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ABSTRACT 
Modern high-end computers are unprecedentedly complex. 
Occurrence of faults is an inevitable fact in solving large-scale 
applications on future Petaflop machines. Many methods have 
been proposed in recent years to mask faults. These methods, 
however, impose various performance and production costs. A 
better understanding of faults’ influence on application 
performance is necessary to use existing fault tolerant methods 
wisely. In this study, we first introduce some practical and 
effective performance models to predict the application 
completion time under system failures. These models separate the 
influence of failure rate, failure repair, checkpointing period, 
checkpointing cost, and parallel task allocation on parallel and 
sequential execution times. To benefit the end users of a given 
computing platform, we then develop effective fault-aware task 
scheduling algorithms to optimize application performance under 
system failures. Finally, extensive simulations and experiments 
are conducted to evaluate our prediction models and scheduling 
strategies with actual failure trace. 

Categories and Subject Descriptors 
C.4 [Performance of Systems]: Fault tolerance, Performance 
attributes, Reliability 

General Terms 
Performance, Reliability. 

Keywords 
Fault-tolerance, Failure Modeling, Application Performance. 

1. Introduction 
Computing capacity is essential to understand the universe 

and to improve the quality of life. Teraflop computers, which are 
capable of executing one trillion (1012) floating point operations 
per second (TFlops), are in workplaces. Petaflop systems (1015) 
are also on the horizon. These high-end computers are 
unprecedentedly complex, highly parallel with tens of thousands 

of CPUs, tera- or peta-bytes of main memory, and tens of peta-
bytes of storage. In addition, they are often used coordinately and 
collectively over the Internet to support modern computing 
paradigms, such as Grid computing, peer-to-peer computing, and 
service oriented computing. While these high-end parallel and 
distributed systems are able to deliver unprecedented computation 
power, any failure of any of their components may lead to a 
system failure. Recent research shows that in a parallel system 
composed of thousands of nodes, the system failure happens 
several times a day [15]. As the size of parallel and distributed 
systems continually grows, the Mean Time to Failure (MTTF) can 
drop to a few hours, even minutes [9]. The impact of system 
failure is becoming an increasingly important factor of application 
performance, especially for large-scale scientific applications. 

Many methods exist to increase the reliability and mitigate 
the performance loss of computing systems. From the hardware 
point of view, we may deploy replicas or adapt more expensive 
but more reliable hardware to increase the system reliability. 
From software point of view, we can provide the support of 
checkpointing, process migration, and program restart to mitigate 
the performance loss [10, 14]. Checkpointing stores a snapshot of 
the current application state and use it for restarting the execution 
in case of failure. Process migration moves a process from one 
node to another node. Program restart is to restart an application 
at another machine. They can be used collaboratively or 
individually to provide a fault-tolerant environment. These fault-
tolerant methods mitigate the performance loss of system failures 
and, in the meantime, they also impose various performance and 
production costs. The overhead and effectiveness of the 
underlying fault tolerant environment determine the impact of 
system failures on application performance. Designing an optimal 
fault tolerant environment, however, is elusive and application 
dependent. For example, a computing node can be used in parallel 
processing to increase computing power, or used as a replica to 
increase the reliability, or reserved and kept idle for possible 
process migration. How to utilize this node for best performance 
is not a trivial question. A better understanding of faults’ 
influence on application performance is a necessity for designing 
an optimal fault tolerate environment.  

We conduct research in modeling and optimization of 
performance under failure in this study. We first develop some 
practical and effective performance models to predict the 
application completion time under system failures. These models 
separate the influence of failure arrival, failure repair, 
checkpointing period, checkpointing cost, and parallel task 
allocation on parallel and sequential execution times. Then, 
performance optimization is conducted at both the system-level 
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and user-level. At the system-level, we use the newly derived 
models to investigate the effects of different system parameters on 
application performance, use them as a guideline to build cost-
effective fault-tolerant computing systems. At the user-level, we 
study how to optimize application performance under a given 
computing environment. Fault-aware task scheduling algorithms 
are developed to allocate tasks to appropriate resources. 
Analytical and experimental results show these modeling and 
optimization mechanisms work well. They provide a feasible 
solution for improving performance under failure of high-end 
computing.  

