
Average Case Analysis for Tree Labelling Schemes

Ming-Yang Kao?1, Xiang-Yang Li??2, and WeiZhao Wang2

1 Northwestern University, Evanston, IL, USA,
kao@cs.northwestern.edu

2 Illinois Institute of Technology, Chicago, IL, USA,
xli@cs.iit.edu, wangwei4@iit.edu

Abstract. We study how to label the vertices of a tree in such a way that we can
decide the distance of two vertices in the tree given only their labels. For trees,
Gavoilleet al. [7] proved that for any such distance labelling scheme, the maxi-
mum label length is at least1

8
log2 n−O(log n) bits. They also gave a separator-

based labelling scheme that has the optimal label lengthΘ(log n · log(Hn(T))),
whereHn(T) is the height of the tree. In this paper, we present two new dis-
tance labelling schemes that not only achieve the optimal label lengthΘ(log n ·
log(Hn(T))), but also have a much smaller expected label length under certain
tree distributions. With these new schemes, we also can efficiently find the least
common ancestor of any two vertices based on their labels only.

1 Introduction

For commonly used graph representations such as adjacency matrices and lists [15],
one cannot determine whether or not two vertices are adjacent in the graph only based
on the names of the two vertices. In contrast, Breuer and Folkman [5, 6] proposed to
label the vertices in such a way that there exists a polynomial-time algorithm that can
determine the adjacency of two vertices given only their labels. Such a labelling scheme
is generally known as anadjacency labelling scheme. If the length of a label is allowed
to be arbitrarily large, then one can encode any desired information. However, for a
labelling scheme to be useful, the label length should be relatively short (say, polylog-
arithmic in the size of the graph) and yet allows one to decode the adjacency efficiently
(say, time polynomial in the input label lengths). Breuer and Folkman [5, 6] proposed to
use Hamming distances to label general graph. An(m, t)-labelling schemelabels each
vertex with anm-bit label such that two vertices are adjacent if and only if their labels
are at Hamming distancet or less of each other. Breuer and Folkman [6] showed that
everyn-vertex graph has a(2n∆, 4∆− 4)-labelling scheme, where∆ is the maximum
vertex degree in the graph. Kannanet al. [14] gave adjacency labelling schemes with
O(log n)-bit labels for several families of graphs, including graphs of bounded degrees,
graphs of bounded genuses, trees, and various intersection-based graphs such as inter-
nal graphs andc-decomposable graphs. Alstrup and Rauhe [4] improved the bound to
k log n + O(log∗ n) for the familyAk of graphs with arboricityk andn vertices.

? Supported in part by NSF Grant IIS-0121491.
?? Supported in part by NSF Grant CCR-0311174.

It is useful and possible to design a more general labelling scheme that also con-
tains the distance information. Adistance labelling schemepermits one to determine the
distance between two vertices efficiently based only on their labels [7, 12]. Peleg [12]
gave anO(log2 n)-bit distance labelling scheme for general trees andc-decomposable
graphs. He showed [12] that for a family ofn-vertices graphs withΩ(exp(n1+ε)) non-
isomorphic graphs, any distance labelling scheme must use labels with a total length
Ω(n1+ε). Gavoilleet al. [7] studied the bounds for the label length of the distance la-
belling schemes for several graph families. For general graphs, they gave a tight bound
of Θ(n) bits; for planar graphs, an upper bound ofO(

√
n log n) and a lower bound of

Ω(n1/3); for bounded-degree graphs, a lower bound ofΩ(
√

n); and for trees, a tight
bound ofΘ(log n · log(Hn(T))), whereHn(T) is the height of the tree. Alstrup and
Rauhe [3] built the lower-bounds of length of the label for supporting ancestor, sibling
and connectivity. Recently, several distance labelling schemes considering bounded dis-
tance and weighted distance have been devised and surveyed by Gavoille and Peleg
[10]. Alstrup et al. [2] designed a labelling scheme for a rooted tree to compute in
constant time the least common ancestor from the labels of any two vertices. The la-
bels assigned are of sizeO(log n) bits for a tree ofn vertices. Alstrupet al. [1] studied
labelling schemes for trees, supporting various relationships (ancestor, sibling, and con-
nectivity) between vertices at small distance.

