: Sector, MosaStore, Chirp

Network Fabric

NAS

Compute Resources

Network Link(s)
State of the Art: Storage Systems

• Segregated storage and compute
 – NFS, GPFS, PVFS, Lustre
 – Batch-scheduled systems: Clusters, Grids, and Supercomputers
 – Programming paradigm: HPC, MTC, and HTC

• Co-located storage and compute
 – HDFS, GFS
 – Data centers at Google, Yahoo, and others
 – Programming paradigm: MapReduce
 – Others from academia: Sector, MosaStore, Chirp
State of the Art: Storage Systems

- Segregated storage and compute
 - NFS, GPFS, PVFS, Lustre
 - Batch-scheduled systems: Clusters, Grids, and Supercomputers
 - Programming paradigm: HPC, MTC, and HTC

- Co-located storage
 - HDFS, GFS
 - Data centers at Google, Yahoo, and others
 - Programming paradigm: MapReduce
 - Others from academia: Sector, MosaStore, Chirp
What if we could combine the scientific community’s existing programming paradigms, but yet still exploit the data locality that naturally occurs in scientific workloads?
Combine State of the Art Systems

Network Fabric

Compute & Storage Resources

Network Link(s)

NAS
High-Throughput Computing & High-Performance Computing

• **HTC: High-Throughput Computing**
 – Typically applied in clusters and grids
 – Loosely-coupled applications with sequential jobs
 – Large amounts of computing for long periods of times
 – Measured in operations per month or years

• **HPC: High-Performance Computing**
 – Synonymous with supercomputing
 – Tightly-coupled applications
 – Implemented using Message Passing Interface (MPI)
 – Large of amounts of computing for short periods of time
 – Usually requires low latency interconnects
 – Measured in FLOPS
MTC: Many-Task Computing

- Bridge the gap between HPC and HTC
- Applied in clusters, grids, and supercomputers
- Loosely coupled apps with HPC orientations
- Many activities coupled by file system ops
- Many resources over short time periods
 - Large number of tasks, large quantity of computing, and large volumes of data
Problem Space

Input Data Size

Hi

Med

Low

Number of Tasks

1

1K

1M

MapReduce/MTC
(Data Analysis, Mining)

MTC
(Big Data and Many Tasks)

HPC
(Heroic MPI Tasks)

HTC/MTC
(Many Loosely Coupled Tasks)