
LPM: Concurrency-driven Layered Performance
Matching

Yu-Hang Liu, Xian-He Sun

Department of Computer Science

Illinois Institute of Technology

Chicago, IL 60616

{yuhang.liu, sun}@iit.edu

Abstract—Data access has become the preeminent performance
bottleneck of computing. In this study, a Layered Performance
Matching (LPM) model and its associated algorithm are proposed
to match the request and reply speed for each layer of a memory
hierarchy to improve memory performance. The rationale of
LPM is that the performance of each layer of a memory hierarchy
should and can be optimized to closely match the request of
the layer directly above it. The LPM model simultaneously
considers both data access concurrency and locality. It reveals
the fact that increasing the effective overlapping between hits
and misses of the higher layer will alleviate the performance
impact of the lower layer. The terms pure miss and pure miss
penalty are introduced to measure the effectiveness of such
hit-miss overlapping. By distinguishing between (general) miss
and pure miss, we have made LPM optimization practical and
feasible. Our evaluation shows the data stall time can be reduced
significantly with an optimized hardware configuration. We also
have achieved noticeable performance improvement by simply
adopting smart LPM scheduling without changing the underlying
hardware configurations. Analysis and experimental results show
LPM is feasible and effective. It provides a novel and efficient
way to cope with the ever-widening memory wall problem, and
to optimize the vital memory system design.

Keywords-Memory wall; data stall time; layered performance
matching (LPM); data access concurrency; concurrent average
memory access time (C-AMAT)

I. INTRODUCTION

Compared to two decades ago when the term memory wall

was introduced by Wulf and McKee [1], the landscape of com-

puting has changed significantly. Many concurrency driven

technologies have been proposed such as multi-port, multi-

banked, pipelined and non-blocking cache, and data intensive

applications have become common in diverse fields [2] [3].

However, the memory-wall problem remains. Today, data stall

time contributes 50% to 70% of the total application execution

time and is the most prominent performance bottleneck of

computing systems [4] [5]. Recall data stall time is the amount

of time the processor is blocked from issuing instructions

because it is waiting for data. That is, it is the time when

memory system cannot meet the demand of computation.

Hierarchical memory is a standard design for modern com-

puters to ease the memory wall problem. The idea behind

memory hierarchy is data locality. That is, data previously

accessed will be used again in the near future (temporal

locality), and the data near the previously accessed data

are likely to be used next (spatial locality). The locality of

hierarchical memory systems has been well studied in the

literature [6] [7] [8] [9]. However, a modern memory system is

not only supported by a memory hierarchy but also by various

concurrency-driven technologies. The overall performance of a

memory system is a combined effort of the memory hierarchy

and concurrency. Understanding the integrated impact of data

locality and concurrency is a must to fully utilize the potential

of a modern memory system. In this study, we use the newly

proposed concurrent average memory access time (C-AMAT)

[10] [11] [12] [13] model as the key analysis tool to optimize

modern memory systems. C-AMAT is an extension of the

conventional AMAT [1] [7] [14] model by including data

access concurrency into average memory access time.
During the past decades, many specific techniques have

been proposed for optimizing distinct components or features

of a memory system. Such kind of specific techniques can be

deemed a toolkit or a technique pool. However, these methods

are difficult and need not to be deployed simultaneously under

a given limitation of complexity, heat, power and space. These

methods may compete and conflict with each other. How

to reach a global optimization state is unclear and elusive.

Memory hierarchy is designed to mask the performance gap

between computing and memory systems. A fundamental

question for a hierarchical memory system should be: how

to quantify the matching of a memory hierarchy with the

underlying computing? This question of matching was not

important for a memory hierarchy system two decades ago

when the memory wall impact was not very significant, and

data access locality was the only concern. As data access

concurrency becomes increasingly prevalent and applications

become increasingly data intensive, the balance and optimiza-

tion between locality and concurrency becomes a vital per-

formance factor; therefore, the layered performance matching

(LPM) becomes a key factor influencing performance.
By accurately matching the performance of each adjacent

layer of a memory hierarchy, the performance of the memory

system can precisely match the performance of its computation

capability, which is the motivation of LPM concept proposed

in this study. The motivation of LPM is based on the following

four observations.

• Each time a word is requested by a load or store opera-

tion, the word is carried in by a cache block (line) [14].

2015 44th International Conference on Parallel Processing

0190-3918 2015

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/ICPP.2015.97

880

2015 44th International Conference on Parallel Processing

0190-3918 2015

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/ICPP.2015.97

879

2015 44th International Conference on Parallel Processing

0190-3918 2015

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/ICPP.2015.97

879

2015 44th International Conference on Parallel Processing

0190-3918 2015

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/ICPP.2015.97

879

2015 44th International Conference on Parallel Processing

0190-3918 2015

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/ICPP.2015.97

879

2015 44th International Conference on Parallel Processing

0190-3918 2015

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/ICPP.2015.97

879



Therefore, if the cache block can be reused multiple

times, one physical data movement can support multiple

data requests.

• Memory concurrency can mask data access delay, includ-

ing hit-hit (all the data accesses are hits), hit-miss (or

miss-hit, that is, at least a hit exists with misses), and

miss-miss (all the data accesses are misses, and is termed

as pure miss) overlapping [10] [11]. The hit-hit scenario

increases data access bandwidth. The hit-miss scenario

is the most interesting one and requires more attention.

If we have misses, we should overlap the misses with

hits since the hits in a layer can hide the penalties of the

simultaneously occurring misses in the same layer. The

miss-miss scenario, which is referred to as pure misses,

will cause data stall. We should reduce pure misses. But,

if we cannot avoid them, we should let them occur at

the same time. Thus increasing the concurrency of pure

misses.

• In general, programs have periodic behaviors, and their

data access patterns are predictable [15]. With a set

of lightweight counters, we are able to deploy proper

optimization techniques to timely adapt to the underlying

data access patterns of an application.

• Configurable hardware is becoming prevalent [16], which

presents more optimization options for adapting mem-

ory system to dynamic data access patterns. Moreover,

more and more application-aware software scheduling

and partitioning approaches have been proposed. These

progresses enable us to achieve LPM.

