
Performance Under Failures of High-End Computing
Ming Wu†, Xian-He Sun†‡ and Hui Jin†

Department of Computer Science†
Illinois Institute of Technology
Chicago, Illinois 60616, USA

Fermi National Accelerator Laboratory‡
Batavia, Illinois 60510-0500

{wuming, sun, hjin6}@iit.edu

ABSTRACT
Modern high-end computers are unprecedentedly complex.
Occurrence of faults is an inevitable fact in solving large-scale
applications on future Petaflop machines. Many methods have
been proposed in recent years to mask faults. These methods,
however, impose various performance and production costs. A
better understanding of faults’ influence on application
performance is necessary to use existing fault tolerant methods
wisely. In this study, we first introduce some practical and
effective performance models to predict the application
completion time under system failures. These models separate the
influence of failure rate, failure repair, checkpointing period,
checkpointing cost, and parallel task allocation on parallel and
sequential execution times. To benefit the end users of a given
computing platform, we then develop effective fault-aware task
scheduling algorithms to optimize application performance under
system failures. Finally, extensive simulations and experiments
are conducted to evaluate our prediction models and scheduling
strategies with actual failure trace.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Fault tolerance, Performance
attributes, Reliability

General Terms
Performance, Reliability.

Keywords
Fault-tolerance, Failure Modeling, Application Performance.

1. Introduction
Computing capacity is essential to understand the universe

and to improve the quality of life. Teraflop computers, which are
capable of executing one trillion (1012) floating point operations
per second (TFlops), are in workplaces. Petaflop systems (1015)
are also on the horizon. These high-end computers are
unprecedentedly complex, highly parallel with tens of thousands

of CPUs, tera- or peta-bytes of main memory, and tens of peta-
bytes of storage. In addition, they are often used coordinately and
collectively over the Internet to support modern computing
paradigms, such as Grid computing, peer-to-peer computing, and
service oriented computing. While these high-end parallel and
distributed systems are able to deliver unprecedented computation
power, any failure of any of their components may lead to a
system failure. Recent research shows that in a parallel system
composed of thousands of nodes, the system failure happens
several times a day [15]. As the size of parallel and distributed
systems continually grows, the Mean Time to Failure (MTTF) can
drop to a few hours, even minutes [9]. The impact of system
failure is becoming an increasingly important factor of application
performance, especially for large-scale scientific applications.

Many methods exist to increase the reliability and mitigate
the performance loss of computing systems. From the hardware
point of view, we may deploy replicas or adapt more expensive
but more reliable hardware to increase the system reliability.
From software point of view, we can provide the support of
checkpointing, process migration, and program restart to mitigate
the performance loss [10, 14]. Checkpointing stores a snapshot of
the current application state and use it for restarting the execution
in case of failure. Process migration moves a process from one
node to another node. Program restart is to restart an application
at another machine. They can be used collaboratively or
individually to provide a fault-tolerant environment. These fault-
tolerant methods mitigate the performance loss of system failures
and, in the meantime, they also impose various performance and
production costs. The overhead and effectiveness of the
underlying fault tolerant environment determine the impact of
system failures on application performance. Designing an optimal
fault tolerant environment, however, is elusive and application
dependent. For example, a computing node can be used in parallel
processing to increase computing power, or used as a replica to
increase the reliability, or reserved and kept idle for possible
process migration. How to utilize this node for best performance
is not a trivial question. A better understanding of faults’
influence on application performance is a necessity for designing
an optimal fault tolerate environment.

We conduct research in modeling and optimization of
performance under failure in this study. We first develop some
practical and effective performance models to predict the
application completion time under system failures. These models
separate the influence of failure arrival, failure repair,
checkpointing period, checkpointing cost, and parallel task
allocation on parallel and sequential execution times. Then,
performance optimization is conducted at both the system-level

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

hjin
Typewritten Text
ACM/IEEE SuperComputing Conference(SC'07),2007

hjin
Typewritten Text

hjin
Typewritten Text

hjin
Typewritten Text

hjin
Typewritten Text

hjin
Typewritten Text

and user-level. At the system-level, we use the newly derived
models to investigate the effects of different system parameters on
application performance, use them as a guideline to build cost-
effective fault-tolerant computing systems. At the user-level, we
study how to optimize application performance under a given
computing environment. Fault-aware task scheduling algorithms
are developed to allocate tasks to appropriate resources.
Analytical and experimental results show these modeling and
optimization mechanisms work well. They provide a feasible
solution for improving performance under failure of high-end
computing.

This paper is organized as follows. In Section 2, we
introduce a general failure model and extend it for a specific
failure handling scenario where the checkpointing cost is further
divided into rollback cost and storage cost. We derive formulas to
calculate the optimal checkpoint period. In Section 3, we
investigate the effect of different system parameters on
application performance. We propose some fault-aware task
scheduling algorithms in Section 4. In Section 5, simulations and
experiments are conducted to verify the correctness of our
analytical models and test the efficiency of the proposed
scheduling algorithms. Related works are discussed in Section 6.
Finally, we conclude this study and discuss future works in
Section 7.

