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Abstract—The performance gap between computing power
and the I/O system is ever increasing, and in the meantime
more and more High Performance Computing (HPC) ap-
plications are becoming data intensive. This study describes
an I/O data replication scheme, named Pattern-Direct and
Layout-Aware (PDLA) data replication scheme, to alleviate
this performance gap. The basic idea of PDLA is replicating
identified data access pattern, and saving these reorganized
replications with optimized data layouts based on access cost
analysis. A runtime system is designed and developed to
integrate the PDLA replication scheme and existing parallel
I/O system; a prototype of PDLA is implemented under the
MPICH2 and PVFS2 environments. Experimental results show
that PDLA is effective in improving data access performance
of parallel I/O systems.

Keywords-Parallel I/O; I/O optimization; data replication;
data reorganization; data access pattern

I. INTRODUCTION

During the last several decades, the rapid development

of semiconductor technology allowed the processor speed

to increase exponentially. Supercomputers are moving from

petascale towards exascale in the coming decade. However,

the developments of the data input/output (I/O) system

and storage devices do not keep pace with that of the

computing power. As believed by many, the trend of the

biased technology advance will continue in the near future.

This unbalanced technology advance leads to the so-called

I/O-wall problem.

In the meantime, large-scale scientific applications grow

continuously in terms of data access intensity, imposing

greater workload on the I/O and storage subsystems. This

trend of applications puts even more pressure on already

saturated I/O systems. For instance, in astronomy, giant radio

telescopes capture observation images continuously, and

then the captured data are saved into storage systems. The

data analysis applications, such as Montage [1] developed

by NASA, then read the data out of storage systems and

analyze them. The telescopes may generate data at a rate of

many gigabytes to even petabytes per second and the data

analysis is both computational intensive and data intensive

[2].

Relatively slow storage devices compounded with data

intensive applications make I/O system the primary perfor-

mance bottleneck in many HPC systems. This drawback mo-
tivates this study, which aims to alleviate the I/O bottleneck,
especially for data intensive applications.

I/O is a hot issue in recent years. Many I/O optimization

techniques have been developed, such as data sieving [3],

List I/O [4], DataType I/O [5], and Collective I/O [3] [6].

Some systems may also integrate new layers/middleware

into the parallel I/O software stack. All these layers and

optimization techniques make the parallel I/O system ex-

ceedingly complex. How to optimize I/O performance is

elusive, and the optimization is a complex, error-prone,

and time-consuming task, especially for applications with

complex I/O behaviors. For example, Zhang’s work [7]

shows that Collective I/O works well in some cases but not

in others. Song’s work [8] shows that finding the optimal

data layout configuration in PVFS2 can be a daunting task.

Their works further confirm our belief that I/O performance

is application dependent, and a general I/O system need

to be adjustable to different applications [9]. This raised a
must have property of our solution: the I/O optimization
should bring the application and system’s characteristics
into consideration and be adaptive for different applications.

To achieve the goal of alleviating I/O bottleneck and to

satisfy the requirement of the I/O optimization’s adaptability,

we design and implement the Pattern-Direct and Layout-

Aware (PDLA) replication scheme for parallel I/O systems.

We design PDLA based on the following facts.

1) Contiguous data access is preferable.
The performance of contiguous data access is higher than

that of noncontiguous data access. This stays true for both

hard disk drives (HDD) and solid state disks (SSD) [10].

2) Data layout matters.
Data layout in parallel file systems can largely influence

the I/O performance. Modern parallel file systems support

multiple data layout policies. Users can choose to distribute

some data on one single storage node, on a set of nodes, or

on all available nodes. The previous work [8] shows that, for

applications with different data access patterns, the optimal

data layouts are different. The optimal data layout yields the
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lowest data access cost, hence the optimal I/O performance.

3) It is valuable and feasible to make use of application’s
characteristic information for I/O optimizations.

In HPC area, data intensive applications have a large

amount of data reads or writes, and they read or write in

certain ways. In other words, their I/O behaviors exhibit

patterns. For example, due to the iterative loop structures of

program codes, some individual or group of data accesses

may repeat for many times in one execution [11]. It is

feasible to collect and utilize this information, as we did

in our previous work [9] [10] [12]. Nevertheless, among

different runs, the same patterns can be identified under the

same execution environment and configuration.

We shaped the design of PDLA based on the above three

facts. 1) PDLA transforms noncontiguous data accesses into

contiguous ones. 2) It takes advantage of the application’s

data access pattern to rearrange data. 3) It distributes repli-

cation data with awareness of the physical data layout in

parallel file systems.