LPM facilitates both hardware and algorithms to simulta-

neously consider data locality and concurrency. The layered

performance matching provides a new method to utilize and

optimize memory systems. By surmounting the memory-wall

via concurrency-driven layered performance matching in a

memory hierarchy, this study makes the following contribu-

tions:

• The LPM model is presented to quantify the performance

match degree between the layers in a memory hierarchy.

The methodology for the online measurement of request

and supply is also proposed.

• For the first time, with minimal number of parameters,

a formal mathematical model is proposed to quantify the

impact of layered performance mismatch on data stall

time. The model not only facilitates understanding per-

formance but also presents opportunities for optimization.

In this manner, our model presents guidance on when

and how to use existing locality and concurrency driven

techniques collectively.

• The LPM optimization algorithm is developed to reduce

the mismatch and then mitigate the incurred data stall

time. The algorithm is application-aware since all the

parameter values needed by the models can be measured

online. With LPM optimization, data stall time can be

reduced significantly.

• Aided by the LPM algorithm, case studies of performance

optimization were conducted. They confirm the potential

of LPM. By simply matching layered performance in

a heterogeneous multicore system, system throughput

has been improved significantly even without hardware

configurability. These case studies confirm the correctness

and practical value of the layered performance matching

approach proposed in this study.

The remainder of this paper is organized as follows. Section

II introduces the state-of-the-art memory analytical model, C-

AMAT. Section III and IV, describe the concurrency-driven

LPM model and present the LPM algorithm, respectively.

Section V presents LPM optimization case studies to reduce

the data stall time. Section VI reviews related work. Finally,

Section VII concludes this study and discusses potential future

work.

II. THE C-AMAT MODEL

In this paper, unless otherwise stated, a memory system

is the whole memory hierarchy rather than only the main

memory. The conventional AMAT formula for a memory

hierarchy is shown in Eq. (1) [1] [7] [14], where H is the

hit time of memory accesses, MR is the miss rate, and AMP

is the average miss penalty. AMP is the sum of all miss access

latencies divided by the total number of misses. AMAT does

not consider the concurrency of memory accesses, in either

the hit or the miss section of the formula. However, in an

out-of-order processor when a miss occurs, other instructions

can be executed while the memory system is serving the miss.

This allows multiple outstanding reads and writes to co-exist

at a given time in the memory system, depending on the

underlying hardware support. Therefore, some of the memory

access latencies can be hidden.

AMAT = H +MR×AMP (1)

To cover the concurrent read and write properties of modern

memory systems, the C-AMAT model is proposed in Eq. (2)

[10]. The first parameter H is the same as that in AMAT. The

second parameter CH represents hit concurrency; the third pa-

rameter CM (capital M) represents the pure miss concurrency

while the conventional miss concurrency is referred to as Cm

(little m). CH can be contributed by caches with multi-port,

multi-bank or pipelined structures. CM can be contributed

by non-blocking cache structures. In addition, out-of-order

execution, multi-issue pipeline, simultaneous multi-threading

(SMT), chip multiprocessor (CMP), can all increase CH and

CM . The pure miss rate pMR is the number of pure misses

over the total number of accesses, which is different from the

conventional miss rate (MR). A pure miss here means that a

miss contains at least one miss cycle that does not have any

hit access activity. pAMP is the average number of pure miss

cycles per pure miss access.

C-AMAT =
H

CH
+ pMR× pAMP

CM
(2)

881880880880880880



Pure miss is an important concept introduced by C-AMAT.

Based on the fact that not all the cache misses will cause

processor stall, we introduced pure miss. Fig. 1 illustrates the

pure miss concept. There are five different memory accesses

in Fig. 1, and each access contains three cycles for cache hit

operations. If it is a miss, additional miss penalty cycles will

be required. The number of miss penalty cycles is uncertain,

depending on where the missed data can be obtained and

contention impact during the data access. When considering

the access concurrency, only Access 3 contains two pure miss

cycles. Though Access 4 has one miss cycle, this cycle is not

a pure miss cycle because it overlaps with the hit cycles of

Access 5.

According to Eq. (2), C-AMAT is cycles out of 5 accesses or

1.6 cycles per access; whereas by Eq. (1) AMAT is 3+0.4×2
or 3.8 cycles per access. The difference between C-AMAT and

AMAT is the contribution of concurrent data access. In this

example, concurrency has doubled memory performance. In

Fig. 1, there are 4 hit phases, namely Hit phase 1, 2, 3, 4,

which contain 2, 4, 3, 1 concurrent hit cache assesses with

lasting cycle 2, 1, 2, 1, respectively. Therefore, CH = 2 ×
2/6 + 4× 1/6 + 3× 2/6 + 1× 1/6 = 5/2. And there is only

one pure miss phase with 1 pure miss concurrency which lasts

for 2 cycles. Therefore CM = 1× 2/2 = 1; pAMP = 2/1 =2;

pMR = 1/5. Thus formula (2) is equal to

C-AMAT =
H

CH
+ pMR× pAMP

CM
=

3

5/2
+

1

5
× 2

1
= 1.6

Please notice that the contribution of C-AMAT is not

its measurement. The measurement can be obtained directly

through APC (Access Per memory active Cycle) as shown

in Eq. (3) [12] [13]. The measurement of C-AMAT does not

depend on the measurement of its five parameters. The value

of the parameters is in performance analysis and optimization.

The invaluable contribution of C-AMAT is that it provides a

unified formulation to capture the joint performance impact of

locality and concurrency.

C-AMAT =
1

APC
(3)

C-AMAT contains AMAT as a special case where memory

concurrency does not exist. C-AMAT provides a means to

evaluate and optimize the five performance parameters, in-

dividually or in combination. It provides a tool for design

optimization.

The sixteen memory-system optimization mechanisms sum-

marized by Hennessy and Patterson can be used to reduce one

or more of the three parameters of AMAT [14]. Similar to

AMAT, reducing C-AMAT can be achieved by optimizing its

five parameters. In particular, it can be achieved by increasing

CH and CM , and decreasing H, pMR, and pAMP. The five

parameters in C-AMAT present five dimensions for memory

system optimization. Except H, all the parameters are new

directions that AMAT has not presented.