2. The Models of Performance under Failure
In general, a system failure is a non-deterministic event and

can not be described by deterministic models. Probability models
are thus applied in this study. We use an M/G/1 process [7] to
describe system failures. Based on the common assumption in
reliability engineering that the time for different components in a
computer system to fail is usually exponentially distributed (or
the occurrence of failures is essentially random) [4, 19], we
assume that the arrival of failures follows a Poisson distribution
with fλ , and the downtime of failures follows a general

distribution with mean fµ and standard deviation fσ , which

is a generalization on the exponential downtime distribution used
in [4,19]. Notice that fλ is the reverse of MTBF (Mean Time

Between Failure) and fµ reflects MTTR (Mean Time To

Recovery). Checkpointing has been widely used as the key fault
tolerant technology in high-end computing. We focus on
modeling the performance influence of checkpointing in this
study. Depending on the implementation of checkpointing
mechanisms, checkpointing can be performed at either system-
level or application-level. The checkpointing frequency can be
fixed (periodically) or adaptive (adjust at run time). This will lead
to different checkpointing cost. To address this concern, we first
build a general failure model where the checkpoint/recovery cost
follows a general distribution. Then, we assume checkpointing is
performed periodically and model the impact of different
checkpointing parameters on the application performance
separately. This more detailed model can be used to determine the
best checkpointing strategy. Its derivation process also illustrates
how to build other specific failure models from the general model.

Let w denote the application workload in terms of execution
time. We assume that the checkpoint/recover cost follows a

general distribution with mean cµ and standard deviation cσ .
Here the checkpoint/recover cost refers to the time required by the
system to recover the application from the last checkpoint to the
failure point. In this situation, suppose the application’s execution
is interrupted by failures S times, the completion time of the
application can be expressed as

1 1 1 2 2 2 ... (1)s s sT X Y Z X Y Z X Y Z L= + + + + + + + + + +
 where)1(SiX i ≤≤ are the computing time consumed by the

application,)1(SiYi ≤≤ are the downtime of system failures,

)1(SiZ i ≤≤ are the checkpoint/recover cost after failure

interruption and L is the execution time of the last application

process that finishes the application. Since we have

LXXw +++= ...21 , we get

1 2 1 2... ... (2)S sT w Y Y Y Z Z Z= + + + + + + + +

Under the assumption of the M/G/1 failure processing, we
can get the first and second moments of)1(SiYi ≤≤ using
existing results from queueing theory,

ff

f
iYE

µλ
µ

−
=

1
)(,

3

22
2

)1(
)(

ff

ff
iYE

µλ
µσ

−

+
= .

The mean and variance of T can be obtained through the
following expression (See Appendix for proof):

1() () (3)
1 f c

f f

E T wλ µ
λ µ

= +
−

2 2
2 2

3() (2) (4)
1(1)

f f f c
c c f

f ff f

V T w
µ σ µ µ

µ σ λ
λ µλ µ

+
= + + +

−−
.

The cumulative distribution function of the application
completion time is expressed as:

Pr() Pr(| 0)Pr(0) Pr(| 0)Pr(0)T t T t S S T t S S≤ = ≤ = = + ≤ > >

.Since wfeS λ−==)0Pr(, we have

(5)
(1)Pr(() | 0) Pr()

0,

f fw we e U S t w S if t wT t
otherwise

λ λ− −⎧ + − ≤ − > ≥⎪≤ = ⎨
⎪⎩

where

⎩
⎨
⎧

>+++++
=

=
0,...

0,0
)(

2211 SifZYZYZY
Sif

SU
SS

,
and (See Appendix for proof)

2()
(() | 0) (6)

(1)1 f

f f c f c f
w

f f

E U S S w
e λ

λ µ µ λ µ µ

λ µ −

+ −
> =

− −

2 2
2 2

3(() | 0) (2) (7)
1(1) 1 f

f f f c f
c c w

f ff f

w
V U S S

e λ

µ σ µ µ λ
µ σ

λ µλ µ −

+
> = + + +

−− −

The first term on the right-side of Formula (5) is the
performance without failure interruption. The second term,

),0|)(Pr()1(>−≤− − SwtSUe wfλ is the performance with the
failure interruptions. Based on [6], the Gamma distribution is an
appropriate distribution to describe the)0|)(Pr(>≤ SuSU .

When the application is a parallel task, its execution time,
T , is the maximum of its sub-task completion times. In this
study, we assume that the parallel job is composed of one single
parallel phase with no communication or synchronization
requirements other than the final synchronization, which occurs
when all of the tasks have completed. Assuming m nodes are used
for parallel computing, T can be expressed as

},...2,1,{ mkTMaxT k == .

Assuming the failure occurrences of different nodes are
independent, the probability of the parallel task finish with time t
is equal to

1

Pr() Pr({ , 1, 2,... }) Pr() (8)
m

k k
k

T t Max T k m t T t
=

≤ = = ≤ = ≤∏

where kT is the subtask execution time on node km .

Checkpointing is often conducted periodically with some
fixed interval. A challenging problem, then, is how to determine
an appropriate checkpoint period. The selection of an optimal
checkpoint period may depend on many factors, such as the time
to save and restore the application status, the arrival rate of
failures, the failure downtime distribution, and the users’
performance requirement. To identify the impact of these factors
on checkpointing period, we need to further explore our proposed
models. In formula (1), the checkpointing cost refers to all the
system overhead incurred in order to recover application status
from the last check point. It may include the time needed for the
system to perform checkpointing and the time needed for the
application to run from the last checkpoint to the failure point. To
distinguish these two types of cost, we name the former as storage
cost and the later as rollback cost. Thus, the application
completion time under failure can be expressed as

1 1 1 2 2 2
1

... () (9)
J

s s s c
i

T X Y Z X Y Z X Y Z L T i
=

= + + + + + + + + + + +∑
where J is the total number of checkpoints during application

execution and)(iTc is the time needed for the system to

perform checkpoint at thi time. The storage cost consists of the
cost of store and reload of the computing image. We can assume
that the storage cost is a constant independent of the length of the
checkpointing period. Suppose that the checkpointing period is γ
and the storage cost is α , we get