The PDLA replication scheme includes two major opti-

mizations. In the “Pattern-Direct” (PD) replication scheme,

the system makes a reorganized data replication for each

identified data access patterns of the application. As a

result, the logical data in the replication are organized

in order with how they are accessed. After determining

the reorganization, in the “Layout-Aware” (LA) replication
placement, the system stores the generated replications in

their optimal data layouts in parallel file systems, based on

the results of quantitative analysis on data access cost. Once

the replications are ready, the I/O system is able to serve

future data accesses with the replications.

This study makes the following contributions. (1) We

design a Pattern-Direct data replication scheme to reorganize

data according to access patterns. (2) To make the storage of

replication files layout-aware, we construct a data access cost

model for parallel I/O systems to identify the optimal data

layout for each replication. (3) To integrate PDLA scheme

into existing parallel I/O systems, we design a runtime

system that discovers access patterns, creates the replica-

tions, and redirects application’s requests. We implement

a prototype of this runtime system within MPICH2 [13]

and PVFS2 [14]. Experimental results show that the PDLA

replication scheme is effective in exploiting the full potential

of parallel I/O systems.

The rest of this paper is organized as follows. Section

II and III describe the key designs of the Pattern-Direct

replication scheme and Layout-Aware replication placement

respectively. Section IV describes the runtime system design

and its implementation. Section V presents the evaluation

results. Section VI discusses some issues related to write

optimization and presents some related experimental results.

Section VII reviews the related work in data replication and

data organization. Section VIII concludes this paper.

II. PATTERN-DIRECT REPLICATION SCHEME

The success of the Pattern-Direct replication scheme relies

on solving two technical issues: obtaining data access pattern

information and optimizing data replications using pattern

information.

A. Data access patterns

We describe a data access pattern from five key aspects: 1)

spatial locality, 2) size of accesses, 3) temporal information,

4) iterative behavior, and 5) I/O operations. The spatial

locality can be contiguous, noncontiguous, and the combi-

nations of contiguous and noncontiguous patterns. The non-

contiguous patterns are further divided based on byte order

distance between successive accesses. Some applications

access data just once, whereas some access the same data

in the same order multiple times. This can be described

with repetitive behavior, which occurs often in iterative loop

codes. Request size is crucial and plays a significant role

in striping factor, stripe size, and the number of requests.

We classify temporal behavior based on intervals between

accesses, which can be fixed or random. I/O operations are

divided into read only, write only, and read and write.

The procedure of obtaining access patterns includes two

steps. The first step is to trace the I/O operations of the

underlying application during its execution into trace files.

The second step is to perform the offline analysis on trace

files and obtain the results, namely, data access patterns. The

related implementation details are described in Section IV.

We define two types of data access patterns, local and

global ones. A local data access pattern represents the infor-

mation of a single process’s access patterns. By co-analyzing

the local I/O access patterns of the underlying application,

we are able to acquire some global data access patterns

that represent the I/O behavior of the entire application. For

example, when an application conducts a series of collective

I/O operations in which all the processes participate, the

operations are recorded in every single process’s trace file.

In the global view, these operations are no longer separated

behaviors of each process; instead, they are collectively

providing the global behaviors of the application. In many

situations, local patterns cannot provide the true story of the

application, and a global view is necessary to optimize I/O

performance.

For more details about the definition and representation of

access patterns, please refer to our previous work [9] [12].

B. Pattern-Direct replication policy

1) Replication creation policy: Each replication contains

“a data object” instead of an entire original file in the file

system. More specifically, it contains the data accessed in

one data access patterns. Also, data in a replication are

reorganized in the access order according to a corresponding

access pattern. Each replication is stored as a new file in the

same file system.

346



���������	
���

�����������
���������

����
���
����� ����
���
�����

���������������

�������
���
���������
���������������������

Figure 1. Two access patterns on one data file. PDLA replication scheme
creates one replication for each access pattern.

As shown in Figure 1, Pattern-Direct replication scheme

only replicates the accessed data. The data that are not

accessed or do not fall into any data access pattern, will

not be replicated, and only exist in the original data file.

The Pattern-Direct replication scheme, comparing with the

trivial data replication, yields more efficient uses of storage

space.

In PDLA replication scheme, we set the number of repli-

cations to be one. The parameter “number of replications”

plays a pivotal role in modern distributed file systems. For

example, in HDFS [15], this parameter is 3 by default

for high data availability and flexible data locality. PDLA’s

one-replication policy relies on several considerations. First,

keeping one replication for each data object, is as good as

keeping n(n > 1) replications in terms of I/O performance.

