
Performance-Aware Data Placement in Hybrid
Parallel File Systems

Shuibing He12, Xian-He Sun2, Bo Feng2, Kun Feng2

1 School of Computer, Wuhan University, Wuhan, Hubei, China
2 Department of Computer Science, Illinois Institute of Technology, Chicago, IL, USA

{she11, sun, bfeng5, kfeng1}@iit.edu

Abstract. Hybrid parallel file systems (PFS), which consist of both
HDD and SSD servers, provide a promising solution for data-intensive
applications. In this study, we propose a performance-aware data place-
ment (PADP) strategy to enable efficient data layout in hybrid PFSs.
The basic idea of PADP is to dispatch data on different file servers with
adaptive varied-size file stripes based on the server storage performance.
By using an effective data access cost model and a linear programming
optimization method, the appropriate stripe sizes for each file server are
determined effectively. We have implemented PADP within OrangeFS,
a widely used parallel file system in HPC domain. Experimental results
of representative benchmark show that PADP can significantly improve
the I/O performance of hybrid PFSs.

Keywords: Parallel I/O System; Parallel File system; Solid State Drive

1 Introduction

Data I/O access is a key performance bottleneck of modern computer systems.
To tackle this problem, parallel file systems (PFS) have been proposed to speed
up large-scale data accesses. In many PFSs (e.g., OrangeFS [1] and Lustre [2]),
a file usually is distributed across multiple file servers with a fixed-size stripe.
When serving a client request concurrently by multiple nodes, the I/O band-
width is significantly aggregated and improved. However, while PFSs favor large
requests, they fail to perform well when serving clusters of small requests, es-
pecially random requests. Therefore, how to optimize PFS performance with
different I/O patterns is still a challenging task the high performance computing
(HPC) community is facing.

At the same time, newly emerged storage technologies, such as flash-based
solid state drives (SSD), provide a new opportunity for I/O system design. Com-
pared to traditional HDDs, SSDs have higher storage density, lower power con-
sumption, a smaller thermal footprint and orders of magnitude higher perfor-
mance [3]. However, it is not practical to replace HDDs completely with SSDs
in a large-scale HPC system for two reasons. First, building PFSs solely based
on SSDs may be too expensive for most systems. Second, HDDs have several

2 Shuibing He, Xian-He Sun, Bo Feng, Kun Feng

advantages that satisfy the demands of HPC well, such as large capacity, at-
tractive cost per storage unit, and decent peak bandwidth for large requests.
Therefore, hybrid PFSs that consists of HDD-based file servers (HServer) and
SSD-based file servers (SServer), provide a promising solution for data-intensive
applications [4, 5]. This kind of situation is especially common in low-cost clus-
ters, where cost is a critical issue and old components have to be used as much
as possible.

Although hybrid PFSs have brought new opportunities to many application
domains, there are many technical challenges yet to be solved before it is widely
adopted. One of the major issues is, with the limited SServer resources, how
to maximize the overall I/O system performance. Optimizing file system data
placement (layout) is one of the most effective way to reach this goal. Researchers
have made significant efforts to get an optimal data placement via adjusting the
file stripe size [6, 7], or file stripe distribution method [8]. All these techniques
introduce an optimal data layout based on application’s data access patterns and
guarantee the load-balance of all file servers. However, these approaches often
focus on homogeneous PFSs, there is little consideration toward the performance
difference among heterogeneous file servers in hybrid PFSs. For instance, for the
file stripe size adjustment problem addressed in [6–9], the solutions are based on
the assumption that all of the file servers are based on traditional HDDs.

However, in hybrid PFSs, the performance of each kind of file servers (i.e.,
HServer and SServer) varies significantly. A high-speed SServer can finish pro-
cessing and storing data in a local SSD of the server faster than the relatively
low-speed HServer. Traditional PFSs usually place a large file across multiple file
servers with a fixed-size stripe. These data placement schemes are suitable for
homogeneous environments, because they are able to provide concurrent I/O ac-
cesses and good load balance among multiple file servers. When applied to hybrid
PFSs where file servers are not identical fixed-size stripe placement schemes may
lead to severe load-imbalance among file servers and can significantly degrade
the I/O performance. As high-speed SServers spend plenty of time on waiting
the slower HServers during the I/O service, the potential of the hybrid PFSs is
not fully utilized.