1 2 1 2... ... (10)S s
wT w Y Y Y Z Z Zα
γ

= + + + + + + + + +

Because the failure arrival follows Poisson distribution, the time
between the last checkpoint and the first failure point (rollback
cost) during a checkpointing period follows exponential
distribution. Thus we can calculate the mean of rollback cost,

1 (11)
(1)

f f

fc
f

e e
e

λ γ λ γ

λ γ
λγµ

λ

− −

−

− −
=

−
 Then, we have

1 1() () (12)
1 (1)

f f

f
f f

e eE T w
e

λ γ λ γ

λ γ

α λγ
λ µ γ

− −

−

− −
= + +

− −
2 2

2 2
3() (2) (13)

(1) 1
f f f c

c c f
f f f f

V T w
µ σ µ µ

µ σ λ
λ µ λ µ
+

= + + +
− −

For given fλ , fµ , α , and w ,)(TE can be viewed as a

function of γ . By solving the function () 0E T
γ

∂
=

∂
, we can find

the optimal checkpointing period to minimize the expected
application execution time.

3. Effect of System Parameters on Parallel
Task Completion Time

Equipped with the models derived in Section 2, we are now
ready to examine the effects of different system parameters on
application performance.

Using the probability expression (5) in Section 2, we are able
to evaluate the distribution of parallel task completion time T
analytically. The impact of system parameters on the mean and
STD (standard deviation) of application completion time is
investigated. Recall, the Gamma distribution can be used to
approximate the random variable () | 0k kU S S > [6], and the
mean and standard deviation is given by expressions (12) and (13).
Six parameters are examined in our computations: failure rate,
failure downtime, number of nodes, storage cost, workload on
each node, and checkpointing period. In each figure, two of the
six parameters are examined. The remaining parameters, if not
specified, are assumed as the default values. The default values
are listed below:

 Failure rate on each node =1/(512) hour
 Failure down time=2 hours
 Number of Nodes = 128
 Storage cost α = 0.2 hour.

 Workload on each node = 128 hours
 Checkpointing period = 2 hours

The default values for failure arrive rate and failure downtime are
obtained by studying the failure data provided by Los Alamos
National Lab [8]. The failure data is collected from 22 high-

performance computing systems between 1996 and November
2005. We set the default value of the storage cost based on the
actual performance of BlueGene/L [12].

Figure 1 illustrates the effect of coefficient of failure rate and
downtime on mean parallel completion time. The application
completion time is reduced with the decreasing of either failure
rate or downtime. When the failure rate is high, reducing failure
rate can lead to a significant improvement on application
performance. However, if the failure rate is low, the effect of
failure rate on application completion time is negligible. A similar
conclusion can be found for the failure downtime. From Figure 1,
we can also observe that failure downtime has more effect on
application performance than failure rate. For instance, at the
point where the failure rate is 1/256 per hour and the down time is
8-hour, if we reduce the downtime to 4-hour, the application
expected completion time decrease from 326.0 hour to 225.5 hour.
If we reduce the job failure rate to 1/512, the application
completion is only reduced to 266.1 hour.

The effect of storage cost and failure rate on mean parallel
completion time is shown in Figure 2. The parallel task
completion time decreases when the storage cost decreases for a
given failure rate. For a given storage cost, reducing the failure
rate can lead to the decrease of task completion time. However,
when the storage cost increases, it becomes a dominant factor in
determining the application performance. There is a near linear
relation between parallel completion time and storage cost when
the failure rate is very low for a given workload. This indicates
when failure rate is lower than a threshold, its effect becomes
negligible, and more attention should be paid to reducing the
storage cost.

The parallel task completion time for different checkpointing
periods is given in Figure 3. We can find that there is an optimal
point to achieving the best task completion time for each failure
rate. Similar result has been observed for failure downtime and
storage cost. Please note that the value of this optimal
checkpointing period is independent of workload and the number
of nodes. Figure 4 plots the parallel completion time with
different number of nodes and failure rate with the fixed default
checkpointing period. We can see for most situations, the number
of nodes has more effect on the application performance than
failure rate. For instance, at the point where the failure rate is
1/256 per hour and the system size is 256-nodes, if we increase
the system size to 512-nodes, the application expected completion
time decrease from 42.5 hour to 26.4 hour. If we reduce the job
failure rate to 1/512, the application completion is only reduced to
40.1 hour. Only when the system size is very large, the failure
rate per node may play an important role in impacting the parallel
task completion time.

The effect of the number of nodes and the application
workload on the STD of parallel task completion time is given in
Figure 5. We notice that, when the number of nodes and the
workload at each node are both kept at a higher level, the changes
of the STD of parallel task completion time is minor. This
observation indicates that our models remain stable for large-scale
computing systems.

Figures 1-5 illustrate the influence of failures on application
performance. Using the prediction formulas of performance under
failure, we can design appropriate fault tolerant environments and

are able to answer the question posted in Section 1: given the
possibility to be used in computing, replica, and migration, how
should we utilize a computing node for best performance under
failure. Let us try to solve it. Suppose the system is homogeneous.
The system size is N and the total application workload is W .
If the node is used for computing, according to formula (8), the
expected application execution time is

∏
+

=

≤=≤
1

1

)Pr()Pr(
N

i
k tTtT where the subtask workload is

reduced from NW / to)1/(+NW . If the node is used as a
replica, then the expected application time is