Because, in the HPC area, it is rare that multiple processes

read the same data at the same time. Even when that

happens, the application usually adopts collective I/O, which

means only few processes read the required data from

storage, and then exchange data among all relative processes

on the client side. Second, the one-replication policy is more

efficient in terms of storage space consumption. Third, this

policy makes it simple to maintain the data consistency

between the replications and the original data.

As mentioned in Section II-A, the system may obtain

various data access patterns for a given application, includ-

ing both local and global patterns. The system first makes

replications for all the global data access patterns, and then

makes replications for those local patterns that do not belong

to any global pattern. In this way, we reduce the number

of data replications and retain the flexibility of data layout

optimization. As illustrated in Figure 2, local patterns 0

and 1 are combined, thus their data are in the same file

– Replication 0. Local patterns 2 and 3 are also combined.

Local pattern 4 does not belong to any global pattern, and

its related data form an independent replication.

2) When to create replications: By default, the scheme

creates the replications offline, which means the creation

does not occur simultaneously with the application running

and accessing the original data. During the first execution

of the application, data access patterns are identified and

added into the I/O system’s pattern database. After that, the
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Figure 2. Local patterns are combined into global patterns.

system starts to make replications based on the queue of

newly added patterns. This procedure may work only when

there are unused computing resources and I/O bandwidth,

to make replications without affliction to the execution of

normal tasks. In our future work, the system may allow

users to submit pattern items to the queue by manipulating

the pattern database, in case that the future runs of the

application will be accessing other data with the same

patterns.

3) Where to store replications: Replication files lie on

the same parallel file system used by the supercomputer

where the applications run. PDLA replication scheme works

automatically and hides all the details; replication files are

only visible to the I/O middleware that redirects the requests

from original files to replications. All the replications are

placed in some specially named directories, and any naming

rule would work as long as the system’s metadata keeps

the replications’ file paths. Placing these replication files in

separated directories also brings convenience for the Layout-

Aware replication placement, because modern parallel file

systems allow users to control the data layout by setting the

attributes of the directories.

Admittedly, the pattern-direct data replication strategy

consumes some amount of storage space, like almost all

other replication schemes. This is a trade-off between data

access performance and storage capacity. But, for many

applications this is a good trade-off from energy saving

point-of-view. Reducing data access time will reduce energy

consumption. In addition, since replications are the small

portion active data of the original data, the original data then

could be stored on slow spin disks or even on tapes. For this

kind of applications, the trade-off of space becomes blurry

and the gains in I/O performance and energy consumption

become obvious. We will not explore energy saving in this

study, but focus on I/O optimization.

III. LAYOUT-AWARE REPLICATION PLACEMENT

A. Data layout in parallel file systems

We category three most popularly adopted data lay-

out methods as: one-dimensional horizontal (1-DH), one-

dimensional vertical (1-DV), and two-dimensional (2-D)

data layouts. As shown in Figure 3, 1-DH data layout is

the simple striping method where each process distributes

its data across all available storage nodes. 1-DV data layout

refers to the policy that data to be accessed by each I/O client
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Figure 3. Three data layouts in parallel file systems.

process are stored on one storage node. 2-D data layout

refers to the policy in which data to be accessed by each

process are stored on a subset (storage group) of storage

nodes.

Among these three layout policies, 1-DH data layout is

the most widely used one, as it can provide acceptable I/O

performance for many situations. In PVFS2, it is the default

data layout method namely “simple striping.” However, in

some cases, it yields poor performance. For example, when

the number of processes is much larger than the number of

storage nodes, each storage node has to serve requests from

all processes, and these requests compete for shared disks.

As a result, the disks work in an interleaving way and each

request can finish only when all the sub-requests on all nodes

finish [16]. Consequentially, each request suffers a large la-

tency hence a high access cost. In fact, for this example case,

1-DV data layout yields higher I/O performance than 1-DH

does. This example shows that the number of storage nodes

is not the only parameter affecting I/O performance. The

number of processes, the request size, and other parameters

also play critical roles. Therefore, finding the optimal data

layout configuration in PVFS2 can be a daunting task.

Replications created by Pattern-Direct replication scheme

are logical files before getting stored. While storing them

into parallel file systems, the Layout-Aware data storage

optimization first needs to identify the optimal data layouts

for them.

B. Optimal data layout selection based on access cost
analysis

To identify the optimal data layout, we built a mathemat-

ical model of data access cost with consideration of all the

critical parameters in the computing environment. The cost

model is listed in Table I and the parameters it uses as input

are listed in Table II. More details about constructing the

cost model can be found in our previous research [8].