In this paper, we study distance labelling schemes for unweighted trees. For trees,
Gavoille et al. [7] proved that for any distance labelling scheme, the label length is
at least18 log2 n − O(log n); they also gave a separator-based labelling scheme that
has a label lengthO(log2 n). Gavoille [9] improved the label scheme toO(log n ·
log(Hn(T))). Here, we present two new distance labelling schemes- backbone-based
scheme and rake-based scheme, that not only achieve the asymptotically optimal label
lengthO(log n · log(Hn(T))) but also have a much smaller expected label length under
certain tree distributions. With these new schemes, we can also find the least common
ancestor of any two vertices based on their labels only. Table 1 summarizes our main
results, wherek is the maximum vertex degree,E(Hn) is the expected height of a tree.

2 Preliminaries

Unless explicitly stated otherwise, a tree is always rooted at vertexr. The relative posi-
tions of the children are significant. Thesizeof a treeT , denoted as|T |, is the number
of the vertices inT . Given two verticesu andv in a treeT , the unique simple path be-
tweenu andv in T is denoted asP(u, v, T), and the number of edges onP(u, v, T) is
thedistancebetweenu andv, denoted asdT (u, v). The levelof a vertexu is dT (u, r).
Theheightof a treeT with n vertices, denoted asHn(T), ismaxu∈T dT (u, r). A vertex
w is anancestorof a vertexu if it is on the pathP(u, r, T); the vertexu is then called a
descendantof w. A vertexw is theleast common ancestorof two verticesu, v if w has
the largest level among all common ancestors ofu andv. For a treeT and a vertexu,
let Tu denote the subtree ofT formed byu and all its descendants inT .

A vertex labellingfor a treeT is a functionL that assigns an integerL(u, T) to
each vertex in the treeT . A distance calculatoris a functionf that computes the dis-
tance of two verticesu,v in tree T given only their labelsL(u, T) and L(v, T) but

tree labelling schemes separator-based backbone-based rake-based
worst case Θ(log n · log(Hn(T))) Θ(log n · log(Hn(T))) Θ(log n · log(Hn(T)))

deterministic analysis Theorem 5 Theorem 2 Theorem 4

upper
O(log n · log log n) O(log n· log log n) O(log n· log log log n)

binary search Theorem 7 Theorem 7 Theorem 10
tree Distribution

lower
Ω(log n · log log n) Ω(log n·log log n

log log log n
) Ω(log n)

Theorem 9 Theorem 8 Lemma 1

upper
O(log2 n) O(log2 n) O(log2 n)

uniform tree Theorem 5 Theorem 2 Theorem 4

distribution
lower

Ω(log2 n) Ω(log2 n
log log n

) Ω(log2 n
log log n

)

Theorem 13 Theorem 12 Theorem 11

upper
O(log n · log log n) O(log n· log log n) O(log n· log log n)

distributions with Theorem 14 Theorem 14 Theorem 14
E(Hn) = O(logε n)

lower
Ω(log n·log log n

log k
) Ω(log n) Ω(log n)

Theorem 6 Lemma 1 Lemma 1

Upper
O(log2 n) O(log2 n) O(log2 n)

distributions with Theorem 5 Theorem 2 Theorem 4
E(Hn) = Ω(nε)

lower
Ω(log2 n) Ω(log n) Ω(log n)
Lemma 1 Lemma 1 Lemma 1

Table 1.Summary of the main results of this paper.

not T . A distance labelling schemeis a two-component tupleL = 〈L, f〉 such that
f(L(u, T), L(v, T)) = dT (u, v) for any pair of verticesu, v ∈ T . The length of a
labelling schemeL for a treeT with n vertices, denoted as̀n(L, T), is defined as
`n(L, T) = maxu∈T |L(u, T)|, where|x| is the number of bits in the integerx. The
length`n(L) of a labelling schemeL is defined as̀n(L) = maxT `n(L, T). All loga-
rithmic functionsln in this paper are in base2. It is easy to show that

Lemma 1. For any tree labelling schemeL and tree distribution,E(`n(L)) ≥ log n.

3 Three Tree Labelling Schemes

In this section, we first present two new tree labelling schemes, namely,the backbone-
based labelling schemeandthe rake-based labelling scheme. We then review the separator-
based labelling scheme and discuss the worst case performances of these three schemes.

