Many cell phone users who would like to try a different service don't switch because they hate the idea of getting a new phone number.

This anti-consumer aspect of the wireless industry could soon end, but the wireless carriers want it to stay and they've enlisted some help from Congress to press their case.

The Federal Communications Commission has mandated that the wireless industry install technology that enables a consumer to keep the same number when moving to a different carrier. Such technology, called number portability, is now reserved for standard telephone service for years.

Wireless carriers oppose portability — now required by the end of this year — because it would cost them money without opening new revenue streams, and it would also make it easier for customers to change carriers.

Now members of Congress have intervened with the FCC on the industry's behalf.

They've sent a letter to Michael Powell, the FCC chairman, suggesting that the wireless carriers deserve another portability deadline extension because of other mandated tasks they are undertaking, such as installing software that will enable wireless carriers to port phone numbers in conservation measures.

Echoing wireless industry arguments, the letter from the House Energy and Commerce Committee suggests that making the industry do too much at once could threaten network reliability. Among the 35 representatives signing the letter are two from Illinois, J. Don Shimkus, a Republican, and Bobby Rush, a Democrat.

Most state regulators want the FCC to enforce its wireless portability requirement this year, and James Bradford Ramsey, general counsel for the National Association of Regulatory Utility Commissioners, said the representatives have been misled by wireless carriers.

"The industry has known about the porting deadline for four years and the pleading deadline for almost two years," said Ramsey. With that much time, there's no excuse for not meeting the deadline, he said.

Wireless carriers now say they will have technical problems meeting the number portability and pooling deadlines at the same time. A few years ago, they argued that they couldn't do it without the other, Ramsey said.

Cell phones everywhere: Andrew Corp., the Oak Park supplier of antennas and other equipment to the wireless communications industry, made a splash last week with a deal to buy Cenntar Corp., a Linac Technologies spinoff that makes power amplifiers.

That deal, valued at about $45 million, will significantly change Andrew's product mix. Andrew now makes only about 1 percent of its revenue from power amplifiers and expects that will rise to nearly 10 percent with this acquisition.

But while power amplifiers certainly dominate the thinking at Andrew these days, it's not the only new business the firm is going after. Said Floyd English, Andrew chairman and chief executive.

Andrew has also won a contract to put antennas into the tunnels used by Chicago Transit Authority's new trains so that passengers won't miss phone calls while commuting each day.

Andrew is doing similar work for transit operators in San Francisco and Boston, and it also is still in the running to put antennas into Chicago's airports to improve cell phone reception.

Installing antennas inside buildings and other structures "is a very active and new market," said English, "and one that could grow to become a $1 billion market.

Always faster: It may not be as entertaining to watch as Olympic speed skating or computer scientists keep pushing their own competition to break new speeds.

A researcher with IBM Corp. said his firm has created the world's fastest semiconductor circuits, which operate at speeds above 16 billion cycles per second, or gigahertz, and can process 64 electrical signals in 4.3 trillion of a second.

IBM's candidate for fastest chip is made from silicon germanium and the company is now into its fourth generation of chips in this medium, said Bernard Meyerov, vice president of IBM's Communications Research and Development Center.

Grid computing: Computer scientists at the Illinois Institute of Technology are building those days of new technology in their newly acquired campus building called Fermi.

"The Fermi" is really a cluster of individual computers wired together and placed in a rather large container. The setup, which is linked to a site server and network, of 12 high-end workstations, will be used to study parallel computing and grid computing.

Such supercomputing arrays are becoming more common on college campuses these days as tools for teaching students to use the equipment they will encounter in a few years, said Ophir Fried-