Access 1

Access 2

Access 3

Access 4

Access 5

Hit phase 2 Pure miss
phase 1

Hit phase 1 Hit phase 4Hit phase 3

pure miss cycles

Miss cycles

Time line (cycle)

Fig. 1. A demo of C-AMAT and pure miss

Readers who are familiar with AMAT may recall that the

average miss penalty of AMAT can be extended recursively

to the next layer of a memory hierarchy. This recursiveness

is true for C-AMAT as well. Eq. (4) shows the recurrence

relation. Here, C-AMAT1 is the L1 C-AMAT and C-AMAT2

is the L2 C-AMAT. Unless indicated explicitly, the default C-

AMAT is C-AMAT1. Eq. (4) illustrates some interesting and

valuable properties of concurrent data accesses: the impact

of C-AMAT2 can be mitigated by concurrency, in terms of

pMR1 and η1. This potential for penalty mitigation is the

theoretical foundation and motivation of the layered matching

mechanism proposed in this research.

C-AMAT1 =
H1

CH1

+ pMR1 × η1 × C-AMAT2 (4)

Where

C-AMAT1 =
H1

CH1

+ pMR1 × pAMP1

CM1

C-AMAT2 =
H2

CH2

+ pMR2 × pAMP2

CM2

η1 =
pAMP1

AMP1
× Cm1

CM1

Pure-miss is more closely related to data stall time, com-

pared to conventional miss. All the conventional misses of

L1 will occur on L2. However, only a part of the misses

are pure misses, and only pure misses affect the data stall

time. Pure misses can be characterized by CM and pAMP,

while conventional misses can be featured by Cm and AMP.

Therefore, the measurable parameter η1 has a physical repre-

sentation, which reflects the difference between pure miss and

conventional miss [10]. A part of conventional miss penalty

can be masked by hit activities. The parameter η1 indicates

these contributions. The impact of C-AMAT2 toward the final

C-AMAT1 can be trimmed by pMR1 and η1. In a similar

fashion as Eq. (4), C-AMAT can be further extended to the

next layer of the memory hierarchy as well.

882881881881881881



III. THE LPM MODEL

We divide this section into two subsections. Firstly, we

reveal the relationship between concurrent average memory

access time (C-AMAT) and data stall time. Then, we derive

the relationship between layered performance matching ratio

(LPMR) and data stall time.

A. Impact of C-AMAT on Data Stall Time

The execution time of a computer processor consists of

two parts [14]: processor busy time and data stall time. Here

the processor busy time is the time when the processor is

occupied executing the user program. This time includes the

useful working time, as well as functional unit stalls due to

data and control hazards. The data stall time is the time when

the processor is stalled waiting for memory reference. This

time consists of the access delay, contention delay, and, in

multi-thread cases, the latency due to cache coherency and

consistency. Eq. (5) is the classic formulation of the CPU-

time in terms of these two components of time [14] [17].

CPU -time

= IC × (CPIexe +Data-stall-time) × Cycle-time (5)

Here, IC is the number of instructions, Cycle-time is

the length of a clock cycle, and CPIexe is the processor

computation cycles per instruction under perfect cache (no

miss occurs).

In an in-order processor, when an access miss occurs, the

processor waits for the fetched data before continuing. This

can result in a data stall lasting several cycles, depending on

where in the memory hierarchy the data resides. Eq. (6) is the

conventional data stall time formula based on AMAT [1] [14].

Data-stall-time = fmem ×AMAT (6)

With the same reason discussed in Section II for AMAT,

Eq. (6) does not hold for out-of-order processors, and can-

not reflect the concurrency in the modern complex memory

systems.

Eq. (7) presents the relationship between the data stall time

and the data access delay C-AMAT.

Data-stall-time

= fmem × C-AMAT × (1− overlapRatioc-m) (7)

Here, fmem is the portion of the instructions that access

memory; as shown in Eq. (8), overlapRatioc-m is the ratio of

the computing and memory access overlapping time over the

total memory access time. In modern processors, simultane-

ous multi-threading, out-of-order execution, and non-blocking

cache contribute overlapRatioc-m by enabling computation

to continue while memory access is being conducted.

Main memory

ALU&FPU

L1 cache

Last level cache

Request rates
of computing
components

Supply rates
of L1 cache

Request rates
of L1 cache

Request rates of
Last level cache

Supply rates of
Last level cache

Supply rates of
main memory

APC1

APC2

APC3

Fig. 2. The request-reply LPM model

overlapRatioc-m =
overlapCyclesc-m

TmemAcc
(8)

Eq. (7) holds regardless memory concurrency is involved or

not. The formal proofs of Eq. (7) is given in [17].

B. Impact of LPM on Data Stall Time

We know the layered (memory) performance mismatch

affects the memory system performance and, therefore, drags

down the system CPU performance. In this subsection, we

quantify these effects and, therefore, provide a theoretical

foundation for possible performance optimization.

To optimize the performance of a memory system, we need

to match the performance at each layer of the hierarchical

memory system as closely as possible.

Fig. 2 illustrates the Layered Performance Matching (LPM)

model of a memory hierarchy. For the sake of brevity, L2 is

taken as the LLC in this study. The extension to additional

cache levels is straightforward.

Each layer (except the top layer and the bottom layer) has

data accesses at two sides, the requests from the upper layer

and the supplies by the lower layer. For example, the demand

from computing components is the request rate from ALU and

FPU, while the service is the supply rate by L1 cache.

The ratios in the LPM model are the ratios of request rate

and supply rate between any two layers. These ratios usually

are greater than 1 due to the memory wall problem. Making

these ratios as closely to 1 as possible is a way to ease memory

wall effect.

As a result of matching performance at each layer of a

memory hierarchy, the performance of the memory system can

match the performance of the computing as closely as possible.

The following equations are the definitions of the layered

performance matching ratios (LPMR) that are abbreviated as

LPMR1, LPMR2, and LPMR3, respectively. We assume

L2 is the last level cache in this study.