))Pr()Pr(1(*)Pr()Pr(1

1

1

tTtTtTtT NN

N

i
k >>−≤=≤ +

−

=
∏ ,

where the subtask workload remains as NW / . If the node is
reserved as a backup resource, the expected application execution

is ∏
=

≤=≤
N

i
k tTtT

1

)Pr()Pr(, where the failure repair time is

reduced from fµ to fP µ)1(1− . Here 1P is the probability

that only one node in the system is failed at any time. Notice that
if there is only one node failed, we can always migrate the
application from the failed node to the backup node without
waiting for the repair of failure. By calculating the application
completion time with different fault handling strategies, we can
find the most appropriate method for best application performance.
For example, when N =10, W =1280 hours, and the repair time
is 0.5 hour, the expected application execution time is 128.60,
141.29 and 140.83 hours, if the extra node is used for computing,
replica and backup, respectively. In this case, we can gain a better
performance by adding the node as a computing node. However,
if N =100, W =6400 hour, and the repair time is 4 hours, the
execution time for the three approaches is 108.22, 109.01, and
97.05 hours. We find that using the node as backup resource can
achieve the best performance.

Figure 1. Mean of the application completion time with
different failure rates and downtimes

1/64 1/256 1/512 1/1024 1/20480

200

400

600

800

1000

1200

Failure Arrive Rate(1/hour)

E
(T

)

downtime =0.5h
downtime =1h
downtime =2h
downtime =4h
downtime =8h
downtime =16h

4. Fault-aware Task Partition and Scheduling
By quantitatively analyzing the effect of different system

reliability parameters on application performance, the proposed
models can provide a guideline to choose the best system
configuration and failure handling mechanisms. However, most of
the users may not have the authority to configure a system. Even
if they do, different computing resources may have different
failure rates and fault tolerance costs. Scheduling tasks
appropriately among computing resources will reduce execution
time. For this reason, we study fault-aware task scheduling in this
section.

In a parallel and distributed environment, task scheduling is
responsible for selecting a set of appropriate machines and
distributing the application workload onto each resource. A good
scheduling decision can significantly improve performance.
Unfortunately, most existing task scheduling systems don’t
consider the impact of failure on application performance [1]. In
conventional scheduling algorithms, a tacit assumption is that the
underlying computing system is reliable and fault penalty is not a
factor of performance. When fault penalty is a factor of
performance, as for large-scale parallel and distributed systems,
conventional scheduling becomes obsolete and fault-aware
scheduling algorithms need to be developed. These fault-aware
scheduling algorithms can be derived based on the failure models
introduced in Section 2.

Several fault-aware scheduling algorithms have been
developed to serve different needs. Fault-aware scheduling of a
sequential job is relatively simple: estimate the expectation and
variance of the application completion time on all machines and
then choose the machine with the smallest sum of these two. In
parallel system, the parallel task completion time is decided by
the maximum subtask completion time. We use the equal-time
partition strategy [18], which partitions the parallel task w into

subtasks with workload kw for machine km such that the same
mean subtask completion time can be reached at each machine.
The subtask workload kw is calculated as

,

, , ,

,

1 , , ,

1
()
1

 (14)
1

()
1

f k
k

c k c k f k
k q

f k
k

k c k c k f k

w w

ρ
τ

ρ ρ ρ
ρ

τ
ρ ρ ρ=

−
+ −

=
−

+ −∑

where kfkfkf ,,, µλρ = and kckfkc ,,, µλρ = (See Appendix

for proof). kf ,µ and kc,µ are the mean downtime and

checkpoint/recover time on machine km .

Figure 6 shows the scheduling algorithm for a single parallel
application with a given degree of parallelism (under our
assumption of one subtask for one machine, the degree of
parallelism equals the number of machines or subtasks used for
the parallel processing). Let q denote the number of available
machines and p denote the number of subtasks. We need to go

through p
qC possible machine sets to get an optimal task

scheduling decision. When the application workload can be

Figure 4. Mean of the application completion time
with different number of nodes and failure rates

64 256 512 1024 20480

50

100

150

200

N um ber of N odes

E(
T)

fa ilure arrive rate=1/64
failure arrive rate=1/128
failure arrive rate=1/256
failure arrive rate=1/512
failure arrive rate=1/1024
failure arrive rate=1/2048

Figure 3. Mean of the application completion time
with different checkpointing periods and failure rates

0.5 1 2 3 4 5 6 7 8130

140

150

160

170

180

C heckpointing P eriod(hour)

E
(T

)

fa ilure arrive rate=1/64
failure arrive rate=1/128
failure arrive rate=1/256
failure arrive rate=1/512
failure arrive rate=1/1024
failure arrive rate=1/2048

Figure 2. Mean of the application completion time
with different failure rates and storage costs

1/641/256 1/512 1/1024 1/2048130

135

140

145

150

155

160

Failure Arrive Rate(1/hour)

E
(T

)

 storage cost=0.5min
storage cost=1min
storage cost=2min
storage cost=4min
storage cost=8min
storage cost=16min

Figure 5. STD of the application completion time
with different workload and system sizes

0
1000

2000
3000

4000

0

100

200

300
0

20

40

60

80

100

Number of NodesWorkload(hour)

ST
D

(T
)

20

40

60

80

100

partitioned arbitrarily into any number of subtasks, we can
develop a scheduling algorithm for optimal parallel processing.

To achieve an optimal scheduling plan, we need to search q2
possible degree of parallelisms and machine combinations. The
cost is quite high when the machine set is large.