3.1 Backbone-Based Labelling

Given a treeT with root r, a backboneB(T) is a path from the rootr to leaf formed
recursively as follows. Ifr has no child, then the backbone isr itself. If r has one
child, sayh1, then the backbone is the path ofr concatenated byB(Th1), i.e.,B(T) =
r⊕B(Th1). If r has more than one child, then the backbone is the path ofr concatenated
byB(Th1) whereh1 is the child ofr such that|Th1 | is maximum among allr’s children,
i.e.,B(T) = r ⊕ B(Th1). HereP1 ⊕ P2 stands for the concatenatation of two paths.

Algorithm 1: Backbone-Based Vertex Labelling
1: for each internal vertexvi do
2: Assign a unique positive labelµ(vi, vj) between1 andWi, whereWi is the number of

vi’s child, for every vertexvj that isvi’s child.
3: for i = 0 to CB(T)− 1 do
4: for each treeTj in forestD(i)(T) do
5: Let vj beTj ’s root andB(Tj) be its backbone, andv` bevj ’s parent if it exists.
6: for every vertexvk ∈ B(Tj) do
7: Set LB(vk, T) = LB(v`, T) ◦ 〈dT (vk, vj), µ(v`, vj)〉 if v` exists and set

LB(vk, T) = 〈dT (vk, vj), 0〉 otherwise. Here, the◦ separates the label intochunks.

Algorithm 2: Backbone-Based Distance Decoder
1: Without loss of generality, we assumeLB(u, T) = L0(u) ◦ · · · ◦ La(u) andLB(v, T) =
L0(v) ◦ · · · ◦ Lb(v) with a ≥ b. Here,Li(u) is thei + 1 part of the labelLB(u, T).

2: AssumeLc(u) = 〈x, y〉. For notational simplicity, we letLc(u)[1] = x andLc(u)[2] = y.
3: Setdis = 0 and find the smallest indexc such thatLc(u) 6= Lc(v) if suchc exists.
4: if c does not existthen
5: dis = dis + Li(v)[1] for i = b + 1 to a.
6: else
7: dis = dis + Li(v)[1] for i = c + 1 to a anddis = dis + Li(u)[1] for i = c + 1 to b.
8: Setdis = dis + Lc(u)[1] + Lc(v)[1] if Lc(u)[2] 6= Lc(v)[2] and setdis = dis +

|Lc(u)[1]− Lc(v)[1]| otherwise.
9: OutputfB(LB(u, T), LB(v, T)) = dis.

Fig. 1. The Backbone-Based Distance Labelling Scheme.

Given a forestF , let B(F) =
⋃

T∈F B(T). Define ad-backboneoperation as first
removing the edges inB(F) from F and then removing the resulting isolated ver-
tices inF from F to produce a forestD(F). For simplicity, we denoteD(k)(F) =
D(D(k−1)(F)), i.e.,D(k)(F) is the forest afterk d-backbone operations on the original
forestF . Let CB(T) denote the number of d-backbone operations needed to separate a
treeT into isolated vertices. We have the following theorem (proof omitted):

Theorem 1. For a treeT of n vertices,CB(T) ≤ log n.

Figure 1 presents our backbone-based labelling schemeLB = 〈LB , fB〉. Given a
vertexu, its labelLB(u, T) is a series of two element tuples separated by the“ ◦ ”
symbol. We call each two element tuple achunkof the label. LetLB(u, T) = L0(u) ◦
. . . ◦ Li(u) ◦ . . .La(u), whereLi(u) is theith chunk of the label. Letc be the smallest
index such thatLc(u) 6= Lc(v) if it exists. Without loss of generality, assume that
Lc(u) < Lc(v). A key observation is that the vertex with labelL0(u) ◦ · · · ◦ Lc(u) is
the least common ancestor of vertices with labelLB(u, T) andLB(v, T).