LPMR(ALU&FPU,L1) =
Request rate from ALU&FPU

Supply rate by L1 cache

LPMR(L1, LLC) =
Request rate from L1 cache

Supply rate by LLC

883882882882882882



LPMR(LLC,MM) =
Request rate from LLC

Supply rate by main memory

Note that supplies are activated by requests, the supply rate

by a lower layer is impossible to be greater than the request

rate from an upper layer. Therefore, LPMR ≥ 1. The optimal

state occurs when LPMR = 1.

The supply rates of different layers in the memory hierarchy

can be denoted by APC values of corresponding layers [12]

[13]. Compute intensity multiplied by the memory access

frequency equals the memory access intensity perceived by

the L1 cache. Compute intensity can be denoted by IPCexe,

which is the reciprocal of CPIexe. Therefore,

Request rates of ALU and FPU = IPCexe × fmem

Request rates of L1 cache = IPCexe × fmem ×MR1

Request rates of LLC = IPCexe × fmem ×MR1 ×MR2

LPM is a concurrency-driven matching method in a memory

hierarchy. It focuses on data access concurrency to optimize

the matching between request and supply at each memory

layer. In addition to the various data access needs of the appli-

cations and the concurrency-driven delay hidden technique, the

cache line structure produces more data replies. One cache line

may be taken as the common reply for numerous requests so

that multiple accesses can be completed with the same cache

line. According to Eq. (3), the supply traffic in each layer

can be transformed from APC to C-AMAT for performance

analysis and optimization. Therefore, in terms of C-AMAT,

the three LPMRs can be expressed as in Eq. (9), (10), and

(11), respectively.

LPMR1 =
C-AMAT1 × fmem

CPIexe
(9)

LPMR2 =
C-AMAT2 × fmem ×MR1

CPIexe
(10)

LPMR3 =
C-AMAT3 × fmem ×MR1 ×MR2

CPIexe
(11)

With Eq. (7) and (9), we get the relationship between data

stall time and LPM in layer one shown in Eq. (12).

Data-stall-time

= CPIexe × (1− overlapRatioc-m)× LPMR1 (12)

Combining Eq. (7) and (4), we derive

Data-stall-time = (
H1

CH1

+ pMR1 × η1 × C-AMAT2)× fmem

×(1− overlapRatioc-m)

Then due to the expression of LPMR2 in Eq. (10), we get

Data-stall-time = (
H1

CH1

+ pMR1 × η1 × CPIexe × LPMR2

fmem ×MR1
)

×fmem × (1− overlapRatioc-m)

Therefore,

Data-stall-time = (
H1

CH1

× fmem

+CPIexe × η1 × pMR1

MR1
× LPMR2)× (1− overlapRatioc-m)

We define η as follows.

η =
pAMP1

AMP1
× Cm1

CM1

× pMR1

MR1

Therefore, we can get Eq. (13).

Data-stall-time = (
H1

CH1

× fmem

+CPIexe × η × LPMR2)× (1− overlapRatioc-m) (13)

Eq. (13) shows the relationship between LPM in L2 layer

and data stall time. The parameter η is a positive value and is

less than one, which is the concurrency and locality effective

factor. Note that η contains both the concurrent hit effect in

the upper layer and the miss penalty incurred in accessing the

lower layer. The effect of mismatch LPMR2 can be eased by

η. When η is close to zero, the effect of concurrency on miss

penalties is significant. Therefore, once η is close to zero,

the impact of layered performance mismatch will be small.

The rationale of LPM optimization is to combine the effort

of locality and concurrency to maximize the hidden effect

and overlapping effect at each layer of a memory hierarchy,

where the overlapping effect includes hit-hit overlapping, hit-

miss overlapping, and miss-miss overlapping. Note that hit-

miss overlapping also has hidden effect. In next section, we

will give the algorithm to improve the degree of matching of

the layered performance to optimize the memory subsystem

performance.

IV. THE LPM ALGORITHM

Eq. (12) and (13) provide the baseline for LPM optimization

to achieve our final goal of minimizing data stall time.

Data stall time is 50% to 70% of the total application run-

ning time [4] [5], severely affecting application performance.

That means data stall time is 1 to 2.3 times of pure computing

time without any data stall. We consider any data stall time

884883883883883883



that is less than Δ% of pure computing time as a “minimal

data stall time”. The goal of LPM is to achieve a minimal data

stall time. For example, the reduction of data stall time from

230% to 1% of pure computing time implies that the memory

performance is improved up to two hundred and thirty (230)

times. As shown in our case studies, the “1%” condition is

appropriate and can be met on reconfigurable architectures

that have a huge design space. More stringent condition than

“1%” may cause unaffordable optimization cost and have a

minimal return.

While the “1%” requirement is achievable, it might be hard

to achieve in some cases. For those cases, we can relax the

requirement to “10%” or even higher. The optimizations for

the two different requirements will be referred to as fine-

grained (fg) and coarse-grained (cg) optimization, respectively.

In the following, we derive the conditions for LPMR1 and

LPMR2 to achieve minimal data stall. From Eq. (12), we get

Eq. (14).

LPMR1 ≤ Δ%

1− overlapRatioc-m
(14)

From Eq. (13), to satisfy the Δ% condition, we have Eq.

(15).

LPMR2

≤ 1

η
× (

Δ%

1− overlapRatioc-m
− H × fmem

CH × CPIexe
) (15)

When Eq. (14) and (15) are met, optimization in the corre-

sponding layer can be finished. The thresholds for LPMR1

and LPMR2, denoted as T1 and T2, are the right-side of Eq.

(14) and (15).

Fig. 3 shows the algorithm for layered performance match-

ing optimization. Initially, the mismatching information is

measured and collected. Optimizations are necessary only

when the LPMR1 is large. If LPMR1 is larger than T1, we

need to optimize the L1 layer and L2 layer simultaneously, or

only optimize the L1 layer if LPMR2 is not larger than T2.

In both cases, the optimization of the L1 layer is required.