In this paper, we propose a performance-aware data placement scheme (PADP)
to optimize the data placement in hybrid PFSs. Compared to traditional place-
ment schemes, PADP distributes file data on different file servers with appro-
priate varied-size stripes according to their storage performance. For heteroge-
neous system it is not easy to determine the appropriate stripe sizes for different
file servers. There are three main reasons. First, the performance of file server
can be impacted significantly by I/O patterns. Second, even under the same
I/O patterns, the performance between HServer and SServer can be different
due to their distinct storage media characteristics. Third, besides the storage
cost, the overall I/O performance is a function of the underlying network, which
should be considered when evaluating the data access performance. The proposed
performance-aware scheme takes the above three challenges into consideration
in the data placement on hybrid PFSs, and can minimize the overall I/O access

Performance-Aware Data Placement in Hybrid Parallel File Systems 3

time from a client point of view. In addition, it can be extended to systems
with other kinds of heterogeneous file servers, system configurations, and I/O
patterns.

Specifically, we make the following contributions.

– We develop an analytical model to evaluate the overall I/O completion time
of each data access in hybrid PFSs.

– Based on the cost model, we use a linear programing method to determine
the optimal stripe size for each file server.

– We propose a performance-aware data placement scheme with the optimal
stripe sizes to improve the hybrid file system performance.

– We implemented a prototype of PADP under OrangeFS, and evaluated its
performance with IOR benchmark. Extensive experimental results show that
PADP can significantly improve the I/O throughput of hybrid parallel file
systems.

The rest of this paper is organized as follows. Section 2 discusses the re-
lated work. The design and implementation of PADP is described in section 3.
Section 4 presents the performance evaluation with commonly used benchmark.
Finally, conclusions are summarized in section 5.

2 Related work

Optimizing data placement of parallel file system is an effective approach to im-
prove I/O performance. Parallel file systems usually provide several data place-
ment policies for different I/O workloads [8], such as simple stripe, two dimen-
sional stripe, and variable stripe. Data partition [10, 11] and replication [8, 12]
techniques are also widely used to optimize data placement on file servers consis-
tent with I/O workloads. Because data accesses for some scientific applications
usually show several regular patterns [13], some data placement optimization
techniques rely on the prior knowledge of data access patterns [9].

For applications that access I/O systems non-uniformly, simple stripe place-
ment schemes are not able to obtain high performance. Segment-level placement
scheme logically divides a file into several segments such that an optimal stripe
size is assigned for each segment with non-uniform access patterns [6]. Server-
level adaptive placement strategies adopt different stripe sizes on different file
servers to improve the overall I/O performance of parallel file systems [7]. How-
ever, this work is not suitable for systems built on heterogeneous file servers.
AdaptRaid addresses the load imbalance issue in heterogeneous disk array by
optimizing data distribution with adaptive number of blocks [14]. However, it
aims to reduce I/O latency rather than improving I/O bandwidth, and needs
not to consider the network cost in data accesses.

Because SSDs exhibit obvious performance benefits over traditional HDDs,
they are commonly integrated into parallel file system to improve I/O perfor-
mance. Currently, most SSDs serve as a cache to traditional HDDs [15, 16] or
persistent storage of file data [17,18]. Most of these techniques, however, are done

4 Shuibing He, Xian-He Sun, Bo Feng, Kun Feng

on a single file server. Our previous work CARL [4] selectively places file regions
with high access costs onto the SSD-based file servers at the I/O middleware
level.

All the aforementioned data placement techniques are effective in improving
the performance of parallel file systems. However, there is little effort devoted
on data placement in a hybrid parallel file system configured with HServers and
SServers.

3 Design and Implementation

3.1 The Basic Idea of PADP

The proposed data placement scheme, PADP, aims to optimize the file data
placement on heterogeneous file servers with varied-size stripes based on their
storage performance. Figure 1 shows the idea of PADP. Similar to traditional
data placement method, PADP dispatches the file data across file servers in a
round-robin fashion, but the high-performance SServers are expected to store
and process larger file stripes compared with low-performance HServers, so that
all the file servers can complete processing their I/O requests within about the
same time.