In Algorithm 1, for every vertexvi, when we assign child-label tovj who is vi’s
child, we assume the label length islog Wi, whereWi is the number of children of
vi. However, givenWi children, when you assign a label`, the label length islog `
instead oflog Wi. With this observation [9], we can reduce the total tree label length

by applying the followingreshuffle process. First, we apply Algorithm1 to obtain a
label LB(u, T) for every vertexu. Initially, we mark all the internal vertices as “un-
processed” and all leaf vertices as “processed”. While there is an “unprocessed” ver-
tex , we pick one vertexv such that all of its children are processed. Without loss of
generality, we assume thatvi1 , vi2 , . . . , vik

arev’s children who are not on the same
backbone ofv. For any vertexw in treeT vij , the label ofLB(w, T) should contain
LB(v, T) as a common prefix and the second element of(a + 1)th chunk is also the
same. Assume thatLB(w, T) = LB(v, T) ◦La+1(w) ◦La+2(w) ◦ . . . ◦Lc(w). Define
κ(w) =

∑c
i=a+2 log(Li(w)[2]), andγ(vij) = max

w∈T
vij κ(w). We sort the vertices

vi1 , vi2 , . . . , vik
according to the size of their subtreesT vij in an ascending order, and

let σ be the index of the sorted list, i.e.,|T viσ(j) | is thejth largest. Then we reassign
La+1(v)[2] = j to each vertexv if v is in the treeT viσ(j) . Observe that this reassign
process does not affect the label of the first element of any chunks and the correctness
is straightforward. Following Lemma reveals a property of the reshuffle process (proof
omitted due to space limit).

Lemma 2. After the reshuffle process,γ(r) ≤ 2 log n for LB , wherer is the root.

Notice that the reshuffle process does not depend the any specific properties of
the Backbone-Based Distance Labelling Scheme. Thus, even we change the labelling
scheme for the first element, as long as the label contains at mostlog n chunks, Lemma
2 still holds. Recall that the label of vertexu is LB(u, T) = L0(u) ◦ . . . ◦Lk(u), where
Li(u) is tuple composed of two integers. Since

∑k
i=1 log(Li(u)[2]) ≤ γ(r), we have

Theorem 2. `n(LB , T) and the time complexity of decoding isO(log n · log Hn(T))
for any treeT with n vertices.

PROOF. From the definition of tree label length,`n(LB) = maxT `n(LB , T) ≤
log(max{Hn(T)} · CB(T) + γ(r) ≤ log n · [log(max{Hn(T)}+ 2].

3.2 Rake-Based Scheme

In this section, we present a new tree labelling scheme based on the tree decomposition
scheme by Kao [11]. Achainof T is a path inT such that every vertex of the given path
has at most one child inT . A tubeof T is a maximal chain ofT . A root pathof a tree
is a tree path whose head is the root of that tree; similarly, aleaf pathis one ending at a
leaf. A leaf tubeof T is a tube that is also a leaf path. LetLT (T) denote the set of leaf
tubes inT . LetR(T) = T −LT (T), i.e., the subtree ofT obtained by deleting fromT
all its leaf tubes. The operationR is called therake operation.

A tube systemof a treeT is a set of tree pathsP1, · · · , Pm in T such thatTh1 , · · · , Thm

are pairwise disjoint, wherehi is the head ofPi. We can iteratively rakeT to obtain tube
systems. Every rake operation produces a tube system ofT until T is raked to empty.
Given a treeT , letR(i)(T) be the remaining tree afterith rake operation andCR(T) be
the number of rake operations needed to make the tree empty. Similarly, we have

Theorem 3. For any treeT of n vertices,CR(T) ≤ log n.

Algorithm 3: Rake-Based Vertex Labelling

1: for each internal vertexvi do
2: Assign a unique positive IDµ(vi, vj) for every vertexvj that isvi’s child, i.e.,µ(vi, va) 6=

µ(vi, vb) if va andvb arevi’s children.
3: Let CR(T) be the number of rake operations needed to makeT empty.
4: for i = CR(T)− 1 down to0 do
5: for each tubeS in LT(Ri(T)) do
6: Let h be the head of the tubeS, i.e., the vertex with the smallest level in the tube, and

let h′ be the parent ofh in the treeT if suchh′ exists.
7: for each vertexvj in tubeS do
8: Set the label ofvj asLR(vj , T) = LR(vk, T) ◦ 〈dT (vj , h

′), µ(h′, h)〉 if h′ exists
and setLR(vj , T) = 〈dT (vj , r), 0〉 otherwise.

9: Apply the reshuffle process to modify the second element of the chunks of the label.

Algorithm 4: Rake-Based Distance Decoder

1: For any pair of verticesu 6= v, we assumeLR(u, T) = L0(u)◦· · ·◦La(u) andLR(v, T) =
L0(v) ◦ · · · ◦ Lb(v) with a ≥ b. AssumeLc(u) = 〈x, y〉. For notational simplicity, we let
Lc(u)[1] = x andLc(u)[2] = y.