This paper is organized as follows. In Section 2, we 
introduce a general failure model and extend it for a specific 
failure handling scenario where the checkpointing cost is further 
divided into rollback cost and storage cost. We derive formulas to 
calculate the optimal checkpoint period. In Section 3, we 
investigate the effect of different system parameters on 
application performance. We propose some fault-aware task 
scheduling algorithms in Section 4. In Section 5, simulations and 
experiments are conducted to verify the correctness of our 
analytical models and test the efficiency of the proposed 
scheduling algorithms. Related works are discussed in Section 6. 
Finally, we conclude this study and discuss future works in 
Section 7. 

2. The Models of Performance under Failure 
In general, a system failure is a non-deterministic event and 

can not be described by deterministic models. Probability models 
are thus applied in this study. We use an M/G/1 process [7] to 
describe system failures. Based on the common assumption in 
reliability engineering that the time for different components in a 
computer system to fail is usually exponentially distributed (or 
the occurrence of failures is essentially random) [4, 19], we 
assume that the arrival of failures follows a Poisson distribution 
with fλ , and the downtime of failures follows a general 

distribution with mean fµ  and standard deviation fσ , which 

is a generalization on the exponential downtime distribution used 
in [4,19]. Notice that fλ  is the reverse of MTBF (Mean Time 

Between Failure) and fµ  reflects MTTR (Mean Time To 

Recovery). Checkpointing has been widely used as the key fault 
tolerant technology in high-end computing. We focus on 
modeling the performance influence of checkpointing in this 
study. Depending on the implementation of checkpointing 
mechanisms, checkpointing can be performed at either system-
level or application-level. The checkpointing frequency can be 
fixed (periodically) or adaptive (adjust at run time). This will lead 
to different checkpointing cost. To address this concern, we first 
build a general failure model where the checkpoint/recovery cost 
follows a general distribution. Then, we assume checkpointing is 
performed periodically and model the impact of different 
checkpointing parameters on the application performance 
separately. This more detailed model can be used to determine the 
best checkpointing strategy. Its derivation process also illustrates 
how to build other specific failure models from the general model. 

Let w  denote the application workload in terms of execution 
time. We assume that the checkpoint/recover cost follows a 

general distribution with mean cµ  and standard deviation cσ . 
Here the checkpoint/recover cost refers to the time required by the 
system to recover the application from the last checkpoint to the 
failure point. In this situation, suppose the application’s execution 
is interrupted by failures S  times, the completion time of the 
application can be expressed as 

1 1 1 2 2 2 ...              (1)s s sT X Y Z X Y Z X Y Z L= + + + + + + + + + +
  where )1( SiX i ≤≤ are the computing time consumed by the 

application, )1( SiYi ≤≤  are the downtime of system failures, 

)1( SiZ i ≤≤  are the checkpoint/recover cost after failure 

interruption and L  is the execution time of the last application 

process that finishes the application. Since we have 

LXXw +++= ...21 , we get 
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Under the assumption of the M/G/1 failure processing, we 
can get the first and second moments of )1( SiYi ≤≤ using 
existing results from queueing theory, 
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The mean and variance of T  can be obtained through the 
following expression (See Appendix for proof): 
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The cumulative distribution function of the application 
completion time is expressed as: 
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The first term on the right-side of Formula (5) is the 
performance without failure interruption. The second term, 

),0|)(Pr()1( >−≤− − SwtSUe wfλ  is the performance with the 
failure interruptions. Based on [6], the Gamma distribution is an 
appropriate distribution to describe the )0|)(Pr( >≤ SuSU .  

When the application is a parallel task, its execution time, 
T , is the maximum of its sub-task completion times. In this 
study, we assume that the parallel job is composed of one single 
parallel phase with no communication or synchronization 
requirements other than the final synchronization, which occurs 
when all of the tasks have completed. Assuming m nodes are used 
for parallel computing, T  can be expressed as  

},...2,1,{ mkTMaxT k == .   

Assuming the failure occurrences of different nodes are 
independent, the probability of the parallel task finish with time t  
is equal to 

1

Pr( ) Pr( { , 1, 2,... } ) Pr( )   (8)
m

k k
k

T t Max T k m t T t
=

≤ = = ≤ = ≤∏  

where kT  is the subtask execution time on node km . 