The Layout-Aware replication placement works as fol-

lows. Given a request and its associated runtime information,

the cost model is able to estimate the time cost of fulfilling

this request under each of the three data layouts. Given a

data access pattern, the cost model estimates the access cost

for each request included in the pattern. Then it adds all the

requests’ costs together to get the access cost for the entire

Table I
COST MODEL FORMULAS FOR THREE DATA LAYOUT POLICIES.

Data layout Access cost

1-DV max(m, � p
n
�)∗ (e+ sv)+ � p

n
� ∗ (a+ sb)

1-DH max(p,mn)∗e+max( p
n
,m)∗sv+pa+

p
n
∗ sb

2-D max(m� p
n
�, � p

g
�) ∗ e+max(m,

� p
g
�

�n
g
� ) ∗

sv + a� p
g
�+ � p

g
�

�n
g
� ∗ sb

Table II
PARAMETERS IN THE COST ANALYSIS MODEL.

Parameters Description

p Number of I/O client processes.

n Number of storage nodes.

m Number of processes on one I/O client node.

s Data size of one access.

e Cost of single network connection establishing.

v Network transmission rate.

a Startup time of one disk I/O operation.

b Cost of reading/writing one unit of data.

g Number of storage groups in 2-D layout.

pattern. Also, for each data layout, the model generates

a cost result. Naturally, the data layout that produces the

lowest cost is the optimal selection, and the scheme will

adopt this optimal layout in the parallel file system for the

corresponding replication.

Some brief guidelines can be derived from the model. 1)

When the number of processes p is much smaller than the

number of storage nodes n, the cost of 1-DH layout policy

is the lowest among all three policies. 2) When p ≈ n, 2-

D layout policy produces higher bandwidth than the other

two. 3) When p > n, 1-DV layout policy would be the best

choice.

IV. THE RUNTIME SYSTEM AND ITS IMPLEMENTATION

Figure 4 shows the system design of the PDLA replication

scheme, which consists three phases in chronicle order. In

the first phase, during the application’s execution, the pattern

recognition module identifies and saves the data access

patterns. In the second phase, the system creates replications

directly according to the recognized data access patterns.

Compared with the original data files, the replication files

represent the data in the order of the data are accessed. In the

third phase, the system automatically forwards I/O requests

in the later runs of the same application to the replication

files for better performance.

We implement a prototype of the PDLA replication

scheme and its runtime system under MPICH2 [13] and

PVFS2 [14]. The implementation adds some components

into the default parallel I/O system, as illustrated in Figure
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Figure 5. The architecture of the PDLA data replication scheme.
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Figure 4. System design overview.

5. Implementation details of each component are explained

hereinafter.

A. Trace collector

The trace collector simply traces MPI-IO calls defined in

the MPI standard. It gathers information of all standard MPI-

IO file operations, such as file open/close, file read/write,

and seek. The MPI-IO file operations can be blocking or

non-blocking, and collective or non-collective. The trace

collector captures the I/O operation parameters by using

the Profiling MPI interface (PMPI). The Profiling MPI

interface reroutes MPI calls to user-defined instrumentations

wrapped around the actual MPI calls. The trace collector

is implemented as a library, which can be linked to any

application we want to trace. Other than this linking step,

there is no need for programmer intervention.

During execution, each process of the application linked

to the trace collection library generates one trace file that

contains all its I/O operations. For each file operation, the

trace collector gathers the following information: 1) MPI

rank and process ID; 2) a unique file ID; 3) file offset

and request size; 4) name of the I/O operations, such as

MPI File read at; 5) the starting time of the operation;

and 6) the operation’s ending time. The trace collector also

records the mapping between the unique file ID and the file

path.

B. Trace analyzer

Trace analyzer performs offline trace analysis and utilizes

the “template matching” approach to recognize data access

patterns from trace files. To some extent, one trace file is

a list of file operation records, and each record contains

an operation’s data access information. The analyzer uses

a cursor to mark its analysis progress in the trace. It starts

from the first record and moves the cursor forward to scan all

records until reaching the end. During scanning, the analyzer

always picks a predefined access pattern as a template, to

check whether it matches the records around the cursor.

Once a match is found, the cursor moves forward along

with the same pattern in the trace, until the match does

not hold. If there is no match for the first template, the

analyzer switches to other templates and tries again. If the

analyzer fails to find a match for all templates, it skips the

current record, moves the cursor forward, and starts over

the matching at the new position. The analyzer produces all

the local patterns by analyzing each trace file. After that,

it examines all the local patterns and combines the relative
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ones into global patterns. Trace analyzer inserts obtained

patterns into Pattern Database.

C. Pattern database

Both the data replicator and the request redirection module

in MPI-IO need to retrieve an application’s data access

patterns. We keep these metadata in “Pattern Database”.