2: Setdis = 0 and find the smallest indexc such thatLc(u) 6= Lc(v) if suchc exists.
3: if c does not existthen
4: dis = dis +

Pa
i=b+1 di(v).

5: else
6: Setdis = dis +

Pa
i=c+1 di(v) +

Pb
i=c+1 di(u).

7: Setdis = dis+Lc(u)[1]+Lc(v)[1] if Lc(u)[2] 6= Lc(v)[2] anddis = dis+|Lc(u)[1]−
Lc(v)[1]| otherwise.

8: OutputfR(LR(u, T), LR(v, T)) = dis.

Fig. 2. The Rake-Based Distance Labelling Scheme.

Based on the rake operation, we define a labelling schemeLR = (LR, fR) as fol-
lows. For the rake-based labelling scheme defined in Algorithm 3 and Algorithm 4, sim-
ilar to the backbone scheme, by assuming thatdc(u) < dc(v), a key observation about
vertexu, v’s least common ancestor is that the vertex with labelL0(u) ◦ · · · ◦ Lc(u) is
the least common ancestor of vertices with labelLR(u, T) andLR(v, T).

From Lemma 2 and Theorem 3,`n(LR) = maxT `n(LR, T) ≤ log(Hn(T)) ·
CR(T) + γ(r) ≤ log n · (log(Hn(T)) + 2). We thus have

Theorem 4. The length of̀ n(LR, T) is O(log n · log Hn(T)) and the time complexity
of decoding isO(log n · log Hn(T)) for any treeT with n vertices.

3.3 Separator-Based Labelling

In this section, we review a tree labelling scheme first proposed by Peleg [12] and then
improved by Gavoille [9]. The key idea is to find aseparator, i.e., a vertex here, of a

tree such that the removal of the separator breaks the tree into several subtrees each
with at most half of the vertices in the original tree. Iteratively remove separators of the
remaining trees until all vertices are disconnected. For more details of the separator-
based labelling scheme please refer to [12] and [9].

Again, a key observation here is that the vertex with labelL0(u) ◦ · · · ◦ Lc(u) is
the least common ancestor of vertices with labelLS(u, T) andLS(v, T). Regarding
the length of the separator-based labelling scheme, we have the following two theorems
(their proofs are omitted here due to space limit).

Theorem 5. `n(LS , T) is O(log n · log(Hn(T))) for any treeT with n vertices.

Theorem 6. `n(LS , T) is Ω(max{ log n·log log n
log k , log2(Hn(T)}) for any treeT with n

vertices and bounded degreek.

4 Expected Label Length under Binary Search Tree Distribution

In Section 3, we presented two tree labelling schemes which have the worst case length
Θ(log2 n) for any binary tree. We focus on the expected label length under binary search
tree distribution in this section and under uniform tree distribution in the next section.

4.1 General Upper Bound

In this subsection, we build a general but not too bad upper bound for the expected
length of`n(LR, T) and`n(LB , T) when the trees arebinary search treeswith usual
randomization; that is, the binary search tree is constructed in a standard fashion (n con-
secutive insertions) from a random permutation of{1, 2, · · · , n}, where each permuta-
tion is equally likely. It has been proved in [13] that the expected height of a random bi-
nary search tree isE(Hn) = α log n−β log log n+O(1), whereα log

(
2e
α

)
= 1, α ≥ 2

andβ = 3
2 log α

2
. Numerically,α = 4.311 · · · , andβ = 1.953 · · · . With the above fact,

we can give an upper bound for the expected length of both backbone-based labelling
scheme and rake-based labelling scheme, and this technique can be applied to other tree
randomization also. The proof is omitted due space limit.

Theorem 7. The expected label lengths for both backbone-based scheme, rake-based
scheme, and separator based scheme are at mostlog n · log log n + log α log n, where
α is a constant satisfying the equationα log

(
2e
α

)
= 1, α ≥ 2.

4.2 Lower Bound of the Expected Length for Backbone-Based Scheme and
Separator-Based Scheme

Given the upper bound of expected length for backbone-based scheme, we would like to
compute the lower bound forE(`n(LB), T) and find the gap between them. Following
theorem gives a lower bound for the expected length of a random binary search tree
based on backbone-based scheme.