As we have mentioned previously, determining the appropriate stripe sizes
on heterogeneous file servers is not an easy task due to three reasons. First, the
file server performance can be impacted significantly by I/O patterns, such as
request size, I/O operation (read or write), number of processes, etc. Second,
the server performance is also related with their storage media characteristics.
HServer and SServer have different performance behaviors even under the same
I/O patterns. Finally, besides the storage cost, the overall I/O performance is a
function of the underlying network, which should be considered when evaluating
the data access performance. In order to address these issues, we first propose
an analytical model to evaluate the access time of file requests. Then we use a
linear programming method to determine the appropriate stripe size for each file
server. Finally we describe the performance-aware data layout scheme.

Process 0 (P0) data Process 1 (P1) data

Process 2 (P2) data Process 3 (P3) data

HServer HServer SServer SServer

Client node 0

P0 P1

Client node 1

P2 P3

Fig. 1. Performance-aware data placement with varied-size stripes

Performance-Aware Data Placement in Hybrid Parallel File Systems 5

3.2 Data Access Cost Analysis

Table 1. Parameters in cost analysis model

Symbol Meaning

p Number of client processes

c Number of processes on one I/O client node

m Number of HServers

n Number of SSServers

h Stripe size on HServer

s Stripe size on SServer

r Data size of one request

e Cost of single network connection establishing

t Network transmission cost of one unit of data

αh Startup time of one I/O operation on HServer

βh HDD transfer time per unit data

αs Startup time of one I/O operation on SServer

βs SSD transfer time per unit data

The cost is defined as the overall I/O time of each data access in hybrid
PFSs. Table 1 lists the related parameters. Compared with previous work [6], this
model is designed for heterogeneous environments. Please note that parameters
for different types of requests on different storage media are differentiated when
measuring the I/O time. The startup and transfer time are different between
HServer and SServer. Generally, αS is far smaller than αH , and βS is far greater
than βH because SSDs have no mechanical components. In addition, both αH

and αS can be different between random and sequential operations, as we discuss
in our experiments. Finally, while βH is the same for reads and writes, βS is
different for them because writes on SSDs lead to background activities like
garbage collection and wear leveling.

Before introducing the details of the model, we make following reasonable
assumptions. First, all client nodes are separated from file servers in the sys-
tem, which implies every data access involves network transmission. Second,
the application-level parallel operations in each node are handled serially at the
hardware layer, such as multiple network connections and storage accesses on
file servers. Third, each I/O request involves all file servers, so that all servers
can contribute to the aggregated I/O bandwidth. Assuming the stripe size of
HServer and SServer is h and s respectively, the size of the data access is r, then

m× h+ n× s = r (1)

6 Shuibing He, Xian-He Sun, Bo Feng, Kun Feng

The data access cost mainly includes two parts: the network transmission
time, TNET , and the storage access time, TSTOR. Generally, TNET consists of
TE and TX . TE is the network connection for data transmission, TX is the data
transfer time on network. TSTOR consists of TS and TT , the former is the startup
time, and the latter is the actual data operation (i.e., read/write) time on storage
media. Thus the cost of one data access can be described as follows.

T = TE + TX + TS + TT (2)

TE is determined by the number of establishing connections to each file server.
As each file server is accessed by p processes and the p network connections have
to be established serially, TE = pe . TX is determined by the amount of data
accessed on each file server. For HServer, TX = pht; for SServer, TX = pst .
In a parallel environment, the overall network transfer time is the maximum
of all servers, thus TX = max{pht, pst} = pst. On the other hand, each client
node needs to establish network connections and transfer their data from all file
servers serially, thus TE = c(m+ n)e and TX = crt. As network connections are
affected by both file servers and client nodes, the network establish time TE and
network transfer time TX are chosen in a prudential way when they are different
at client nodes and file servers. If the number of network connections on client
nodes is larger than that of file servers (c(m + n) > p), the number of client
connections c(m+ n) is used. That is

TE + TX =

{
c(m+ n)e+ max{crt, pst}, c > p

m+n

pe+ max{crt, pst}, otherwise
(3)

The startup time TS and data transfer time TT of each file server is only
determined by the number of sequential I/O operations, namely the number of
client processes assigned on that server. For HServer, TS = pαh, TT = phβh;
for SServer, TS = pαs, TT = psβs. In a parallel environment, the storage cost
TSTOR is determined by the maximal storage cost of all servers. Thus

TS + TT = p×max{αh + hβh, αs + sβs} (4)

Based on Equation 3 and 4, the overall cost values of each data access are
shown in Figure 2. This cost model provides a detailed analysis of completion
time for data accesses in hybrid PFSs. Although there are several parameters in
the model, for most applications, the runtime variables such as c, p, m and n are
fixed for each run. In general, for a given system, e, t, α and β can be regarded
as constants.