It saves the mapping relation between applications and

their data access patterns, including: 1) which application

a pattern belongs to; 2) which file a pattern depends on; 3)

the rank of a process that a pattern belongs to; and 4) which

local access pattern is included in a global access pattern.

Pattern Database also saves the metadata on the runtime

environment of the owner application, including mainly the

parameters of the system that will be used to determine the

optimal data layout for the generated replication files.

We use Berkeley DB to implement the pattern database.

The Berkeley DB is configured as a hash table, and each

record is a key-value pair. We generate “patternID” by

encoding the following information together: application’s

execution command, number of process, rank of the process,

and the original file name. Each record in the Berkeley DB

hash table is a key-value pair; the key is the patternID

and the value contains the data access pattern and the

runtime information. The value’s presentation in the code is

a structure definition (in C language) that includes several

fixed member variables and a union (also in C language) of

various type of data access patterns.

D. Data replicator

The data replicator is a lightweight daemon program that

runs in the background. It monitors a queue that contains

all the data access patterns that need to be replicated on.

When the trace analyzer inserts a new access pattern in to

the pattern database it also en-queues the same pattern into

this global queue.

When the queue is not empty, the replicator de-queues

data access patterns and starts to make replications according

to them, one at a time. In the meantime, the data replicator

uses the runtime information and the cost-based data layout

model to find the optimal data layout configuration. Then it

just reads data from the original file and writes them into

the replication file placed in the PFS with the optimal data

layout. We implement such a queue using Berkeley DB’s

built-in queue access mode. To configure the data layout

the data replicator just sets up a directory with the optimal

data layout configuration in PVFS2, and then stores the

replication into that directory. PVFS2 provides a tool pvfs2-
xattr for configuring a directory’s data layout policy.

The data replicator also works as the replication scanner.

It periodically scans the pattern database, and whenever it

finds that a pattern’s original file is missing, it removes the

corresponding data replication and related metadata.

E. Replication catalog

The replication catalog is used to store metadata for

replications. It manages metadata about the relationships

among data replications, original files, and the data access

patterns, including: 1) which original file a replication’s

data comes from, and 2) based on which access pattern a

replication is created. Its implementation also uses Berkeley

DB configured as a hash table; the key is the patternID (the

same key in Pattern Database) and the value is the path to

the replication file based on the corresponding data access

pattern.

F. I/O redirection module in MPI-IO

I/O redirection module redirects data accesses on the

original files to the replications. Usually an application

issues a data request with three parameters: the identifier

of the original file, the data offset, and the request size.

After locating the replication file according to these three

I/O parameters, runtime information, and the metadata in

replication catalog, the redirection module translates the

filename and offset between original file and the replication

and fulfills the request using the replication.

We have made the following modifications to MPI-IO

standard functions to implement the translation.

MPI File open: While opening a file, instead of opening

the original file, the method tries to open the corresponding

replication file.

MPI File read/MPI File write (and other formats of

read/write, such as MPI File read at, etc.): For each I/O

read or write, this method uses the file handle of the

replication file and checks whether the access pattern has

changed or whether the opened file contains the requested

content. If the application is still following the same pattern,

the module calculates the correct data offset, and issues the

data request using the new offset and the input file handle.

If the pattern has changed, the module finds new patterns,

opens new replication files, and issues request to them.

MPI File close: It closes the opened replication file.

MPI File seek: It calculates the offset and conducts the

seek operation in the replication if necessary.

When the requested data do not belong to any data access

pattern and do not have replications, this system will act as

the same as the default MPI-IO implementation.

V. EVALUATION

The experiments were conducted on a 65-node Sun

Fire Linux based cluster, including one head node and 64

computing nodes. The head node was Sun Fire X4240,

equipped with dual 2.7 GHz Opteron quad-core processors,

8GB memory, and 12 500GB 7200RPM SATA-II drives

configured as RAID5 disk array. Each computing node

has two Opteron quad-core processors, 8GB memory and

a 250GB 7200RPM SATA-II disk (HDD). We employ 8

nodes as storage nodes managed by PVFS2 and all the
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Figure 6. IOR performance improvements with various numbers of
processes after enabling PD replication scheme.
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Figure 7. IOR performance improvements with various request sizes after
enabling PD replication scheme.

other nodes work as client nodes. The head node is used for

management, and there was no overlap between file servers

and I/O client nodes, so that all the data accesses between

the application and the file system are remote accesses.

A. In-depth evaluation with IOR benchmark

1) Evaluation on Pattern-Direct replication scheme: ac-
cessing replications versus accessing original data: The

evaluation in this subsection is to show the effectiveness of

the Pattern-Direct data replication scheme in improving I/O

performance. To ensure that the improvements only come

from applying the Pattern-Direct replication, for our testing,

we disabled the Layout-Aware placement in these tests.