A heuristic task-scheduling algorithm, as shown in Figure 7,

is proposed to find a near optimal solution with a reasonable cost.
The algorithm has two basic steps. The first step is to sort each

powerful machine according to
kfkckc

kkf

,,,

,

1
)1(
ρρρ
τρ

−+

−
.

kfkckc

kf

,,,

,

1
)1(
ρρρ

ρ
−+

−
 indicates how much percent of a

machine’s CPU resource is available for the application and kτ
is the machine’s computing power. So the production of

kfkckc

kf

,,,

,

1
)1(
ρρρ

ρ
−+

−
 and kτ stands for the amount of the

machine’s computing power available to the application execution.

A higher value
kfkckc

kkf

,,,

,

1
)1(
ρρρ

τρ
−+

−
 of a machine indicates

the corresponding machine has more available computing power
and thus should be considered first. The second step of this
algorithm is to use the bi-section search to find the local optimal
based on the ordering.

Assumption: solving a parallel task on p machines.
Each machine only hosts one subtask.
Objective: Scheduling a parallel task on a given number
of machines

Begin
Given a set of idle machines;

},{ ,21 qmmmM K=
List all the possible sets of machines,

},,{ 21 zSSSS K= , MSi ⊂ and pSi =|| ;

1=′p ;

For each machine set kS)1(zk ≤≤ ,
Use equal-time partition to assign the application
workload to each machine in kS ;
Calculate the mean and coefficient of variation of
the remote task completion time,

)).(1)((
kk SS TCoeTE + , approximating

)0|)(Pr(>≤ kk SuSU with the Gamma
distribution;
If ()(1 .()) ()(1 .())

p p k kS S S SE T Coe T E T Coe T
′ ′

+ > + , then

kp =′ ;
End For
Assign the parallel task to the machine set pS ′ ;

End

Figure 6. Parallel fault-aware task scheduling algorithm
with a given number of subtasks

Assumption: a parallel task can be partitioned into any size
of subtasks. Each subtask will be assigned to a machine
respectively.
Objective: scheduling a parallel task heuristically to reach a
semi-optimal performance

Begin
List a set of idle machines in the order of their reliability
over an observed time period, },{ ,21 qmmmM K= ;
Sort the list of idle machines in an decreasing order with

kfkckc

kkc

,,,

,

1
)1(
ρρρ

τρ
−+

−
, },{' ,21 qcccM K= ;

1=a , }
)(*4

|,min{|
,, kckf

wMb
µµ +

′= ;

Repeat
 ⎣ ⎦2/)(bac +=

 /*)(xf denotes)).(1)(()()(xCxC TCoeTE + where

},{)(,21 xcccxC K= */

 If)}(),(),(min{)(cfbfafaf = then cb =
 Else If)}(),(),(min{)(cfbfafbf = then

ca =
 Else If)1()(+< cfcf then cb =
 Else ca =
Until ba =+1
If)()(bfaf < then
 Assign parallel task to the machine set)(aC ;

Else Assign parallel task to the machine set)(bC ;

End

Figure 7. A heuristic fault-aware task scheduling algorithm

5. Experimental Results
To verify the correctness and effectiveness of the newly

proposed models and scheduling algorithms, we have conducted
extensive experiments and simulations. We first build a
simulation environment to verity the proposed failure models. We
then measure their prediction accuracy with actual system failure
data collected at the Los Alamos National Lab [8]. At the end, we
evaluate the efficiency of the proposed fault-aware task partition
and scheduling strategies.

Two performance metrics are generally used in the literature
to evaluate the accuracy of a prediction model. One is percentage
prediction error, which is defined as

|Pr|
tMeasuremen

tMeasuremenediction− [17]. Another is square prediction

error, which is defined as
2)(Pr tMeasuremenediction − [DiHa00, Wols98]. For

large-scale applications, the square prediction error could be very
big even for excellent prediction. This is especially true for
scalable computing, where the square prediction error may
increase with the problem size. Percentage prediction error is a
more appropriate metric for large-scale applications and for
scalable computing. In our experiments, we are mainly concerned
about the effectiveness of failure models for large applications
with different sizes. Thus we choose the percentage prediction
error and simply call it prediction error throughout the study.

In our simulation, the mean of failure rate on each machine
ranges from 710*5.1 − to 710*5.4 − per second and the mean of
failure downtime ranges from 2 hours to 4 hours. These values are
set based on the observation of the failure rate and repair time
collected in [8]. The parameters on each machine are randomly
generated within their corresponding ranges so that the failure rate
and downtime on each machine are different. Figure 8 plots the
mean and the standard deviation of prediction error of parallel
task completion time under failure. The application workload on
each node ranges from 16 hours to 512 hours (without failure) and
the system size is 100 nodes. We observe that the prediction error
is relatively small, less than 10% for most of the situations. As the
application workload increases, both mean and variation of the
prediction error decrease, indicating our prediction models work
well for large-scale applications. When the number of processors,
or the system ensemble size, increases with problem size, the
results are even more encouraging. Figure 9 gives the mean and
the standard deviation of prediction error with different system
size where machine number increases from 25 to 800, where the
application workload increases with the system size, maintaining
an average of 32-hour workload on each node. As we can see, the
prediction error is all less than 10% for all system sizes. This
shows the potential of the prediction of performance under failure
for the upcoming Petaflops systems. In our simulation, we
examine different failure downtime distributions (Lognormal,
Exponential and Gamma). Similar results are observed. These
results demonstrate the correctness of the analysis of failure
models.