3.3 Determining the Optimal Stripe Sizes for Each File Server

Figure 2 shows that the data access cost T can be significantly impacted by the
file server stripe sizes h and s. In other words, data placements with different
stripe sizes lead to substantially variable access cost. In order to get the opti-
mal I/O performance, the proposed data placement will find suitable stripe sizes

Performance-Aware Data Placement in Hybrid Parallel File Systems 7

Condition
Network cost TNET Storage cost TSTOR

Establish TE Transfer TX Startup TS + I/O TT

𝑝𝑝 ≤ 𝑐𝑐(𝑚𝑚 + 𝑛𝑛) 𝑐𝑐(𝑚𝑚 + 𝑛𝑛)𝑒𝑒 max {𝑐𝑐𝑐𝑐𝑐𝑐, 𝑝𝑝𝑝𝑝𝑐𝑐} p ∗ max {𝛼𝛼ℎ + ℎ𝛽𝛽ℎ ,𝛼𝛼𝑠𝑠 + 𝑝𝑝𝛽𝛽𝑠𝑠}

𝑝𝑝 > 𝑐𝑐(𝑚𝑚 + 𝑛𝑛) 𝑝𝑝𝑒𝑒 max {𝑐𝑐𝑐𝑐𝑐𝑐, 𝑝𝑝𝑝𝑝𝑐𝑐} p ∗ max {𝛼𝛼ℎ + ℎ𝛽𝛽ℎ ,𝛼𝛼𝑠𝑠 + 𝑝𝑝𝛽𝛽𝑠𝑠}

Fig. 2. Cost formulas for hybrid PFSs

to minimize the data access cost in hybrid PFSs. Thus, the optimization prob-
lem can be described as minimizing function F described in Equation 5 while
satisfying the size constraints described in Equation 1.

F = max{crt, pst}+ p×max{αh + hβh, αs + sβs} (5)

According to the member values in the two maximum functions in Equation 5,
such problem can be translated into four linear programming (LP) problems with
two unknown variables representing the stripe size h and s. The final problem
is to choose the values of h and s so as to minimize F as below.

Case 1:
Minimize F = crt+ phβh (6)

s.t.

mh+ ns = r

ps ≤ cr
αs + sβs ≤ αh + hβh

(7)

Case 2:
Minimize F = crt+ psβs (8)

s.t.

mh+ ns = r

ps ≤ cr
αh + hβh ≤ αs + sβs

(9)

Case 3:
Minimize F = pst+ phβh (10)

s.t.

mh+ ns = r

cr ≤ ps
αs + sβs ≤ αh + hβh

(11)

Case 4:
Minimize F = pst+ psβs (12)

s.t.

mh+ ns = r

cr ≤ ps
αh + hβh ≤ αs + sβs

(13)

8 Shuibing He, Xian-He Sun, Bo Feng, Kun Feng

The final stripe sizes of h and s are determined by the case where the objective
function F achieve the smallest value among the four cases. Please note that the
optimal h can be zero, which means placing file data only on the underlying
SServers leads to better performance. As the linear program is expressed with
two unknown variables, the search space is very small and solving the program
requires acceptable time cost.

3.4 Performance-aware Data Placement Scheme

Based on the optimal stripe sizes h and s, PADP is able to achieve the optimal
file data placement for data-intensive applications. This approach requires a
prior knowledge of data access patterns of applications. As described in [9, 10],
many HPC applications access their files with either regular data access patterns
or predictable behaviors. For example, numerous tools were developed to trace
I/O requests for these applications [13]. These applications are often executed
on a computer cluster many times, and the file access patterns are generally
independent of the data values stored. The request patterns can be learned from
previous runs. Figure 3 shows the procedure of the optimal data placement

La
yo

u
t

d
e

te
rm

in
at

io
n

P
re

-e
st

im
at

io
n

D
a

ta

p
la

ce
m

e
n

t

Estimate
parameters

Linear
programming

with cost
model

Optimal stripe
sizes: h and s

App I/O Traces,
profile data, ...