Checkpointing is often conducted periodically with some 
fixed interval. A challenging problem, then, is how to determine 
an appropriate checkpoint period. The selection of an optimal 
checkpoint period may depend on many factors, such as the time 
to save and restore the application status, the arrival rate of 
failures, the failure downtime distribution, and the users’ 
performance requirement. To identify the impact of these factors 
on checkpointing period, we need to further explore our proposed 
models. In formula (1), the checkpointing cost refers to all the 
system overhead incurred in order to recover application status 
from the last check point. It may include the time needed for the 
system to perform checkpointing and the time needed for the 
application to run from the last checkpoint to the failure point. To 
distinguish these two types of cost, we name the former as storage 
cost and the later as rollback cost. Thus, the application 
completion time under failure can be expressed as 
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1
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where J  is the total number of checkpoints during application 

execution and )(iTc  is the time needed for the system to 

perform checkpoint at thi  time. The storage cost consists of the 
cost of store and reload of the computing image. We can assume 
that the storage cost is a constant independent of the length of the 
checkpointing period. Suppose that the checkpointing period is γ  
and the storage cost is α , we get 

1 2 1 2... ...    (10)S s
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γ
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Because the failure arrival follows Poisson distribution, the time 
between the last checkpoint and the first failure point (rollback 
cost) during a checkpointing period follows exponential 
distribution. Thus we can calculate the mean of rollback cost, 
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For given fλ , fµ , α , and w , )(TE  can be viewed as a 

function of γ . By solving the function ( ) 0E T
γ

∂
=

∂
, we can find 

the optimal checkpointing period to minimize the expected 
application execution time. 

3. Effect of System Parameters on Parallel 
Task Completion Time 

Equipped with the models derived in Section 2, we are now 
ready to examine the effects of different system parameters on 
application performance.  

Using the probability expression (5) in Section 2, we are able 
to evaluate the distribution of parallel task completion time T 
analytically. The impact of system parameters on the mean and 
STD (standard deviation) of application completion time is 
investigated. Recall, the Gamma distribution can be used to 
approximate the random variable ( ) | 0k kU S S > [6], and the 
mean and standard deviation is given by expressions (12) and (13). 
Six parameters are examined in our computations: failure rate, 
failure downtime, number of nodes, storage cost, workload on 
each node, and checkpointing period. In each figure, two of the 
six parameters are examined. The remaining parameters, if not 
specified, are assumed as the default values. The default values 
are listed below: 

  Failure rate on each node  =1/(512) hour 
 Failure down time=2 hours 
 Number of Nodes = 128 
 Storage cost α = 0.2 hour. 

 Workload on each node = 128 hours 
 Checkpointing period = 2 hours 

The default values for failure arrive rate and failure downtime are 
obtained by studying the failure data provided by Los Alamos 
National Lab [8]. The failure data is collected from 22 high-



performance computing systems between 1996 and November 
2005. We set the default value of the storage cost based on the 
actual performance of BlueGene/L [12]. 

Figure 1 illustrates the effect of coefficient of failure rate and 
downtime on mean parallel completion time. The application 
completion time is reduced with the decreasing of either failure 
rate or downtime. When the failure rate is high, reducing failure 
rate can lead to a significant improvement on application 
performance. However, if the failure rate is low, the effect of 
failure rate on application completion time is negligible. A similar 
conclusion can be found for the failure downtime. From Figure 1, 
we can also observe that failure downtime has more effect on 
application performance than failure rate. For instance, at the 
point where the failure rate is 1/256 per hour and the down time is 
8-hour, if we reduce the downtime to 4-hour, the application 
expected completion time decrease from 326.0 hour to 225.5 hour. 
If we reduce the job failure rate to 1/512, the application 
completion is only reduced to 266.1 hour. 

The effect of storage cost and failure rate on mean parallel 
completion time is shown in Figure 2. The parallel task 
completion time decreases when the storage cost decreases for a 
given failure rate. For a given storage cost, reducing the failure 
rate can lead to the decrease of task completion time. However, 
when the storage cost increases, it becomes a dominant factor in 
determining the application performance. There is a near linear 
relation between parallel completion time and storage cost when 
the failure rate is very low for a given workload. This indicates 
when failure rate is lower than a threshold, its effect becomes 
negligible, and more attention should be paid to reducing the 
storage cost. 