An interesting question is whether our proposed models can
be applicable in real situations since it is derived based on the
assumption that failure arrival is a Poisson distribution. To answer
this question, we conduct experiments on the failure trace
collected at the Los Alamos National Lab [8]. The LANL failure
trace is collected from 22 high-performance computing systems
between 1996 and November 2005. Most of these systems are
large clusters of NUMA and SMP nodes [15]. Using different
system parameters, i.e. the number of nodes, workload at each
node, etc, we did hundreds of experiments with the LANL failure
trace as the system failure and measured the average prediction
error of the performance under failure. The number of nodes used
in our experiments is ranged from 32 to 512. Most of the failure
trace we used belongs to different LANL systems, so we can
assume the failures are independent. The values for other system
parameters, i.e. storage cost, checkpointing period, etc, are set the
same as those in Section 3. In the experiment, we use failure data
between year 2004 and 2005. According to [15], failure might
have different patterns at different stages of life. For the data at
[8], most systems were in their relatively stable ages during 2004
to 2005.

In Figure 10, we demonstrate the prediction error for
different numbers of nodes, where the workload at each node is
set as 128 hours. We can find that the prediction error remains
low. As the number of nodes increases, we find the prediction
error getting smaller. Moreover, when the number of nodes is 512,
we obtain a prediction error less than 1%. We can conclude our
model is stable with the increase of the number of nodes. Figure
11 illustrates the prediction error for different workload at each
node, where the number of nodes is set as 128. We observed that
with the increase of workload, the prediction error decreases.

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

pr
ed

ic
tio

n
er

ro
r

25 50 100 200 400 800

system size

mean
std

Figure 9. Mean and STD of prediction error with different
machine numbers

Figure 8. Mean and STD of prediction error with
different workloads

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

p
r
e
d
i
ct
i
o
n

e
r
r
o
r

16 32 64 128 256 512

workload on each node (hours)

mean

std

Simulations are conducted to test the efficiency of the
proposed fault-aware scheduling algorithms. We use lognormal
distribution to characterize the resource failure downtime, which
is the best fit for the empirical CDF of downtime in the data [15].
We compare the performance of five scheduling strategies: fault-
aware, random, speed-only, reliability-only, and speed-reliability:

• Fault-aware: the proposed heuristic fault-aware scheduling
algorithms given in Figure 7.

• Random: machines are randomly selected for task scheduling.
• Speed-only: machines are selected for task allocation based
on their speeds. For example, when the number of parallel
processes is 10, the first 10 fastest machines are selected for task
allocation in speed-only scheduling.

• Reliability-only: machines are selected for task allocation
based on reliability, which is defined to be the probability that the
machine is not failed during execution.

• Speed-reliability: The selection criterion is the production of
speed and reliability.
In this experiment, we set the system size as 100 and 1000
respectively. Each node has a different computing power and a
heterogeneous failure arrival and repair pattern. The fastest
machine runs 5 times faster than the slowest machine. The failure
rate range and the downtime range are the same as the above
simulation. At each system size, we schedule a parallel task with
different processes numbers. Table 1 gives the average
application execution time (hours) over 30 simulations for each
scheduling algorithm. We can see from Table 1 that the proposed
fault-aware scheduling has the lowest application completion time

among the scheduling algorithms in all tests. Straightforward
fault-sensitive scheduling algorithms, such as the speed-reliability
algorithm, may not work well. The superiority of the fault-aware
scheduling is due to the modeling presented in Section 2. An
interesting phenomenon observed in the experiment is that when
the size of parallel processing (the number of parallel processes)
is small, the second best scheduling is the speed-only scheduling
instead of speed-reliability. This is because failure arrival and
repair has little effect on application performance in a small-scale
system. Simply using the production of speed and reliability as
the resource selection criterion may exaggerate the impact of
failure on application performance, thus leading to an
inappropriate decision. However, as the size of parallel processing
increase (200 for example), the speed-reliability scheduling
outperforms the speed-only scheduling.

6. Related work
Understanding the impact of failures and fault tolerant

mechanisms is an active research area. Young gives a simple
model to analyze the expected total lost time due to failure and
checkpointing. However, his model does not consider the failure
repair time on application performance. Duda has studied the
impact of both checkpointing and failure repair on application
performance [4]. A limitation of his model is the assumption that
the failure repair time following exponential distribution, where
exponential distribution is a poor fit for fair repair time [15].
Recently, Garg and Huang proposed a checkpointing model to
minimize the completion time of a program assuming a general
distribution of failure arrival [5]. As the Young and Duda’s
models, Garg and Huang’s model only provides the mean of
application completion time of a sequential program. The
variation and cumulative density function of the application
completion time are not identified in the above three models,
which make it impossible to apply these models for parallel
processing. The assumption about the exponential repair time in
Duda’s model is later relaxed by Nicola, Kulkarni and Trivedi [11]
to a general distribution by using a “structure-state” process to
describe the transition among different failure states, and the
Laplace-Stieltjes transform of the application execution time
subject to failures is derived. The application of their models in
practice, however, is elusive due to the challenge of obtaining the
semi-Markov process of failure states, which also prevents the
analysis of checkpointing mechanism on the application
performance. Moreover, their models focus on the impact of
failures on the system performance instead of individual

Application Execution Time (hours)

100 nodes 1000 nodes
Scheduling

Methodology
10 20 40 100 200 400

Fault-aware 314.7 207.8 168.4 370.2 256.0 228.5
Random 612.0 351.6 221.3 695.4 451.9 372.3

Speed-only 362.5 239.4 182.8 486.7 348.8 287.1
Reliability-

only 472.2 277.2 185.1 545.7 339.6 262.4

Speed-
reliability 449.0 275.6 184.3 524.2 332.8 259.5

Figure 10. Prediction error with different machine
numbers using failure data from LANL systems

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

P
r
e
d
i
c
t
i
o
n

E
r
r
o
r

32 64 128 256 512

Number of Nodes

mean

Figure 11. Prediction error with different workloads
on each node using failure data from LANL systems

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

p
r
e
d
i
c
t
i
o
n

e
r
r
o
r

32 64 128 256 512

workload on each node(hour)

mean

Table 1. Application execution time with different scheduling
strategies

applications. In contrast, the model proposed in this study is based
on probability analysis and rigorous simulations [6]. The derived
formulas in Section 2 are not only simple, but also easily
applicable in practice for both sequential and parallel computing.