PFS
parameters:

Distribute file
data

Fig. 3. The procedure of the performance-aware data placement scheme

scheme. Basically, the proposed data placement scheme consists of three phases:
pre-estimation, layout determination, and data placement. In the pre-estimation
phase, the related parameters in the cost model are estimated. As described
previously, the network parameters, such as e and t, the storage parameters,
such as αh, βh, αs, βs, and the system configuration parameters, such as m and
n , can be regarded as constants. In the layout determination phase, the cost
model and the linear programing method are used to calculate the optimal file
stripe sizes h and s for HServers and SServers. In this phase, the applications
access patterns, such as c, p, r are used as inputs. Determining the optimal stripe
sizes is relatively fast since it requires solving only a small two-variable linear
programming problem. In the data placement phase, the optimized file stripes
can be used for the file data distribution for the applications, either by creating

Performance-Aware Data Placement in Hybrid Parallel File Systems 9

new files for later runs of the applications, or adjusting the file layout by file
copy operations in the existing parallel file systems.

3.5 Implementation

We have implemented a prototype of the performance-aware data placement
scheme in OrangeFS.

Pre-estimation We use one file server in the parallel file system to test the
startup time α and data transfer time β for HServers and SServers with sequen-
tial/random and read/write patterns. Please note that the parameters can vary
with different I/O patterns. In addition, we use a pair of nodes (one client node
and one file server) to estimate network parameters, the network connection
establishing time e and network transfer time t. We repeat the tests with thou-
sands of times (the number is configurable), and then calculate their average
values, which are used as the parameter values.

Optimal Data Distribution Once obtaining the optimal stripe sizes for HServers
and SServers, we use them to distribute file data among available file servers for
better I/O performance. The OrangeFS file system supports an API for im-
plementing specific variable stripe distribution by default. The variable stripe
distribution is similar to simple stripe, except that the stripe size can be con-
figured to be different on different file servers. In OrangeFS, parallel files can
either be accessed by the direct PVFS2 interface or the POSIX interface. When
using the direct PVFS2 interface, we utilize the “pvfs2-xattr” command to set
the data distribution of directories where the application files are located. In ad-
dition, when a new file is created, we use the “pvfs2-touch” command with the
“-l” option to specify the order of the file servers, so that the file stripe size h and
s can be configured for the corresponding HServers and SServers accordingly.

3.6 Discussion

One concern of PADP is that it can potentially lead to more storage space
consumption for SServers, which might perhaps be an unwanted feature by users.
Fortunately, most file systems do not make full use of the storage space in the
underlying devices. In practical system, this issue is not frequently encountered
if the SSD space is enough. In the worst case, with the possibility of an SServer
running out of its space, we design a data migration method to balance the
storage space by moving data from SServers to HServers, so that the available
remaining space on SServers can be guaranteed for new coming requests. This
problem can also be addressed by using the hybrid PFS to store performance-
critical data (e.g. frequently accessed data) and the PFS only on HServers to
store the rest of the data.

10 Shuibing He, Xian-He Sun, Bo Feng, Kun Feng

4 Performance Evaluation

In this section, we evaluate the performance of the proposed data placement
scheme through several benchmark-driven experiments.

4.1 Experimental Setup

We conducted the experiments on a 65-node SUN Fire Linux cluster, where
each node has two AMD Opteron(tm) processors, 8GB memory and a 250GB
HDD. 16 nodes are equipped with additional OCZ-REVODRIVE 100GB SSD.
All nodes are equipped with Gigabit Ethernet interconnection. The parallel file
system is OrangeFS 2.8.6. Among the available nodes, we select eight nodes as
client computing nodes, eight nodes as HServers, and eight nodes as SServers.
By default, the hybrid OrangeFS file system is built on six HServers and two
SServers.

We compare three data placement schemes: the default scheme (DEF), the
random scheme (RANDOM), and the proposed PADP scheme. In DEF, the
file data is placed across all file servers with a fixed-size stripe of 64KB; in
RANDOM, the file stripe sizes are randomly selected. To be simple, the stripe
size pair < h, s > is used in the following sections, which means the stipe sizes on
HServers and SServers are h and s respectively. The popular benchmark IOR [19]
is used to test the performance.