The parallel task completion time for different checkpointing 
periods is given in Figure 3. We can find that there is an optimal 
point to achieving the best task completion time for each failure 
rate. Similar result has been observed for failure downtime and 
storage cost. Please note that the value of this optimal 
checkpointing period is independent of workload and the number 
of nodes. Figure 4 plots the parallel completion time with 
different number of nodes and failure rate with the fixed default 
checkpointing period. We can see for most situations, the number 
of nodes has more effect on the application performance than 
failure rate. For instance, at the point where the failure rate is 
1/256 per hour and the system size is 256-nodes, if we increase 
the system size to 512-nodes, the application expected completion 
time decrease from 42.5 hour to 26.4 hour. If we reduce the job 
failure rate to 1/512, the application completion is only reduced to 
40.1 hour. Only when the system size is very large, the failure 
rate per node may play an important role in impacting the parallel 
task completion time. 

The effect of the number of nodes and the application 
workload on the STD of parallel task completion time is given in 
Figure 5. We notice that, when the number of nodes and the 
workload at each node are both kept at a higher level, the changes 
of the STD of parallel task completion time is minor. This 
observation indicates that our models remain stable for large-scale 
computing systems. 

Figures 1-5 illustrate the influence of failures on application 
performance. Using the prediction formulas of performance under 
failure, we can design appropriate fault tolerant environments and 

are able to answer the question posted in Section 1: given the 
possibility to be used in computing, replica, and migration, how 
should we utilize a computing node for best performance under 
failure. Let us try to solve it. Suppose the system is homogeneous. 
The system size is N  and the total application workload is W . 
If the node is used for computing, according to formula (8), the 
expected application execution time is 

∏
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where the subtask workload remains as NW / . If the node is 
reserved as a backup resource, the expected application execution 

is ∏
=

≤=≤
N

i
k tTtT
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)Pr()Pr( , where the failure repair time is 

reduced from fµ  to fP µ)1( 1− . Here 1P  is the probability 

that only one node in the system is failed at any time. Notice that 
if there is only one node failed, we can always migrate the 
application from the failed node to the backup node without 
waiting for the repair of failure. By calculating the application 
completion time with different fault handling strategies, we can 
find the most appropriate method for best application performance. 
For example, when N =10, W =1280 hours, and the repair time 
is 0.5 hour, the expected application execution time is 128.60, 
141.29 and 140.83 hours, if the extra node is used for computing, 
replica and backup, respectively. In this case, we can gain a better 
performance by adding the node as a computing node. However, 
if N =100, W =6400 hour, and the repair time is 4 hours, the 
execution time for the three approaches is 108.22, 109.01, and 
97.05 hours. We find that using the node as backup resource can 
achieve the best performance. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Mean of the application completion time with 
different failure rates and downtimes 
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4. Fault-aware Task Partition and Scheduling 
By quantitatively analyzing the effect of different system 

reliability parameters on application performance, the proposed 
models can provide a guideline to choose the best system 
configuration and failure handling mechanisms. However, most of 
the users may not have the authority to configure a system. Even 
if they do, different computing resources may have different 
failure rates and fault tolerance costs. Scheduling tasks 
appropriately among computing resources will reduce execution 
time. For this reason, we study fault-aware task scheduling in this 
section.  

In a parallel and distributed environment, task scheduling is 
responsible for selecting a set of appropriate machines and 
distributing the application workload onto each resource. A good 
scheduling decision can significantly improve performance. 
Unfortunately, most existing task scheduling systems don’t 
consider the impact of failure on application performance [1]. In 
conventional scheduling algorithms, a tacit assumption is that the 
underlying computing system is reliable and fault penalty is not a 
factor of performance. When fault penalty is a factor of 
performance, as for large-scale parallel and distributed systems, 
conventional scheduling becomes obsolete and fault-aware 
scheduling algorithms need to be developed. These fault-aware 
scheduling algorithms can be derived based on the failure models 
introduced in Section 2.  