Fig. 4 shows the detecting system of LPM. We call it C-

AMAT analyzer. The Hit Concurrency Detector (HCD) counts

the total hit cycles and records each hit phase in order to

calculate the average hit concurrency (CH ). The HCD also

contacts the Miss Concurrency Detector (MCD) whether a

current cycle has a hit access or not. The MCD is a monitor

unit which counts the total number of pure miss cycles and

records each pure miss phase in order to calculate the average

miss concurrency (CM ), pure miss rate, and pure miss penalty.

With the information provided by the HCD, the MCD is able to

determine whether a cycle is a pure miss cycle, and whether

a miss is a pure miss. With the miss information, the pure

miss rate (pMR) and average pure miss penalty (pAMP) can

be calculated. Since these parameters can be measured at each

layer of a memory hierarchy, C-AMAT also can be measured

at each layer.

LPMR Reduction Algorithm

4: Begin Do

2: For each application or thread, measure the LPMRs in a memory hierarchy

18: While (LPMR1 + δ < T1) Do

12: While (LPMR1 > T1 and LPMR2 ≤ T2 ) Do

3: Get the threshold T1 and T2 according to Eq. (15) and (16)

19: Reduce hardware overprovision

7: While (LPMR1 > T1 and LPMR2 > T2) Do

8: Optimizing at L1 layer and L2 layer,

13: Optimizing at L1 layer

14: Update all the metrics (LPMR1 , LPMR2, T1 and T2)

9: Update all the metrics (LPMR1 , LPMR2, T1 and T2)

20: Update all the metrics (LPMR1, LPMR2, T1 and T2)

1: // Initially measure the metrics

6: // Case I when both L1 and L2 layer need an optimization

11: // Case II when only L1 layer needs an optimization

16: // Case III when no layer needs to optimize and overprovision may need to reduce

26: Until (End)

17: // δ is a positive value

23: If (T1 ≥ LPMR1 ≥ T1 δ)

22: // Case IV when no layer needs to optimize and no overprovision needs to reduce

25: Endif

15: Until (LPMR1 ≤ T1)

10: Until (LPMR1 ≤ T1 or LPMR2 ≤ T2)

24: End the algorithm

5: // LPM optimization loop

21: Until (LPMR1 ≥ T1 δ )

Fig. 3. Pseudo-code of the LPM algorithm

CPU Interface

Hit Concurrency DetectorCache

MSHR Miss Concurrency Detector

C-AMAT analyzer

Fig. 4. The C-AMAT Detecting System

Only when LPMR1 is more than T1 and LPMR2 is more

than T2, the optimizations of the L1 layer and L2 layer are

needed at the same time.

After each optimization, all the metrics are updated to

decide if it is necessary to continue optimizing. An interesting

point should be stressed in the diagram of Fig. 3 when

LPMR1 < T1. Note that δ is a positive value. The value

of δ can be set according to the contention status among the

applications for the shared underlying hardware. If LPMR1

is smaller than its threshold value T1 by more than delta,

we know that hardware has been over provided. This step is

optional, but we include it in the algorithm for completeness.

Therefore, we present the method for matching the application

data access requirement with the underlying memory system

with an optimized effort in a cost-efficient manner.

Note that all the steps are conducted on-line to adapt to the

dynamic behavior of the applications. The LPMR reduction

885884884884884884



algorithm is called periodically for each time interval. The time

interval size can be set with a trade-off between performance

improvement and optimization cost. The cost here is due to

implementation of a reconfiguration operation or a scheduling

operation.

Based on the GEM5 simulator, we implemented a re-

configurable 16-core CMP, with four cycles cost for each

reconfiguration operation and 40 cycles for each scheduling. In

our experiment, for hardware approach, we found that when

the interval size is set to 10 cycles, 96% of the burst data

access patterns can be perceived and processed timely. When

the interval size is set to 20 cycles, 89% of the burst data

access patterns can be perceived and processed timely. For

software approach, when the interval size is set to 40 cycles,

73% of the burst data access patterns can be perceived and

processed timely.

Generally, a matching of A and B, can be achieved by

reorganizing A to match B, or reorganizing B to match A, or

simultaneously reorganizing A and B to agree to each other. In

practice, for layered performance matching, if the architecture

configuration is A, and the application data access pattern is

B. The method optimizing A is the hardware approach, the

method optimizing B is the software approach, and the method

optimizing both A and B is the mixed approach.

For hardware approach, the architecture configuration can

be adapted on-line to the data access patterns of the applica-

tions. On the other hand, for software approach, the architec-

ture configuration is fixed but with heterogeneity, and through

scheduling can also achieve a better match of the underlying

memory systems for better performance. The scheduling can

be implemented in two manners. We can schedule across

heterogeneous processors to allocate application data access

pattern to its suitable underlying hardware. Alternatively, we

can reorganize data accesses at the memory controllers to re-

shape application data access pattern to adapt to its underlying

hardware. Both of them belong to the optimizing B method.

The LPM algorithm in Fig. 3 is general and can be imple-

mented in both hardware and software or a mixed approach.

If the hardware can be improved, the optimization can be

achieved easily by improving the five parameters of C-AMAT

to increase data access concurrency and locality. If we assume

the underlying hardware configuration is fixed, the LPM-based

optimization can be conducted via software by exploring and

utilizing heterogeneity of the underlying hardware. However,

the condition of T1 and T2 may not be met via pure software

optimization.

As will be shown in the next section, the LPM algorithms

can facilitate architecture design space exploration to avoid ex-

hausting search and over providing hardware parallelism, and

also can facilitate software scheduling to achieve application

awareness and heterogeneity awareness.

The optimization potential of hardware approach and soft-

ware approach is determined by their available design space

size. In most cases, the design space of the hardware approach

is much larger than that of the software approach, and thus the

former has a much larger room for performance improvement

and the condition of T1 and T2 may not be met via pure

software optimization.

The optimization in the hardware approach is through

directly increasing hardware parallelism while the optimization

in the software approach is through scheduling to find a best

match.

In next section, two representative case studies for LPM

optimization are conducted. Case Study I uses hardware ap-

proach on reconfigurable architectures. Case Study II deploys

software approaches in heterogeneous environments.

V. CASE STUDIES

The modern cycle-accurate simulator GEM5 [18] is used

to provide an appropriate full system performance simulation.