4.2 IOR Benchmark

Performance with Different Read Write Modes Unless otherwise spec-
ified, the IOR benchmark runs with 8 processes, each of which performs I/O
operations in individual mode on a 10GB shared file. The request size is kept
to 512KB. Figure 4 demonstrates the I/O performance of IOR with sequential
and random I/O access mode under the three data placement schemes. In the
figure, the randomly selected stripe size pair is <32KB, 96KB> in RANDOM1,
and <96KB, 32KB> in RANDOM2. For PADP, the optimal stripe sizes for se-
quential and random read, sequential and random write, are <28KB, 100KB>,
<20KB, 108KB>, <24KB, 104KB>, and <36KB, 92KB> respectively. From the
results we can observe that PADP has the best performance of all schemes. By
using the optimal stripe sizes for HServers and SServers, PADP can improve read
performance by up to 149.2% over DEF with all I/O access modes, and write
performance by up to 271.8%. Compared with RANDOM1 and RANDOM2,
PADP can improve the read performance by up to 80.6% and write performance
by up to 357.1% for all I/O access modes. This shows that the idea of PADP
works well and the stripe size determining formula of PADP is effective.

In order to give a detailed explanation, Figure 5 plots the I/O time of each file
server during a 10-second IOR execution period when IOR performs sequential
read operations under the three schemes. The I/O time is normalized to that
of the minimum I/O time of all file servers. Among the eight file servers, server
0 to 5 are HServers, and the rest are SServers. From Figure 5, we can observe

Performance-Aware Data Placement in Hybrid Parallel File Systems 11

0

50

100

150

200

250

300

350

400

450

500

Sequential Random

I/
O

 T
h

ro
u

g
h

p
u

t
(M

B
/S

ec
)

DEF RANDOM1 RANDOM2 PADP

(a) Read throughput

0

50

100

150

200

250

300

350

400

450

500

Sequential Random

I/
O

 T
h

ro
u

g
h

p
u

t
(M

B
/S

ec
)

DEF RANDOM1 RANDOM2 PADP

(b) Write throughput

Fig. 4. Throughputs of IOR under different placement schemes with different I/O
modes

that the I/O loads of HServers and SServers are severely skewed under scheme
DEF and RANDOM. In contrast, the optimal data placement scheme PADP
can significantly eliminate the load imbalance among file servers. Thus, PADP
improves the file system performance.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

DEF RANDOM1 RANDOM2 PADP

N
o

rm
al

iz
ed

 I
/O

 t
im

e

server 0

server 1

server 2

server 3

server 4

server 5

server 6

server 7

Fig. 5. I/O time on each node under different data placement schemes

Performance with Different Number of Processes The I/O performance
is also evaluated with different number of processes. The IOR benchmark is
executed under the random access mode with 4, 32 and 64 processes. In this test,
RANDOM1 and RANDOM2 use the same stripe size configuration as previous
test. As show in Figure 6, the results are similar to the previous test. PADP has
the best performance among the three schemes. Compared with DEF, PADP
improves the read performance by 60.8 %, 146.3%, and 118.4%z respectively with
4, 32 and 64 processes, and write performance by 182.3%, 257.8 %, and 202.7%.
Compared with RANDOM, PADP can brings a read performance improvement
by up to 107.9%, 145.2%, and 151.6% respectively with 4, 32 and 64 processes,
and write performance improvement by up to 130.3%, 228.8%, and 200.3%.
These results show that PADP has very good scalability with the number of I/O
processes.

Performance with Different Request Sizes Figure 7 demonstrates the I/O
performance of IOR with request size of 128KB and 2048KB. The number of
processes is fixed to 16, and IOR issues random requests. Figure 7(a) shows

12 Shuibing He, Xian-He Sun, Bo Feng, Kun Feng

0

100

200

300

400

500

4 32 64

I/
O

 T
h

ro
u

g
h

p
u

t
(M

B
/S

ec
)

Number of Processes

DEF RANDOM1 RANDOM2 PADP

(a) Read throughput

0

50

100

150

200

250

300

350

400

4 32 64

I/
O

 T
h
ro

u
g
h
p
u
t

(M
B

/S
ec

)