Several fault-aware scheduling algorithms have been 
developed to serve different needs. Fault-aware scheduling of a 
sequential job is relatively simple: estimate the expectation and 
variance of the application completion time on all machines and 
then choose the machine with the smallest sum of these two. In 
parallel system, the parallel task completion time is decided by 
the maximum subtask completion time. We use the equal-time 
partition strategy [18], which partitions the parallel task w  into 

subtasks with workload kw  for machine km  such that the same 
mean subtask completion time can be reached at each machine. 
The subtask workload kw  is calculated as 
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where kfkfkf ,,, µλρ =  and kckfkc ,,, µλρ = (See Appendix 

for proof). kf ,µ  and kc,µ  are the mean downtime and 

checkpoint/recover time on machine km . 

Figure 6 shows the scheduling algorithm for a single parallel 
application with a given degree of parallelism (under our 
assumption of one subtask for one machine, the degree of 
parallelism equals the number of machines or subtasks used for 
the parallel processing). Let q  denote the number of available 
machines and p  denote the number of subtasks. We need to go 

through p
qC  possible machine sets to get an optimal task 

scheduling decision. When the application workload can be 

Figure 4. Mean of the application completion time 
with different number of nodes and failure rates 
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Figure 3. Mean of the application completion time  
with different checkpointing periods and failure rates 
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Figure 2. Mean of the application completion time 
with different failure rates and storage costs 
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Figure 5. STD of the application completion time 
with different workload and system sizes 
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partitioned arbitrarily into any number of subtasks, we can 
develop a scheduling algorithm for optimal parallel processing. 

To achieve an optimal scheduling plan, we need to search q2  
possible degree of parallelisms and machine combinations. The 
cost is quite high when the machine set is large.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
A heuristic task-scheduling algorithm, as shown in Figure 7, 

is proposed to find a near optimal solution with a reasonable cost. 
The algorithm has two basic steps. The first step is to sort each 

powerful machine according to 
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 of a machine indicates 

the corresponding machine has more available computing power 
and thus should be considered first. The second step of this 
algorithm is to use the bi-section search to find the local optimal 
based on the ordering. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Assumption: solving a parallel task on p machines. 
Each machine only hosts one subtask. 
Objective: Scheduling a parallel task on a given number 
of machines 
------------------------------------------------------------------- 
 
Begin 
Given a set of idle machines; 

},{ ,21 qmmmM K=  
List all the possible sets of machines, 

},,{ 21 zSSSS K= , MSi ⊂  and pSi =|| ; 

1=′p ; 

For each machine set kS )1( zk ≤≤ , 
Use equal-time partition to assign the application 
workload to each machine in kS ; 
Calculate the mean and coefficient of variation of 
the remote task completion time, 

)).(1)((
kk SS TCoeTE + , approximating 

)0|)(Pr( >≤ kk SuSU  with the Gamma 
distribution; 
If ( )(1 .( )) ( )(1 .( ))

p p k kS S S SE T Coe T E T Coe T
′ ′

+ > + , then 

kp =′ ; 
End For 
Assign the parallel task to the machine set pS ′ ; 

End 

Figure 6. Parallel fault-aware task scheduling algorithm 
with a given number of subtasks 

Assumption: a parallel task can be partitioned into any size 
of subtasks. Each subtask will be assigned to a machine 
respectively. 
Objective: scheduling a parallel task heuristically to reach a 
semi-optimal performance 
-----------------------------------------------------------------------  
Begin 
List a set of idle machines in the order of their reliability 
over an observed time period, },{ ,21 qmmmM K= ; 
Sort the list of idle machines in an decreasing order with 
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1=a , }
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′= ; 

Repeat 
      ⎣ ⎦2/)( bac +=  

      /* )(xf  denotes )).(1)(( )()( xCxC TCoeTE +  where 

},{)( ,21 xcccxC K=  */ 

      If )}(),(),(min{)( cfbfafaf =  then cb =  
      Else If )}(),(),(min{)( cfbfafbf =  then 

ca =  
      Else If )1()( +< cfcf  then cb =  
      Else ca =  
Until ba =+1  
If  )()( bfaf <  then 
     Assign parallel task to the machine set )(aC ; 

Else Assign parallel task to the machine set )(bC ; 

End 

Figure 7. A heuristic fault-aware task scheduling algorithm 



5. Experimental Results 
To verify the correctness and effectiveness of the newly 

proposed models and scheduling algorithms, we have conducted 
extensive experiments and simulations. We first build a 
simulation environment to verity the proposed failure models. We 
then measure their prediction accuracy with actual system failure 
data collected at the Los Alamos National Lab [8]. At the end, we 
evaluate the efficiency of the proposed fault-aware task partition 
and scheduling strategies. 