Therefore, the replication and original files are using the

same data layout. The layout is 1-DH data layout (simple-

stripe distribution in PVFS2) with stripe size of 64KB.

First we vary the number of processes. We run IOR

benchmark with 8, 64, and 512 processes. Each process

accesses 100MB of data in a fixed-stride data access pattern,

and the request size is 256KB. Different processes access

different regions of the original file so that no process’s

data co-locate with any other’s data. Figure 6 shows the

results of this test. We can see that, the overall bandwidth is
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Figure 8. IOR performance improvements with various numbers of
processes after further enabling LA replication placement.

improved by 67% to 935%. With the number of processes

getting larger, IOR’s bandwidth gets lower because each

storage node needs to serve more processes’ request and

the competition among processes gets more severe. Figure 6

also shows another improvement brought by PD replication:

when the process number increase, the rate of bandwidth

degrading is much lower with PD than that with the original

case. In other words, the I/O system’s scalability on serving

more concurrent requests has been significantly improved.

We also vary the request size of IOR. We run IOR with

request size of 16KB, 256KB, and 4MB. The number of

processes is fixed to 64. Figure 7 shows the results of

this test. Similar to the previous test, the bandwidth is

improved by 80% to 926%. With the request size getting

smaller, IOR’s bandwidth gets lower because each storage

node needs to handle larger number of small non-contiguous

data requests thus the disk seekings get more frequent.

Figure 7 also reveals another improvement by applying PD

replication: when the request size decreases, the rate of

bandwidth degrading is much lower with PD than that with

the original case. In other words, the I/O system’s ability to

handle large number of small requests has been significantly

improved.

2) Evaluation on Layout-Aware replication placement:
storing replications with layout awareness versus without:
We conduct experiments to show that the data layout can

further improve performance, which verifies the need to

optimize data layouts of replications. We store the repli-

cations in two different ways, one set of them are stored in

PVFS2’s default data layout, and the other set of replications

are stored in the optimal data layout calculated by data

replication using the cost model presented in Section III-B.

These two sets of replications are identical with each other,

so all the performance differences are the result from the

differences of their data layouts.

In this test, we use IOR benchmark with the data access

pattern of fixed-stride data access pattern. We vary the

number of processes. We run IOR benchmark with 8, 64,
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Figure 9. IOR performance improvements with various request sizes after
further enabling LA replication placement.

and 512 processes. The corresponding results are shown

in Figure 8. We also vary the request size of IOR. We

run IOR with request size of 16KB, 256KB, and 4MB.

The corresponding results are shown in Figure 9. The

results shows that the LA replication placement produces

extra 0.5% to 10% performance improvements based on the

performance that is already significantly improved by PD

replication scheme. The overall performance is improved by

84% to 970% with applying both PD and LA.

B. Evaluation on overall performance improvement with
PIO-Bench and MPI-Tile-IO Benchmark

The above in-depth evaluation with IOR already demon-

strates the effectiveness of PDLA in improving I/O perfor-

mance. The overall performance improvement with IOR is

84% to 970%. To convince the IOR testing is representative,

we have extended the evaluation to PIO-Bench and MPI-

Tile-IO benchmarks.

We run PIO-Bench with a nested-stride access pattern

and MPI-Tile-IO with its default access pattern. MPI-Tile-

IO treated the entire data file as a 2-D matrix and divides it

into n×n tiles (n rows by n columns). Given n2 processes,

each process accesses the data in one tile, with fixed-stride

access pattern. The data of n tiles in the same row are nested

together. Therefore, MPI-Tile-IO’s data access pattern is also

nested-stride.

In this test, we run both benchmarks with 64 processes

and various request sizes. The request sizes are 1KB, 4KB,

16KB, 64KB, 256KB, and 1MB. The data layout for the

original data files is 1-DH with the default 64KB stripe size.

We record each program’s execution and use it to divide

the total data access size to get the aggregated bandwidth.

Figure 10 shows the performance improvements that PDLA

brings to MPI-Tile-IO. The aggregated bandwidth increases

by 36% to 115%. Figure 11 shows that, for PIO-Bench, the

I/O performance improvement is 10% to 98%.

As mentioned above, the data access patterns of both

PIO-Bench and MPI-Tile-IO are nested-stride. This means,
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Figure 10. Overall performance improvements with MPI-Tile-IO.
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Figure 11. Overall performance improvements with PIO-Bench.

each process has a fixed-stride access pattern. But multiple

local access patterns are nested with each other and can be

combined into global access patterns. Therefore, the nested-

stride pattern yields better data locality then does the fixed-

stride data access pattern that we used for IOR’s tests. As a

result, the performance improvements of these two bench-

marks are not as large as that of IOR, but are still significant.