Theorem 8. The expected label length of a random binary search tree based on the
backbone-based scheme isΩ(log n·log log n

log log log n), i.e.,E(`(LB), T) = Ω(log n·log log n
log log log n).

The proof of Theorem 8 is omitted here due to space limit. Theorem 8 gives a
lower bound that is very close to the upper bound. The gap is onlylog log log n, and
we conjecture that the lower bound isΩ(log n · log log n) which is tight. Similarly, we
have a lower bound of the expected length for separator-based Scheme, and it can be
obtained directly from Theorem 6 since for a a binary search tree, the degree of the
vertex is bounded by3 and`(LB) = Ω(log n · log log n) from Theorem 6.

Theorem 9. The expected label length of a random binary search tree based on the
separator-based scheme isΩ(log n·log log n), i.e.,E(`(LB), T) = Ω(log n·log log n).

Theorem 9 and Theorem 7 together shows that the expected length for separator-
based scheme for random binary search tree is exactlyΘ(log n · log log n).

4.3 Upper Bound of Expected Length for Rake-Based Scheme

In this section, we give a tighter upper bound of the expected tree label length for rake-
based scheme. We first present the following theorem (proof omitted here).

Theorem 10. The expected label length of a random binary search tree for rake-based
scheme islog n·log log log n+log α·log n+o(1), whereα = 213+1, i.e.,E(`n(LB , T)) =
log n · log log log n + log α · log n + o(1).

Remember that for a tree withn vertices, we need at leastlog n bits to represent
the vertices even without the requirement to recover the distance. Thus, from Theorem
10, our rake-based Scheme is almost tight. Our conjecture is that the upper bound could
be improved toO(log n), which matches the lower bound. An interesting result drawn
from Theorem 8 and Theorem 10 is that under the binary search tree distribution, usu-
ally the rake-based Scheme is better than backbone-based scheme. Recall that for the
backbone based scheme, the length of the backboneB(T) is at leastlog(|T |). However,
for rake based scheme, every rake operation decreases the height of the tree at least
by 1 and most often more than1. Thus, the last tube of the treeT , as we proved, is
O(log log n) with high probability, compared withO(log n) for the backbone. There-
fore, it is natural that the rake-based scheme outperforms the backbone-based scheme.

5 Expected Label Length Under Uniform Binary Tree Distribution

In this section, we consider the binary trees withuniform distribution; that is every
distinct binary tree withn vertices has the same probability. It is well known that there
areCn of enumeration of different binary trees withn vertex, whereCn is Catalan
Number. Based on this fact, we have the following lower bounds for the backbone-
based scheme, rake-based scheme and separator-based scheme.

Theorem 11. The expected tree label length of backbone-based scheme isΩ(log2 n
log log n).

Theorem 12. The expected tree label length of rake-based scheme isΩ(log2 n
log log n).

Theorem 13. The expected tree label length of separator-based scheme isΘ(log2 n).

The lower bound of the expected label length of backbone-based, rake-based and
separator-based areΩ(log2 n

log log n), Ω(log2 n
log log n) andΩ(log2 n) respectively. These lower

bounds either are very close to or match the upper boundslog2 n, and we conjecture
that the lower bounds for both the backbone-based and rake-based schemes are also
Ω(log2 n), which is asymptotically tight.

6 Expected Label Length under Several Other Tree Distributions

We then discuss the upper and lower bounds in a more general setting. Generally, we
have the following results on the expected label length for any tree distribution:

Theorem 14. Under any tree distribution, we have (1)E(`n(LR, T)) ≤ logE(Hn(T))·
log n; (2) E(`n(LB , T)) ≤ logE(Hn(T)) · log n; (3) E(`n(LS , T)) ≤ logE(Hn(T)) ·
log n.

Theorem 14 reveals an important information about the expected label length: the
upper bound of expected label length relates to the expected height of the tree. For the
lower bound of the expected label length, we have the following theorem.

Theorem 15. For any degree bounded tree distribution, if the probabilityP(Hn(T) ≥
E(Hn(T)) = α whereα is some constant, then the expected length of separator-based
scheme isΩ(log(n)·log(E(Hn(T))

log k), wherek is the degree bound.