Conventional task scheduling in distributed computing
traditionally do not consider system failure. Recently, some work
has been done in allocating task considering reliability, where
reliability is defined to be the probability that none of the system
components fails during execution. In [16], Srinivasan and Jha
proposed a heuristic allocation algorithm to maximize the task
allocation reliability. Dogan and Ozguner proposed two cost
functions in task scheduling to introduce the reliability of
resources into decision making [3], in which a reliable task-
machine pair is given a higher priority in task scheduling. The
potential resource failure probability has been considered in task
scheduling in BlueGene/L systems [12]. These works demonstrate
the significance of fault-aware task scheduling. However, their
scheduling strategies usually aim to improve the system
utilization/throughput at the presence of faults instead of
individual application performance. In contrast, our proposed
fault-aware scheduling algorithms improve the long-running
application performance under failure. In addition, our scheduling
decision is based on the impact of failure and the corresponding
failure handling mechanisms (checkpointing) on the application
execution time while their work is based on the application
performance loss due to failure, where the impact of failure
handling on application performance is ignored. They assume that
a resource remains in the failed state for the rest of application
execution once it fails.

7. Conclusions and Future Work
System failure has become an important factor of high-end

computing. In this research, through a systematic study, we
present a solution to improve performance under failure of high-
end computing. The solution is twofold, design optimal fault
tolerant environment and design optimal task scheduling. We first
introduce a performance model describing the effect of system
failure on the application completion time. The impact of machine
computing power, local failure pattern, and parallel task
allocation on the application completion time are individually
identified. Next, we extend our model further for a specific failure
handling strategy where checkpointing is periodically performed.
Based on the proposed models, we then derive performance
prediction formulas which provide the mean, variation, and CDF
of application completion time under failure in sequential and
parallel processing. These performance predictions provide a
foundation for design optimal fault tolerant systems and fault-
aware task scheduling. Finally, some optimal and heuristic fault-
aware scheduling algorithms are developed based on the
theoretical foundation.

Intensive simulation and experimental testing are conducted
using actual failure trace of high-end computers. The measured
experimental results match the analytical prediction closely. The
prediction error is kept less than 10% for a test consisting of
different values of different design factors. Conventional task
scheduling algorithms do not consider the failure/recover factor.
Our experimental results show that the improvement of the newly
proposed fault-aware scheduling is significant for large-scale
high-end computing systems, where failure rate is high.

This research of performance under failure is aimed to large-
scale parallel and distributed computing. It has a real potential for
the upcoming petaflop high-end computers and may have an
immediate impact on Grid computing. In Grid computing, or
other service oriented computing, a server that fails to deliver an
agreed service on time may not be due to a hardware or software
failure. It may be due to other factors, such as policy change and
local user interruption, etc. Therefore, the failure rate is high and
performance under failure is an immediate issue. In the future, we
plan to extend the current checkpointing-based application
performance model to other fault tolerant mechanisms such as
process migration and program restart. We are interested in
integrating the proposed failure models and task scheduling
algorithms with existing failure measurement and handling
mechanisms to develop an automated failure handling system in
parallel and distributed environments. We will collect failure data
in Grid and other distributed computing environments, and further
test the newly proposed fault-aware scheduling on both parallel
and distributed environments.

8. Acknowledgements
We would like to thank Dr. Bianca Schroeder and Dr. Garth

A. Gibson at Carnegie Mellon University for their help in analysis
of the failure data collected from production systems at Los
Alamos National Laboratory. This research was supported in part
by National Science Foundation under NSF grant EIA-0224377,
CNS-0406328, CNS0509118, and CCF-0621435. Fermi National
Laboratory is operated by Fermi Research Alliance, LLC under
Contract No. DE-AC02-07CH11359 with the United States
Department of Energy.

9. References
[1] Berman, F., Wolski, R., Casanova, H., Cirne, W., et al.
“Adaptive Computing on the Grid Using AppLeS,” IEEE
Transactions on Parallel and Distributed Systems. Vol 14, No4,
pp. 369-382, 2003.

[2] Dinda, P., and O'Hallaron, D. “Host load prediction using
linear models,” Cluster Computing, Vol 3, pp. 265-280, 2000.

[3] Dogan, A., and Ozguner, F. “Reliable matching and
scheduling of precedence-constrained tasks in heterogeneous
distributed computing,” In Proc. of the 29th International
Conference on Parallel Processing, pp. 307-314, Toronto,
Canada, Aug., 2000.

[4] Duda, A. “The Effects of Checkpointing on Program
Execution Time,” Information Processing Letters, vol. 16, pp.
221-229, June 1983.

[5] Garg, S., Huang, Y., Kintala, C., and Trivedi, K. S.,
“Minimizing Completion Time of a Program by Checkpointing
and Rejuvenation,” In Proc .of 1996 ACM SIGMETRICS
Conference, pp. 252-261, Philadelphia, PA, May 1996.

[6] Gong, L., Sun, X-H., and Waston, E. “Performance Modeling
and Prediction of Non-Dedicated Network Computing,” IEEE
Trans. on Computers, Vol 51, No 9, pp. 1041-1055, Sep., 2002.

[7] Gross, D., Harris, C. M., Fundamentals of Queuing Theory,
3rd Edition, John Wiley & Sons, 1998.