Number of Processes

DEF RANDOM1 RANDOM2 PADP

(b) Write throughput

Fig. 6. Throughputs of IOR with varied number of processes

the result for the relatively small requests. We can observe that PADP can
improve the read performance by up to 76.3%, and write performance by up to
127.9% in comparison with the default data placement scheme DEF. Compared
with RANDOM, PADP also has better performance: the read performance is
increased by up to 201.7 %, and write performance is increased by up to 199.4%.
When the request size is 128KB, it is worth noting that the optimal stripe sizes
in PADP are <0KB, 32KB> for all I/O modes. This implies that distributing
the file only on the four SServers leads to the highest I/O performance if the
requests are relatively small. For larger size 2048KB, PADP distributes the file
across both HServers and SServers to achieve optimal performance, as shown
in Figure 7(b). This is because all servers are working cooperatively and this
can lead to better I/O performance for large requests. These results show that
PADP has a good scalability for different request sizes.

0

100

200

300

400

500

Sequential read Random read Sequential write Random write

I/
O

 T
h

ro
u

g
h

p
u

t
(M

B
/S

ec
)

DEF RANDOM1 RANDOM2 PADP

(a) Request size is 128K

0

100

200

300

400

500

Sequential read Random read Sequential write Random write

I/
O

 T
h

ro
u

g
h

p
u

t
(M

B
/S

ec
)

DEF RANDOM1 RANDOM2 PADP

(b) Request size is 2048K

Fig. 7. Throughputs of IOR with varied request sizes

Performance with Different Server Configurations The I/O performance
is examined with varied ratios of SServers to HServers. The OrangeFS is built
using HServers and SServers with the ratios of 5:3, and 3:5. Figure 8 shows
the average I/O bandwidth with different file server configurations. As it can be
seen from the results, PADP can improve I/O throughput for both data read and
write. When the ratio is 5:3, the randomly selected stripe sizes of RANDOM1
and RANDOM2 are <34KB, 114KB> and <82KB, 34KB> respectively. Com-
pared with DEP, the read performance improves by up to 100.9% , and write

Performance-Aware Data Placement in Hybrid Parallel File Systems 13

performance improves by up to 154.1%. We can observe that PADP can increase
the read performance by up to 105.9%, and write performance by up to 169.6%
the RANDOM scheme. When the ratio is 3:5, the randomly selected stripe sizes
of RANDOM1 and RANDOM2 are<29KB, 85KB> and<89KB, 49KB> respec-
tively. We can observe that PADP has the similar behavior. In the experiments,
read and write performance improved as the number of SServers increased. This
is because the I/O performance of SServers is efficiently utilized by PADP. By
using the optimal stripe sizes determined by the linear programing method in
this paper, PADP can significantly improve the hybrid file system performance
with all file server configurations.

0

100

200

300

400

500

600

Sequential read Random read Sequential write Random write

I/
O

 T
h

ro
u

g
h

p
u

t
(M

B
/S

ec
)

DEF RANDOM1 RANDOM2 PADP

(a) 5HServers : 3SServers

0

100

200

300

400

500

600

Sequential read Random read Sequential write Random write

I/
O

 T
h

ro
u

g
h

p
u

t
(M

B
/S

ec
)

DEF RANDOM1 RANDOM2 PADP

(b) 3HServers : 5SServers

Fig. 8. Throughputs of IOR with varied file server configurations

5 Conclusions

In this study, we have proposed a performance-aware data placement (PADP)
scheme, which distributes data across HDD and SSD file servers with adaptive
stripe sizes based on their storage performance. We have presented the proposed
PADP data placement optimization scheme and implemented it in the OrangeFS
file system. Essentially, PADP provides a better matching of data access char-
acteristics of an application with the storage capabilities in the file servers of
the underlying heterogeneous file system. Experimental results of representative
benchmark show that PADP can significantly improve the file system perfor-
mance.

References

1. “Orange File System,” http://www.orangefs.org/.
2. S. Microsystems, “Lustre File System: High-performance Storage Architecture and

Scalable Cluster File System,” Tech. Rep. Lustre File System White Paper, 2007.
3. F. Chen, D. A. Koufaty, and X. Zhang, “Understanding Intrinsic Characteristics

and System Implications of Flash Memory Based Solid State Drives,” in Proceed-
ings of the Eleventh International Joint Conference on Measurement and Modeling
of Computer Systems, 2009, pp. 181–192.