A detailed out-of-order CPU model and DRAMSim2 modual

in the GEM5 simulator were adopted to achieve the most

accurate simulation results. The C-AMAT analyzer is an add-

in component of the simulation, where detectors for both hits

and misses are implemented. SPEC CPU2006 benchmark suite

[19] is used in our simulations. The benchmarks are compiled

using GCC 4.3.0 and the -O3 optimization level, and are

executed using reference input sets. For each benchmark, 10

billion instructions were sampled [15].

A. Case Study I: LPM Optimization on Reconfigurable Archi-
tecture

Based on the C-AMAT definition and LPM definition, op-

timal hardware configurations can be found for each program

to mitigate the memory-wall impact.

There are dozens of parameters in computer architecture,

and each parameter can be set to different values. For brevity

of discussion, only six architecture parameters are explored,

that is, MSHR numbers, IW size, ROB size, L1 cache port

number, L1 cache interleaving, and pipeline issue width. Pro-

vided that each parameter can be set with 10 different values,

the design space size is 106. There are one million different

configurations, thus making the design space quite large.

Exhausting search is not an option, and an LPM optimization

algorithm becomes a must.

TABLE I
LPMRS UNDER CONFIGURATIONS WITH INCREMENTAL PARALLELISM

Configuration A B C D E

Pipeline issue width 4 4 6 8 8
IW size 32 64 64 128 96

ROB size 32 64 64 128 96
L1 cache port number 1 1 2 4 4

MSHR numbers 4 8 16 16 16
L2 cache interleaving 4 8 8 8 8

LPMR1 8.1 6.2 2.1 1.2 1.4
LPMR2 9.6 9.3 3.1 1.6 1.9
LPMR3 6.4 8.1 5.8 2.3 2.6

Under five configurations A to E, Table I shows the average

LPMRs for 410.bwaves benchmark from SPEC CPU 2006. Let

us cruise the general LPM algorithm Fig. 3 in the architecture

design space exploration. The goal of the optimization is to

keep the data stall time per instruction within 1% × CPIexe.

886885885885885885



Firstly, in current time interval, LPMRs are measured for each

application. Table I states the LPMRs in a memory hierarchy

under configuration A. Initially, both the LPMRs are higher

than the threshold values so that the optimizations are carried

in both layers at the same time.

We transform the architecture from configuration A to B

in Table I. However, the mismatches are still higher than

their thresholds. Then we continue reduction and transform

to configuration C. The mismatch now in L2 layer is already

less than its threshold value. Therefore, we no longer need

continue reducing LPMR2, and only need to focus on L1

layer mismatch.

We increase IW, ROB, L1 cache port number and pipeline

width. Configuration C is the first scheme meets the 10%

requirement we found in the architecture exploration. The data

stall time is 9.6% of CPIexe. Until this moment, the coarse-

grained optimization is completed.

If more hardware parallelism is available, we can continue

the optimization; then configuration D is found that meets the

“1%” requirement. The data stall cost is already small. As

an optional step, we continue to check if hardware is over

provided. According to the LPM algorithm, we do a fine tune

to reduce possible hardware overprovision to achieve cost-

efficiency, which leads to the final configuration E which meets

the “1%” requirement with minimal hardware cost.

The LPMR1 is reduced from 8.1 in the first configuration

to 1.2 in the fourth configuration. With LPMR reduction

algorithm, the design space exploration has a clear goal. That

is, to present a minimum but enough hardware parallelism to

achieve the layered performance matching; this avoids blind

hardware overprovision while accommodating application di-

versity.

As future architectures support hardware configurability,

future architecture parameters can be adjusted to reduce LPMR

at each layer of a memory hierarchy [16]. The LPM algorithm

is practically feasible. It is also effective, since it is uniquely

based on a quantitative measurement of the combined impact

of data locality and concurrency. The search for optimal

parameters can be guided by the LPM model. The LPM model

is innovative because it has quantified the layered matching

degree and thus we can decide which parameter should be

optimized on demand.

In next subsection, a case study, from application-aware

and hierarchy-aware perspective, is presented to illustrate the

method to ease the layered performance mismatch via the

software approach.

B. Case Study II: LPM Optimization on Heterogeneous Level-
1 Caches

We show an example of LPM optimization on heteroge-

neous L1 caches. Multiple cores with different L1 cache size

are called NUCA (Non-Uniform Cache Access architecture).

We assume a multi-core architecture with heterogeneous L1

data caches.

As shown in Fig. 5, in our case study II, there are four

different computing units with each unit has four cores. The

4 KB 4 KB 4 KB 4 KB 16 KB

32 KB 32 KB 32 KB 32 KB
64 KB

64 KB

64 KB

64 KB

16 KB16 KB16 KB

Computing unit Group-4 Computing unit Group-2

Computing unit Group-1 Computing unit Group-3

Fig. 5. CMP (16-core) with different private data cache size

A
P

C
1

0.008

0.108

0.208

0.308

0.408

0.508

0.608

0.708

4 KB 16 KB 32 KB 64 KB

Fig. 6. APC1 of the applications running on cores with different L1 data
cache size

L1 data cache size of each different unit is 4 KB, 16 KB, 32

KB, and 64 KB, respectively. We set delta as T1×50%. We

measure LPMR1 and LPMR2 on each of the four different

computing units. Fig. 6 shows the APC values of the L1 layer,

and Fig. 7 shows the APC values of the L2 layer, on different

computing units.

From Fig. 6 and Fig. 7, we have the following two ob-

servations. First, the optimal private data cache sizes are not

all the same for different applications. For example, 4 KB is

large enough for 401.bzip2, but 64 KB is needed for 403.gcc to

achieve the optimal memory performance (in terms of APC1).

Second, the L2 cache performances (in terms of APC2) of

some applications are sensitive to their private data cache sizes,

while those of others are not. For example, the APC2 values

of 401.bzip2 are stable while that of 403.gcc decreases in each

step, and that of 429.mcf drops to its final APC value at the

first cache size increase.

For 416.gamess, increasing L1 data cache size can improve

its performance and reduce its L2 cache bandwidth require-

ment (in terms of APC2) noticeably. However, for 433.milc,

increasing L1 data cache size will get little performance

improvement and has little influence on L2 cache bandwidth

requirement (in terms of APC2).