Two performance metrics are generally used in the literature 
to evaluate the accuracy of a prediction model. One is percentage 
prediction error, which is defined as 

|Pr|
tMeasuremen

tMeasuremenediction−  [17]. Another is square prediction 

error, which is defined as 
2)(Pr tMeasuremenediction − [DiHa00, Wols98]. For 

large-scale applications, the square prediction error could be very 
big even for excellent prediction. This is especially true for 
scalable computing, where the square prediction error may 
increase with the problem size. Percentage prediction error is a 
more appropriate metric for large-scale applications and for 
scalable computing. In our experiments, we are mainly concerned 
about the effectiveness of failure models for large applications 
with different sizes. Thus we choose the percentage prediction 
error and simply call it prediction error throughout the study. 

In our simulation, the mean of failure rate on each machine 
ranges from 710*5.1 − to 710*5.4 −  per second and the mean of 
failure downtime ranges from 2 hours to 4 hours. These values are 
set based on the observation of the failure rate and repair time 
collected in [8]. The parameters on each machine are randomly 
generated within their corresponding ranges so that the failure rate 
and downtime on each machine are different. Figure 8 plots the 
mean and the standard deviation of prediction error of parallel 
task completion time under failure. The application workload on 
each node ranges from 16 hours to 512 hours (without failure) and 
the system size is 100 nodes. We observe that the prediction error 
is relatively small, less than 10% for most of the situations. As the 
application workload increases, both mean and variation of the 
prediction error decrease, indicating our prediction models work 
well for large-scale applications. When the number of processors, 
or the system ensemble size, increases with problem size, the 
results are even more encouraging. Figure 9 gives the mean and 
the standard deviation of prediction error with different system 
size where machine number increases from 25 to 800, where the 
application workload increases with the system size, maintaining 
an average of 32-hour workload on each node. As we can see, the 
prediction error is all less than 10% for all system sizes. This 
shows the potential of the prediction of performance under failure 
for the upcoming Petaflops systems. In our simulation, we 
examine different failure downtime distributions (Lognormal, 
Exponential and Gamma). Similar results are observed. These 
results demonstrate the correctness of the analysis of failure 
models. 

An interesting question is whether our proposed models can 
be applicable in real situations since it is derived based on the 
assumption that failure arrival is a Poisson distribution. To answer 
this question, we conduct experiments on the failure trace 
collected at the Los Alamos National Lab [8].  The LANL failure 
trace is collected from 22 high-performance computing systems 
between 1996 and November 2005. Most of these systems are 
large clusters of NUMA and SMP nodes [15]. Using different 
system parameters, i.e. the number of nodes, workload at each 
node, etc, we did hundreds of experiments with the LANL failure 
trace as the system failure and measured the average prediction 
error of the performance under failure. The number of nodes used 
in our experiments is ranged from 32 to 512. Most of the failure 
trace we used belongs to different LANL systems, so we can 
assume the failures are independent. The values for other system 
parameters, i.e. storage cost, checkpointing period, etc, are set the 
same as those in Section 3. In the experiment, we use failure data 
between year 2004 and 2005. According to [15], failure might 
have different patterns at different stages of life. For the data at 
[8], most systems were in their relatively stable ages during 2004 
to 2005. 

In Figure 10, we demonstrate the prediction error for 
different numbers of nodes, where the workload at each node is 
set as 128 hours. We can find that the prediction error remains 
low. As the number of nodes increases, we find the prediction 
error getting smaller. Moreover, when the number of nodes is 512, 
we obtain a prediction error less than 1%. We can conclude our 
model is stable with the increase of the number of nodes. Figure 
11 illustrates the prediction error for different workload at each 
node, where the number of nodes is set as 128. We observed that 
with the increase of workload, the prediction error decreases.  
 