From the previous two sections, one may observe that for bounded degree tree dis-
tribution, the label length depends on the expected tree height and size of the largest
subtree. When the expected tree height isO(nε) whereε is some constant, the label
length for the backbone-based, rake-based and separator-based are most likely to be
similar, which is close toO(log2 n), under most distributions. When the expected tree
height isO(logε n), the backbone-based, rake-based and separator-based schemes can
achieve a better expected label length, which isO(log n · log log n). We also conjecture
that the label length of rake-based scheme can achieveO(log n · log log log n) or even
O(log n) under certain tree distributions, which is tight.

7 Conclusion

In this paper, we studied how to label the vertices of a tree such that we can de-
cide, given only the labels of two vertices, their distance in the tree. Specifically, we
present two new distance labelling schemes that can achieve asymptotic optimal length
O(log n · log(Hn(T)) and have a much smaller expected label length under certain tree
distributions. In the meanwhile, we also show how to find the least common ances-
tor of any two vertices based on their labels only. Rake-based labelling scheme usu-
ally achieves a smaller expected label length than backbone-based and separator-based
schemes for most tree distributions with average low height. A remaining future work
is to close the gaps between the upper bounds and the lower bounds for various tree dis-
tributions, and to prove the conjectures listed in our full version [17]. For more details
of the proof, please refer [17] also.

References

1. S. ALSTRUP, P. BILLE , AND T. RAUHE, Labeling schemes for small distances in trees, In
Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete algorithms, 2003,
pp. 689–698.

2. S. ALSTRUP, C. GAVOILLE , H. KAPLAN , AND T. RAUHE, Nearest common ancestors: A
survey and a new distributed algorithm, in SPAA’02, 2002.

3. S. ALSTRUP AND T. RAUHE, Lower bounds for labeling schemes supporting, ancestor,
sibling, and connectivity queries, Tech. Report IT-C, nr. 10, IT University of Copenhagen,
2001.

4. , Small induced universal graphs and compact implicit graph representations, in IEEE
FOCS, 2002.

5. M. A. BREUER, Coding the vertexes of a graph, in IEEE Transactions on Information The-
ory, vol. 12, April 1966, pp. 148–153.

6. M. A. BREUER AND J. FOLKMAN , An unexpected result on coding the vertices of a graph,
in Journal of Mathematical Analysis and Applications, vol. 20, 1967, pp. 583–600.

7. S. P. C. GAVOILLE , D. PELEG AND R. RAZ, Distance labeling in graphs, in Proceedings
of the Twelfth Annual ACM-SIAM Symposium on Discrete algorithms, 2001, pp. 210–219.

8. P. FLAJOLET AND A. ODLYZKO , The average height of binary trees and other simple trees,
in Journal of Computer and System Sciences, vol. 25, 1982, pp. 171–213.

9. C. GAVOILLE , M. KATZ , N. KATZ , C. PAUL , AND D. PELEG, Approximate distance label-
ing schemes, in 9th Annual European Symposium on Algorithms (ESA), vol. 2161 of LNCS,
2001, pp. 476–488.

10. C. GAVOILLE AND D. PELEG, Compact and localized distributed data structures, Distrib.
Comput., 16 (2003), pp. 111–120.

11. M.-Y. K AO, Tree contractions and evolutionary trees, SIAM Journal on Computing, 27
(1998), pp. 1592–1616.

12. D. PELEG, Proximity-preserving labeling schemes and their applications, in Proceedings
of the 25th International Workshop on Graph-Theoretic Concepts in Computer Science,
Springer-Verlag, 1999, pp. 30–41.

13. B. REED, The height of a random binary search tree, Journal of ACM, 50 (2003), pp. 306–
332.

14. M. N. S. KANNAN AND S. RUDICH, Implicit representation of graphs, in Proceedings of
the Twentieth annual ACM symposium on Theory of computing, ACM Press, 1988, pp. 334–
343.

15. J. P. SPINRAD, Efficient Graph Representations, American Mathematical Society, June
2003.

16. D. B. WEST, Introduction to Graph Theory, Prentice Hall, 2nd edition ed., August 2000.
17. M ING-YANG KAO, X IANG-YANG L I , AND WEIZHAO WANG, Average Case

Analysis for Tree Labelling Schemes. Full veresion of the paper is available at
http://www.cs.iit.edu/ ∼xli/publications-select.html