Based on the above observations, the scheduling policy of

NUCA may significantly affect the memory performance of

an application and its interferences with others. Following the

LPM algorithm, we have a two-fold scheduling process: first

for L1, in order to get the optimal memory performances for

all the applications, the applications are assigned to the cores

to get LPMR1 as small as possible according to their cache

size needs, rather than allocating randomly; second for L2,

887886886886886886



A
P

C
2

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1 4 KB 16 KB 32 KB 64 KB

Fig. 7. APC2 of the applications running on cores with different L1 cache
size

to reduce the contention in the L2 cache, the applications

are assigned to cores to get APC2 requirement as small as

possible (corresponding to LPMR2 as large as possible).

For a given application, there may have a tradeoff between

obtaining a better performance and reducing its interfering

with others (assuming L2 is shared in our case studies). In

the LPM algorithm Fig. 3, we have considered this tradeoff

carefully, and we match LPMR1 before match LPMR2, and

try to match both.

The motivation behind the above two-fold scheduling is that

each program tries to obtain the optimal memory performance

with minimum amount of resource, and, in the meantime, the

assignment should have as little interference to other applica-

tions as possible. This comes at a tradeoff: sometimes, a pro-

gram can achieve its optimal performance with a small amount

of private resource; however, in this case, it will request more

shared resource and thus bring significant interference impact

on other applications. Therefore, there exists a semi-optimal

scheduling scheme to mitigate the overall memory-wall impact

on the overall performance of a computing system.

We use Harmonic Weighted Speedup Hsp [20] to evaluate

our design. Hsp strikes a balance between throughput and

fairness and thus has been widely used to evaluate the schemes

in a multiple program environment.

To maximize Hsp, LPM algorithm is implemented to pro-

vide a semi-optimal solution under an NUCA environment

and is referred to as the NUCA-aware scheduling algorithm

(NUCA-SA). Sixteen benchmarks of SPEC CPU2006 are

selected to run on the 16 cores of the architecture as shown

in Fig. 5.

It is a known fact that multiprocessor scheduling is an NP-

hard optimization problem. In practice, Random scheduling

and Round Robin scheduling are the wildly used scheduling

policies in both data-center and HPC environments.

As shown in Fig. 8, with fine-grain NUSA-SA, the through-

put of multiple programs is improved by 12.29 % compared

to Random and by 11.16 % compared to Round Robin. Fig. 8

also shows the result for coarse-grained NUSA-SA.

In the case study given above, the application-to-architecture

mapping space size is extremely large(equals to 63,063,000).

Using exhaustive search to find an optimal scheduling scheme

is not realistic. But, with the help of the LPM algorithm,

heterogeneity-aware scheduling has been achieved with poly-

H
sp

0.9106 0.8742 
0.7986 0.8192 

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

NUCA-SA (fg) NUCA-SA (cg) Random Round Robin

Fig. 8. Hsp of different scheduling schemes on an NUCA multiprocessor

nomial time complexity.

Aided by the LPM model, application awareness and het-

erogeneity awareness can be achieved. The multicore memory-

stall impacts are mitigated due to smarter utilizing of on-chip

resources and less contention for the shared resources. The

layered performance matching is shown to be feasible and

effective in reducing data stall time and surmounting memory

wall effect through of the case studies.

Based on the LPM algorithm, more and more specific

algorithms, not limited to the case studies in this section,

can be designed for diverse environments. As heterogeneous

multicore is becoming a mainstream for chip multiprocessors

[3], the LPM algorithm is a useful and timely tool for both

processor design and software development.

VI. RELATED WORK

We were the first group of researchers to report the

importance of memory system performance. In 1990, we

proposed the memory-bounded parallel speedup model [21],

also known as Sun-Ni’s law. The memory-bounded parallel

speedup model revealed that data access is the key factor

influencing performance, and scalable computing is bounded

by memory capacity. In 1994, the term memory wall was

formally introduced based on the Average Memory Access

Time (AMAT) model [1]. After twenty years of responding

to the memory-bound and memory-wall problem, intensive

research has been conducted to improve memory system

performance. Today, modern microprocessors utilize 80% or

more of their transistors for the on-chip cache rather than

computing components. Many advanced memory technologies

have been developed, including numerous concurrency driven

optimization technologies.

A formula is proposed to relate MLP to overall performance

[22]. The goal of [22] is similar to LPM, but there are

fundamental differences. The MLP metric is a special case

of Access Per Cycle (APC) [12] [13], which focuses on

measurement rather than analysis. LPM employs C-AMAT for

performance analysis and optimization. With C-AMAT, we can

unify and optimize the performance in pure miss ratio, pure

miss penalty, pure miss concurrency, and hit concurrency. In

addition to performance analysis, LPM proposes the notion

of Layered Performance Matching and provides a set of

888887887887887887



associated feasible measurements, optimization mechanisms,

and algorithms.

Scheduling heterogeneous multi-cores through performance

impact estimation (PIE) [23] requires a data stall time formula.

However, the PIE uses an approximate formula that is inaccu-

rate. LPM can provide an improved result of the scheduling

and will make the PIE more accurate.

With locality information, cache can be managed well by

[24]. While we acknowledge the contribution of [24], we found

that it only utilizes locality information and can be drastically

enhanced with a guide from the LPM model.

As data stall plays an important role in many hardware and

software design issues, an explicit expression of data stall time

which simultaneously considers both the impact of locality and

concurrency is urgently needed. The related works summarized

above are examples that will directly benefit from this study.

In summary, the LPM model captures the minimal re-

quirement for narrowing the disparity between computing and

data access and presents a novel method to conduct effective

optimizations. It is a promising tool to facilitate existing and

future techniques to reduce data stall time and to mitigate

the memory wall problem. The two case studies are general

and represent a large class of applications. They demonstrate

the potential of the LPM model in obtaining optimal and

semi-optimal solutions for the NP-hard problem of system

configuration design and scheduling.