14 Shuibing He, Xian-He Sun, Bo Feng, Kun Feng

4. S. He, X.-H. Sun, B. Feng, X. Huang, and K. Feng, “A Cost-Aware Region-Level
Data Placement Scheme for Hybrid Parallel I/O Systems,” in Proceedings of the
IEEE International Conference on Cluster Computing, 2013.

5. S. He, X.-H. Sun, and B. Feng, “S4D-Cache: Smart Selective SSD Cache for Par-
allel I/O Systems,” in Proceedings of the International Conference on Distributed
Computing Systems, 2014.

6. H. Song, Y. Yin, X.-H. Sun, R. Thakur, and S. Lang, “A Segment-Level Adaptive
Data Layout Scheme for Improved Load Balance in Parallel File Systems,” in
Proceedings of the 11th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGrid), 2011, pp. 414–423.

7. H. Song, H. Jin, J. He, X.-H. Sun, and R. Thakur, “A Server-Level Adaptive
Data Layout Strategy for Parallel File Systems,” in Proceedings of the IEEE 26th
International Parallel and Distributed Processing Symposium Workshops and PhD
Forum, 2012, pp. 2095–2103.

8. H. Song, Y. Yin, Y. Chen, and X.-H. Sun, “A Cost-Intelligent Application-Specific
Data Layout Scheme for Parallel File Systems,” in Proceedings of the 20th Interna-
tional Symposium on High Performance Distributed Computing, 2011, pp. 37–48.

9. Y. Yin, J. Li, J. He, X.-H. Sun, and R. Thakur, “Pattern-Direct and Layout-
Aware Replication Scheme for Parallel I/O Systems,” in Proceedings of 27th IEEE
International Parallel and Distributed Processing Symposium, 2013.

10. Y. Wang and D. Kaeli, “Profile-Guided I/O Partitioning,” in Proceedings of the
17th Annual International Conference on Supercomputing. San Francisco, CA,
USA: ACM, 2003, pp. 252–260.

11. S. Rubin, R. Bodik, and T. Chilimbi, “An Efficient Profile-Analysis Framework for
Data-Layout Optimizations,” ACM SIGPLAN Notices, vol. 37, no. 1, pp. 140–153,
2002.

12. H. Huang, W. Hung, and K. G. Shin, “FS2: Dynamic Data Replication in Free Disk
Space for Improving Disk Performance and Energy Consumption,” in Proceedings
of the 20th ACM Symposium on Operating Systems Principles. New York, NY,
USA: ACM, 2005, pp. 263–276.

13. Y. Yin, S. Byna, H. Song, X.-H. Sun, and R. Thakur, “Boosting Application-
Specific Parallel I/O Optimization Using IOSIG,” in Proceedings of the 12th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,
2012, pp. 196–203.

14. T. Cortes and J. Labarta, “Taking Advantage of Heterogeneity in Disk Arrays,”
Journal of Parallel and Distributed Computing, vol. 63, no. 4, pp. 448–464, 2003.

15. T. Pritchett and M. Thottethodi, “SieveStore: a Highly-Selective, Ensemble-level
Disk Cache for Cost-Performance,” in Proceedings of the 37th Annual International
Symposium on Computer Architecture, 2010, pp. 163–174.

16. X. Zhang, K. Liu, K. Davis, and S. Jiang, “iBridge: Improving Unaligned Parallel
File Access with Solid-State Drives,” in Proceedings of 27th IEEE International
Parallel and Distributed Processing Symposium, 2013.

17. Q. Yang and J. Ren, “I-CASH: Intelligently Coupled Array of SSD and HDD,”
in Proceedings of the IEEE 17th International Symposium on High Performance-
Computer Architecture, 2011, pp. 278–289.

18. F. Chen, D. A. Koufaty, and X. Zhang, “Hystor: Making the Best Use of Solid State
Drives in High Performance Storage Systems,” in Proceedings of the international
conference on Supercomputing, 2011, pp. 22–32.

19. “Interleaved Or Random (IOR) Benchmarks,” http://sourceforge.net/projects/ior-
sio/, 2014.