This further confirms the adaptability of PDLA; when the

application’s data accesses have a poorer performance (due

to the poorer data locality among consecutive accesses), it

gains more benefit from PDLA.

C. System overhead

As showed in Figure 5, we integrate some components

into the default parallel I/O system to make the PDLA

scheme works automatically. For some application with

recognized data access patterns and PDLA replication files,

the system is able to improve its overall I/O performance.

However, some applications do not have regular data access

patterns thus will not benefit from the access to the PDLA

replication files. In this case, overhead may exist, which may

degrade performance if it is noticeable in volume.

Access pattern recognition and access cost analysis are

conducted offline in the background, thus do not affect the
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Figure 12. System overhead test results.

execution of user applications. The trace collection only

happens once, in the first execution of an application; and

the overhead brought by this is illegible as shown in our

previous evaluation [9]. Therefore, in this section we only

evaluate the following two possible sources of overheads in

the runtime system.

1) During “file open”, the I/O redirection module needs

to look up the data access pattern in the Pattern Database.

2) During “file read/write”, the module needs to check

whether the opened file is a replication, thus to decide

whether to do the offset calculation.

The overhead is very small. To show the overhead is

negligible, we run IOR with contiguous data access pattern,

and put no related pattern in the database and make no data

replication. So the system just accesses the original files.

We run IOR with 8, 64, and 512 processes, and each of

them 100MB data with the request size of 256KB. Figure

12 shows the results. As expected, the overhead is almost

not observable.

VI. DISCUSSION ON WRITE OPTIMIZATION

At this time, we have fully studied the performance

optimization of read operations. Performance optimization

for writes is often complex due to data consistence issues.

In the meantime, due to the effect of write-buffer, optimized

write is not as effective as its read counterpart. For the sake

of page limitation, we only present the design and partial

evaluation results of write optimization mechanism of PDLA

herein.

For one write access pattern, the data replicator first check

whether there is a data dependency (data hazard) between

this pattern and others. If there is a write after read (WAR) or

write after write (WAW) data dependency, no action is taken.

If no WAR or WAW data hazard exist, the Data Replicator

uses the access pattern to create an empty replication file,

and while the application issues the write request, the request

redirection model directly calculates the data mapping with

the access pattern, and then writes the data into the empty

file. The data replicator running in the background then
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Figure 13. Write performances with various numbers of processes.
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Figure 14. Write performances with various request sizes.

syncs all the data from the replication file back to the original

data file.

Some experiments are conducted to show that the PDLA

scheme is also able to improve the write performance. The

experiment setup is similar to the read performance tests.

The only difference is to change the I/O operation from

read to write. We also use IOR and vary both the number

of processes and the data request size.

The results are shown in Figure 13 and Figure 14. The

performance improvement is up to 3 times, which is smaller

than the improvements in the read tests. The data writes

usually will be cached by the storage node’s memory first

and then flushed back to physical devices. The original

performance already benefits from the cached writes. Thus

the performance difference between the original system and

the PDLA enabled system is not large.

In some cases, the write bandwidth is even larger than the

read bandwidth. This is also because of the cached writes. In

reads test, we flush the cache of all nodes before each tests,

thus no reads can benefit from the cache on either client side

or server side.

VII. RELATED WORK

Existing works related to this study fall into two cat-

egories: data replication and data organization. Numerous
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researchers have spent much research efforts on I/O opti-

mizations with these techniques.

A. Data replication

Many servers may simultaneously access different parts

of one segment of data in an interleaving way. Interfer-

enceRemoval [17] identifies segments of files that could be

involved in this kind of interfering accesses and replicates

them to their respectively designated I/O nodes, so some I/O

requests can be re-directed to the replicas on other I/O nodes.

InterferenceRemoval reduces the degree of interference on

each node. PDLA replication scheme creates replications

based on data access patterns thus the rule of selecting data

to be replicated is straightforward. PDLA also reorganizes

data according to the access order in the pattern, so it

transforms noncontiguous accesses to contiguous ones.

There are also many I/O optimizations based on data

replications in “non-uniform data access” environments. In

these “non-uniform access” storage systems, such as HDFS

[15] and GPFS-SNC [18], accessing data from different

locations yields different costs. Multiple copies of each

data file are placed in multiple locations, and the systems

[15] [18] [19] [20] always select the “best” (closest on

location in terms of access cost) replica for accesses based

on storage and network performance predictions provided by

an information service inside a cluster or grid. Our PDLA

replication scheme focuses on using data replication with

awareness of access pattern and layout to optimized I/O

performance of a uniform access storage system, such as

PVFS2 [14] and Lustre [21].