VII. CONCLUSIONS

Concurrency technologies have been widely used in modern

memory systems. However, utilizing these technologies in

terms of overall performances and in terms of integrating with

data locality remains elusive and remains to be a research

issue. In this study, we propose a novel performance optimiza-

tion model, the Layered Performance Matching (LPM) model

for design optimization. LPM emphasizes the performance

matching between the layers of a hierarchical memory system

and considers the integrated impact of data concurrency and

locality. It is based on a data-centric view of computing and

can be used to diagnose and identify performance bottlenecks

in locality and/or concurrency of data accesses. The LPM

model and its associated LPM algorithm have been illustrated

with case studies. Experimental testing has confirmed and

demonstrated the feasibility and ingenuity of the LPM model

in memory system design and optimization.

LPM can be achieved by memory hardware reconfiguration,

or through appropriate scheduling of applications in a hetero-

geneous environment. The LPM approach is practical, feasible,

effective and is valuable in facilitating computing systems for

data-intensive applications.

In the future, we plan to investigate more applications of

LPM, including parallel file systems, reconfigurable chips,

and heterogeneous platforms. We also plan to explore various

methods to implement LPM, including memory parallelism

partition, selective cache replacement, in addition to the meth-

ods discussed in our case studies.

ACKNOWLEDGMENT

This work is supported in part by the National Science

Foundation, under grant CNS-1162540, grant CCF-0937877

and grant CNS-0751200.

REFERENCES

[1] W. A. Wulf and S. A. McKee, “Hitting the Memory Wall: Implications
of the Obvious,” ACM SIGARCH computer architecture news, vol. 23,
no. 1, pp. 20–24, 1995.

[2] S. A. McKee, “Reflections on the Memory Wall,” in Proceedings of the
1st conference on Computing frontiers. ACM, 2004, p. 162.

[3] S. Borkar and A. A. Chien, “The Future of Microprocessors,” Commu-
nications of the ACM, vol. 54, no. 5, pp. 67–77, 2011.

[4] N. Hardavellas, I. Pandis, R. Johnson, N. Mancheril, A. Ailamaki, and
B. Falsafi, “Database Servers on Chip Multiprocessors: Limitations and
Opportunities,” in Proceedings of the Biennial Conference on Innovative
Data Systems Research, no. 8, 2007.

[5] S. Somogyi, T. F. Wenisch, A. Ailamaki, and B. Falsafi, “Spatio-
temporal Memory Streaming,” in ACM SIGARCH Computer Architec-
ture News, vol. 37, no. 3. ACM, 2009, pp. 69–80.

[6] P. J. Denning, “The Working Set Model for Program Behavior,” Com-
munications of the ACM, vol. 11, no. 5, pp. 323–333, 1968.

[7] ——, “The Locality Principle,” Communications of the ACM, vol. 48,
no. 7, pp. 19–24, 2005.

[8] S. Gupta, P. Xiang, Y. Yang, and H. Zhou, “Locality Principle Revisited:
A Probability-based Quantitative Approach,” Journal of Parallel and
Distributed Computing, vol. 73, no. 7, pp. 1011–1027, 2013.

[9] X. Xiang, C. Ding, H. Luo, and B. Bao, “HOTL: A Higher Order Theory
of Locality,” in ACM SIGARCH Computer Architecture News, vol. 41,
no. 1. ACM, 2013, pp. 343–356.

[10] X.-H. Sun and D. Wang, “Concurrent Average Memory Access Time,”
Computer, vol. 47, no. 5, pp. 74–80, 2014.

[11] X.-H. Sun, “Concurrent-AMAT: A Mathematical Model for Big Data
access,” HPC Magazine, 2014.

[12] X.-H. Sun and D. Wang, “APC: A Performance Metric of Memory
Systems,” ACM SIGMETRICS Performance Evaluation Review, vol. 40,
no. 2, pp. 125–130, 2012.

[13] D. Wang and X. Sun, “Apc: A novel memory metric and measurement
methodology for modern memory system,” IEEE Transactions on Com-
puters, vol. 63, no. 7, pp. 1626–1639, 2014.

[14] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quanti-
tative Approach. Elsevier, 2012.

[15] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
Characterizing Large Scale Program Behavior,” ACM SIGARCH Com-
puter Architecture News, vol. 30, no. 5, pp. 45–57, 2002.

[16] Y. Wu, Y.-J. Chen, T.-S. Chen, Q. Guo, and L. Zhang, “An Elastic
Architecture Adaptable to Various Application Scenarios,” Journal of
Computer Science and Technology, vol. 29, no. 2, pp. 227–238, 2014.

[17] Y.-H. Liu and X.-H. Sun, “Reevaluating Data Stall Time with the Con-
sideration of Data Access Concurrency,” Journal of Computer Science
and Technology, vol. 30, no. 2, pp. 227–245, 2015.

[18] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The Gem5
Simulator,” ACM SIGARCH Computer Architecture News, vol. 39, no. 2,
pp. 1–7, 2011.

[19] C. D. Spradling, “SPEC CPU2006 Benchmark Tools,” ACM SIGARCH
Computer Architecture News, vol. 35, no. 1, pp. 130–134, 2007.

[20] K. Luo, J. Gummaraju, and M. Franklin, “Balancing Thoughput and
Fairness in SMT Processors.” in ISPASS, vol. 1, 2001, pp. 164–171.

[21] X.-H. Sun and L. M. Ni, “Another View on Parallel Speedup,” in
Supercomputing’90., Proceedings of. IEEE, 1990, pp. 324–333.

[22] Y. Chou, B. Fahs, and S. Abraham, “Microarchitecture Optimizations
for Exploiting Memory-level Parallelism,” in ACM SIGARCH Computer
Architecture News, vol. 32, no. 2. IEEE Computer Society, 2004, p. 76.

[23] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer,
“Scheduling Heterogeneous Multi-cores through Performance Impact
Estimation (PIE),” ACM SIGARCH Computer Architecture News,
vol. 40, no. 3, pp. 213–224, 2012.

[24] G. Kurian, O. Khan, and S. Devadas, “The Locality-aware Adaptive
Cache Coherence Protocol,” ACM SIGARCH Computer Architecture
News, vol. 41, no. 3, pp. 523–534, 2013.

889888888888888888