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

pr
ed

ic
tio

n 
er

ro
r

25 50 100 200 400 800

system size

mean
std

Figure 9. Mean and STD of prediction error with different 
machine numbers 

Figure 8. Mean and STD of prediction error with 
different workloads 
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Simulations are conducted to test the efficiency of the 
proposed fault-aware scheduling algorithms. We use lognormal 
distribution to characterize the resource failure downtime, which 
is the best fit for the empirical CDF of downtime in the data [15]. 
We compare the performance of five scheduling strategies: fault-
aware, random, speed-only, reliability-only, and speed-reliability: 

• Fault-aware: the proposed heuristic fault-aware scheduling 
algorithms given in Figure 7. 

• Random: machines are randomly selected for task scheduling. 
• Speed-only: machines are selected for task allocation based 
on their speeds. For example, when the number of parallel 
processes is 10, the first 10 fastest machines are selected for task 
allocation in speed-only scheduling. 

• Reliability-only: machines are selected for task allocation 
based on reliability, which is defined to be the probability that the 
machine is not failed during execution. 

• Speed-reliability: The selection criterion is the production of 
speed and reliability.  
In this experiment, we set the system size as 100 and 1000 
respectively. Each node has a different computing power and a 
heterogeneous failure arrival and repair pattern. The fastest 
machine runs 5 times faster than the slowest machine. The failure 
rate range and the downtime range are the same as the above 
simulation. At each system size, we schedule a parallel task with 
different processes numbers. Table 1 gives the average 
application execution time (hours) over 30 simulations for each 
scheduling algorithm. We can see from Table 1 that the proposed 
fault-aware scheduling has the lowest application completion time 

among the scheduling algorithms in all tests. Straightforward 
fault-sensitive scheduling algorithms, such as the speed-reliability 
algorithm, may not work well. The superiority of the fault-aware 
scheduling is due to the modeling presented in Section 2. An 
interesting phenomenon observed in the experiment is that when 
the size of parallel processing (the number of parallel processes) 
is small, the second best scheduling is the speed-only scheduling 
instead of speed-reliability. This is because failure arrival and 
repair has little effect on application performance in a small-scale 
system. Simply using the production of speed and reliability as 
the resource selection criterion may exaggerate the impact of 
failure on application performance, thus leading to an 
inappropriate decision. However, as the size of parallel processing 
increase (200 for example), the speed-reliability scheduling 
outperforms the speed-only scheduling.  

 
 

 

6. Related work 
Understanding the impact of failures and fault tolerant 

mechanisms is an active research area. Young gives a simple 
model to analyze the expected total lost time due to failure and 
checkpointing. However, his model does not consider the failure 
repair time on application performance. Duda has studied the 
impact of both checkpointing and failure repair on application 
performance [4]. A limitation of his model is the assumption that 
the failure repair time following exponential distribution, where 
exponential distribution is a poor fit for fair repair time [15]. 
Recently, Garg and Huang proposed a checkpointing model to 
minimize the completion time of a program assuming a general 
distribution of failure arrival [5]. As the Young and Duda’s 
models, Garg and Huang’s model only provides the mean of 
application completion time of a sequential program. The 
variation and cumulative density function of the application 
completion time are not identified in the above three models, 
which make it impossible to apply these models for parallel 
processing. The assumption about the exponential repair time in 
Duda’s model is later relaxed by Nicola, Kulkarni and Trivedi [11] 
to a general distribution by using a “structure-state” process to 
describe the transition among different failure states, and the 
Laplace-Stieltjes transform of the application execution time 
subject to failures is derived. The application of their models in 
practice, however, is elusive due to the challenge of obtaining the 
semi-Markov process of failure states, which also prevents the 
analysis of checkpointing mechanism on the application 
performance. Moreover, their models focus on the impact of 
failures on the system performance instead of individual 

Application Execution Time (hours) 

100 nodes 1000 nodes 
Scheduling 

Methodology
10 20 40 100 200 400 

Fault-aware 314.7 207.8 168.4 370.2 256.0 228.5
Random 612.0 351.6 221.3 695.4 451.9 372.3

Speed-only 362.5 239.4 182.8 486.7 348.8 287.1
Reliability-

only 472.2 277.2 185.1 545.7 339.6 262.4

Speed-
reliability 449.0 275.6 184.3 524.2 332.8 259.5

Figure 10. Prediction error with different machine 
numbers using failure data from LANL systems 
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Figure 11. Prediction error with different workloads 
on each node using failure data from LANL systems
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Table 1. Application execution time with different scheduling 
strategies 



applications. In contrast, the model proposed in this study is based 
on probability analysis and rigorous simulations [6]. The derived 
formulas in Section 2 are not only simple, but also easily 
applicable in practice for both sequential and parallel computing.  