Some modern parallel file systems, such as Ceph [22],

Lustre [21], and GPFS [23], provide built-in data replication

functionalities, but these features are mainly designed for the

purpose of enhancing the system’s fault tolerance or used

as data backup service. Similar redundant data placement

approaches [24] [25] are designed so that one or few storage

devices entering or leaving the storage system does not affect

the whole system’s data integrity and availability. Instead of

being for the purpose of improving the storage system’s fault

tolerance, the PDLA replication scheme is intended for I/O

performance optimization based on data replications, an area

that has attracted attention only recently [8].

B. Data organization

AILS [26], FS2 [27], and BORG [28] automatically reor-

ganize selected disk blocks based on the dynamic reference

stream to increase effective storage performance by reducing

the disk seek distance between requests thus reducing the

seeking overhead of each request. These techniques are

efficient for single disk and disk arrays but require complex

implementation in the disk device driver and local file

systems. With a simple implementation in I/O middleware,

PDLA replication scheme suits today’s large-scale HPC

systems well and has better pattern recognition ability.

SOGP [29] is a technique that stores a copy of data

that is often accessed in a more efficient organization to

improve read performance. It helps PVFS2 [14] use the

local storage more efficiently, which bridges the gap between

PVFS2 and local storage. PDLA focuses bridging the gap

between application and logical data and the gap between

logical and physical data to make an integrated optimization

crossing these different layers. He et al. proposed a file re-

organization method according to access pattern to increase

the contiguousness by remapping files in MPI-IO layer [30]

[31]. Compared with that, replications generated by PDLA

scheme cost less storage resource and are more flexible for

further data layout optimization. More importantly, PDLA

is a combined system approach with replication, reorgani-

zation, and optimized data layout working collectively for

best performance.

For write optimization, PLFS [32] [33] stores the writes

in a set of efficiently reorganized log-formatted files; the

write performance can be dramatically improved, but the

performance of read back on those files may not be good

due to the inevitable data restructuring. In PDLA replication

scheme, read and write access patterns are handled sepa-

rately to achieve optimal performance for both of them.

To make the data sets generated by HPC applications more

accessible to MapReduce-based data analysis applications,

MRAP [34] reorganizes the data sets according to data

access patterns, during the procedure of copying them from

HPC storage to MapReduce system’s storage. The PDLA

data replication scheme focuses on I/O optimization in

general purpose parallel file systems, such as PVFS2.

VIII. CONCLUSION

We have introduced the Pattern-Direct Layout-Aware

(PDLA) replication scheme for I/O optimization based on

application specific I/O characteristics. We have refined and

combined our previous work in data access pattern identifi-

cation and cost analysis in designing PDLA and uniquely

proposed a system solution for pattern-based replication

optimization.

PDLA consists of two key components: Pattern-Direct

(PD) replication scheme and Layout-Aware (LA) replication

placement. With the “Pattern-Direct replication scheme,”

the I/O system creates a reorganized data replication each

for each identified access pattern of the application. One

advantage of PD is that the replication will be accessed in

a contiguous way, yielding high I/O performance; another

is that it only replicates the accessed data patterns, thus

has efficient uses of storage resources. With “Layout-Aware

replication placement,” the system stores the generated repli-

cations in their optimal data layouts based on access cost

analysis.

Other contributions of this study are that a runtime system

is also designed to integrate PDLA into existing parallel I/O

path and that a prototype under the MPICH2 and PVFS2
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environment is implemented to evaluate the design. The de-

sign consists of six components. They are: 1) trace collector,

2) trace analyzer, 3) pattern database, 4) data replicator, 5)

replication catalog, and 6) I/O redirection module.

Experimental results show that the PDLA replication

scheme is feasible and effective in improving I/O per-

formance. Given an application with regular data access

patterns, the scheme improves the read performance by 10%

to 970% of the original performance and improves write

performance up to 3 times. The introduced overhead is

negligible, even in the worst case where applications have

no regular access patterns.

A general assumption of data replication is that repli-

cation will lead to space and energy cost. Since PDLA

only replicates a small portion active data based on data

access pattern, the space and energy trade-off may not be a

subject of concern. In fact, with replications of hot data, the

faster access on the replications can save some energy, and

offloading cold data to slower disk may save more, in terms

of energy and space.

In the future work, we plan to continue exploring other

ways of utilizing application’s I/O characteristics to make

the storage system more intelligent and more efficient, and

to test more applications from both performance and energy

consumption point-of-view.
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