[8] Los Alamos National Laboratory, Operational Data to Support
and Enable Computer Science Research,
http://institute.lanl.gov/data/lanldata.shtml

[9] Lu, Charng-da “Scalable Diskless Checkpointing for Large
Parallel Systems,” Ph.D dissertation, Department of Computer
Science, University of Illinois at Urbana-Champaign, 2005.

[10] Milojicic, D. S., Douglas, F., Paindaveine, Y., Wheeler, R.,
and Zhou, S. “Process Migration,” ACM Computing Surveys,
Volume 32, No 3, Sep., 2000.

[11] Nicola, V. F., Kulkarni, V. G., and Trivedi, K. S. “Queueing
Analysis of Fault-Tolerant Computer Systems,” IEEE Trans.
Software Engineering, Vol. SE-13, No. 3, pp. 363-375, 1987.

[12] Oliner, A., Sahoo, R. K., Moreira, J. E., Gupta, M., and
Sivasubramaniam, A. “Fault-Aware Job Scheduling for
BlueGene/L Systems,” in Proc. of the 18h IEEE International
Parallel and Distributed Processing Symposium , Santa Fe, New
Mexico, Apr., 2004.

[13] Oliner, A., Sahoo, P. K., Moreira, J.E., and Gupta M.,
“Performance Implications of Periodic Checkpointing on Large-
scale Cluster Systems,” in Proc. of the 19th IEEE International
Parallel and Distributed Processing Symposium, Denver,
Colorado, Apr., 2005.

[14] Pradhan, D.K. Fault-Tolerant Computer System Design,
Prentice Hall, Inc., 1996.

[15] Schroeder, B., and Gibson, G.A. “A large-scale study of
failures in high-performance computing systems,” in Proc. of the
2006 InternationalConferenceon Dependable Systems and
Networks, Philadelphia, PA, June 2006.

[16] Srinivasan, S.., and Jha, N.K. “Safety and Reliability Driven
Task Allocation in Distributed Systems,” IEEE Trans. Parallel
and Distributed Systems, Vol 10, No 3, pp. 238-251, 1999.

[17] Wolski, R. “Dynamically forecasting network performance
using the network weather service,” Cluster Computing, Vol 1, pp.
119-132, 1998.

[18] Wu, M., and Sun, X.-H. “Grid Harvest Service: A
Performance System of Grid Computing,” Journal of Parallel and
Distributed Computing, Vol. 66, No. 10, pp. 1322-1337, 2006.

[19] Young, J. W. “A First Order Approximation to the Optimal
Checkpoint Interval,” Comm. ACM, Vol. 17, No 9, pp. 530-531,
1974.

10. Appendix:
Proof of Formula 3

1 1 2 2

1 1

() ((|))
 (... |)
 (() ())

1 ()
1

S S

f c
f f

E T E E T S
E w Y Z Y Z Y Z S
E w SE Y SE Z

wλ µ
λ µ

=
= + + + + + + +
= + +

= +
−

Proof of Formula 4

1 1 1 1
2 2

1 1 1 1

1 1
2 2

1 1

() ((|)) ((|))
 ((() |)) ((() |)
 (() ()) (() ())

 () () (() ()

 2 () ())

 () () 2

f f f

f f

V T E V T S V E T S
E V w U S S V E w U S S
E SV Y SV Z V w SE Y SE Z

wV Y wV Z w E Y E Z

E Y E Z

wE Y wE Z

λ λ λ

λ λ λ

= +
= + + +
= + + + +

= + + +

+

= + + 1 1

2 2
2 2

3

() ()

 (2)
1(1)

f

f f f c
c c f

f ff f

wE Y E Z

w
µ σ µ µ

µ σ λ
λ µλ µ

+
= + + +

−−

Proof of Formula 6 and 7
Since

)0Pr()0|()0Pr()0|()(==+>>= SSTESSTETE

and

)0Pr()0|()0Pr()0|()(==+>>= SSTVSSTVTV
,
we can get

w

w

f

f

e
weTESTE λ

λ

−

−

−
−

=>
1

)()0|(,

wfe
TVSTV λ−−

=>
1

)()0|(.

Thus, we have the mean and variance of)(SU given
0>S

w
e

wSTESSUE

w

cf
ff

ff

fλ

µλ
µλ

µλ

−−

+
−

=

−>=>

1
1

)0|()0|)((

2 2
2 2

3

(() | 0) (| 0)

 =(2)
1(1) 1 f

f f f c f
c c w

f ff f

V U S S V T S
w

e λ

µ σ µ µ λ
µ σ

λ µλ µ −

> = >

+
+ + +

−− −

Proof of formula (14)

Let b denotes the expected subtask completion time. Using
formula (3), we have,

k

k

kf

kfkckc

k

k
kckf

kfkf

w

wb

τρ
ρρρ

τ
µλ

µλ

)
1

1
(

)
1

1(

,

,,,

,,
.,

−

−+
=

+
−

=

Because ∑∑
== −+

−
==

q

k kfkckc

kf
k

q

k
k bww

1 ,,,

,

1

)
1

1
(

ρρρ
ρ

τ ,

we can get

∑
= −+

−
= q

k kfkckc

kf
k

wb

1 ,,,

,)
1

1
(

ρρρ
ρ

τ
.

Thus, the subtask workload kw is calculated as

ww q

k kfkckc

kf
k

k
kfkckc

kf

k

∑
= −+

−
−+

−

=

1 ,,,

,

,,,

,

)
1

1
(

)
1

1
(

ρρρ
ρ

τ

τ
ρρρ

ρ

 .