Conventional task scheduling in distributed computing 
traditionally do not consider system failure. Recently, some work 
has been done in allocating task considering reliability, where 
reliability is defined to be the probability that none of the system 
components fails during execution. In [16], Srinivasan and Jha 
proposed a heuristic allocation algorithm to maximize the task 
allocation reliability. Dogan and Ozguner proposed two cost 
functions in task scheduling to introduce the reliability of 
resources into decision making [3], in which a reliable task-
machine pair is given a higher priority in task scheduling. The 
potential resource failure probability has been considered in task 
scheduling in BlueGene/L systems [12]. These works demonstrate 
the significance of fault-aware task scheduling. However, their 
scheduling strategies usually aim to improve the system 
utilization/throughput at the presence of faults instead of 
individual application performance. In contrast, our proposed 
fault-aware scheduling algorithms improve the long-running 
application performance under failure. In addition, our scheduling 
decision is based on the impact of failure and the corresponding 
failure handling mechanisms (checkpointing) on the application 
execution time while their work is based on the application 
performance loss due to failure, where the impact of failure 
handling on application performance is ignored. They assume that 
a resource remains in the failed state for the rest of application 
execution once it fails. 

7. Conclusions and Future Work 
System failure has become an important factor of high-end 

computing. In this research, through a systematic study, we 
present a solution to improve performance under failure of high-
end computing. The solution is twofold, design optimal fault 
tolerant environment and design optimal task scheduling. We first 
introduce a performance model describing the effect of system 
failure on the application completion time. The impact of machine 
computing power, local failure pattern, and parallel task 
allocation on the application completion time are individually 
identified. Next, we extend our model further for a specific failure 
handling strategy where checkpointing is periodically performed. 
Based on the proposed models, we then derive performance 
prediction formulas which provide the mean, variation, and CDF 
of application completion time under failure in sequential and 
parallel processing. These performance predictions provide a 
foundation for design optimal fault tolerant systems and fault-
aware task scheduling. Finally, some optimal and heuristic fault-
aware scheduling algorithms are developed based on the 
theoretical foundation.    

Intensive simulation and experimental testing are conducted 
using actual failure trace of high-end computers. The measured 
experimental results match the analytical prediction closely. The 
prediction error is kept less than 10% for a test consisting of 
different values of different design factors. Conventional task 
scheduling algorithms do not consider the failure/recover factor. 
Our experimental results show that the improvement of the newly 
proposed fault-aware scheduling is significant for large-scale 
high-end computing systems, where failure rate is high.  

This research of performance under failure is aimed to large-
scale parallel and distributed computing. It has a real potential for 
the upcoming petaflop high-end computers and may have an 
immediate impact on Grid computing. In Grid computing, or 
other service oriented computing, a server that fails to deliver an 
agreed service on time may not be due to a hardware or software 
failure. It may be due to other factors, such as policy change and 
local user interruption, etc. Therefore, the failure rate is high and 
performance under failure is an immediate issue. In the future, we 
plan to extend the current checkpointing-based application 
performance model to other fault tolerant mechanisms such as 
process migration and program restart. We are interested in 
integrating the proposed failure models and task scheduling 
algorithms with existing failure measurement and handling 
mechanisms to develop an automated failure handling system in 
parallel and distributed environments. We will collect failure data 
in Grid and other distributed computing environments, and further 
test the newly proposed fault-aware scheduling on both parallel 
and distributed environments.  
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10. Appendix: 
Proof of Formula 3 
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Proof of Formula 4 
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Proof of Formula 6 and 7 
Since  
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Proof of formula (14) 

Let b  denotes the expected subtask completion time. Using 
formula (3), we have,  
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Thus, the subtask workload kw  is calculated as 
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